

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

42

Balaning Explorations with Exploitations in the Artificial

Bee Colony Algorithm for Numerical Function

Optimization

Syeda Shabnam Hasan

Department of Computer Science and Engineering
Ahsanullah University of Science and Technology

Dhaka-1208, Bangladesh

Fareal Ahmed
Department of Computer Science and Engineering
Ahsanullah University of Science and Technology

Dhaka-1208, Bangladesh

ABSTRACT

This paper introduces a variant of Artificial Bee Colony

algorithm and compares its results with a number of swarm

intelligence and population based optimization algorithms.

The Artificial Bee Colony (ABC) is an optimization algorithm

based on the intelligent food foraging behavior of honey bees.

The proposed variant, Artificial Bee Colony Algorithm with

Balanced Explorations and Exploitations (ABC-BEE) makes

attempts to dynamically balance the mutation step size with

which the artificial bees explore the search space. Mutation

with small step size produces small variations of existing

solutions which is better for exploitations, while large

mutation steps are likely to produce large variations that

facilitate better explorations of the search space. ABC-BEE

fosters both large and small mutation steps as well as

adaptively controls the step lengths based on their

effectiveness to produce better solutions. ABC-BEE has been

evaluated and compared on a number of benchmark functions

with the original ABC algorithm, Genetic Algorithm (GA),

Particle Swarm Optimization (PSO) and Particle Swarm

Inspired Evolutionary Algorithm (PS-EA). Results indicate

that the proposed scheme facilitates more effective mutations

and performs better optimization outperforming all the other

algorithms in comparison.

Keywords

Artificial bee colony algorithm; Mutation; Exploration and

exploitation; Function optimization.

1. INTRODUCTION
Swarm-based optimization algorithms (SOAs) employ a

population of decentralized, self-organized agents and model

some means of communication and information sharing

among them to materialize a co-operative distributed search

towards some optimal solution. Such an approach often

mimics nature’s methods to drive a distributed search to

achieve some objective. Utilizing a population of agents who

travel through the search space in parallel, SOAs exhibit

remarkable robustness against being trapped in local optima,

even in multimodal, high dimensional search space. This is a

key advantage of SOAs over direct search algorithms such as

hill climbing or random walk. SOAs can find reasonably good

quality solutions within relatively short computation time.

SOAs include Genetic Algorithm (GA) [14], Ant Colony

Optimization (ACO) [15], Particle Swarm Optimization

(PSO) [16], Bee Colony Optimization [1]-[5], [6] and so on.
All of these population-based search algorithms employ some

strategy to generate variations of the existing population of

solutions to obtain a new offspring population. For example,

GA [14], [17] applies genetic operators, like crossover and

mutation on the existing individuals to alter them with the

intention of obtaining a new population with better fitness.

The individuals with better fitness enjoy greater chance to be

selected for mating (i.e., recombination or crossover) and

re-insertion to the offspring population. Thus GA tries to

mimic the natural process of ‘survival of the fittest’ by

providing privilege to the fitter individuals for selection and

mating. Another swarm intelligence approach, Particle swarm

optimization (PSO) is a stochastic optimization technique

based on the social behavior and interactions in bird flocking

or fish schooling. In PSO, individuals of the population move

across the solution space like a group of interacting ‘particles’

and search for improved solutions. Each particle has a

velocity and it changes its position and velocity based on the

experience of itself and its neighbors. There exist several

variants of the PSO algorithm based on various aspects of the

base algorithm. The enormous adaptability of PSO to

hybridizations and variations is considered its strength over

many other algorithms. A hybrid approach combining PSO

and Evolutionary Algorithm (EA) is the Particle swarm

inspired Evolutionary Algorithm (PS-EA) [21]. PS-EA

employs PSO, but tries to avoid generating infeasible

solutions from the improper updates of PSO by heuristics with

selection and mutation operations.

The intelligent food foraging behavior of honey bees has

inspired several models to solve both combinatorial and

continuous optimization problems [2-13]. A novel routing

algorithm, BeeHive, is introduced by Wedde et al. [13] based

on the communicative and dynamically evaluative procedures

of honey bees. Teodorović proposed Bee Colony

Optimization metaheuristic (BCO) [8] which can be employed

to solve deterministic combinatorial problems, as well as

combinatorial problems with uncertainty [5]. Lucic and

Teodorović also demonstrated how the intelligent bee swarm

behavior can be used to solve complex problems in traffic and

transportation [6]. Tereshko and Loengarov considered bees

as identical autonomous robots and presented experiments

exhibiting robust and successful bee algorithms in complex

robotic tasks [22]. Drias et al. introduced a metaheuristic,

called Bees Swarm Optimization (BSO) and applied it to

solve the maximum weighted satisfiability (max-sat) problem

[9]. Benatchba et al. introduced a metaheuristic derived from

the reproduction process of honey bees to solve a 3-sat

problem [23]. Algorithms inspired by bee behavior have also

been employed for solving Traveling Salesman Problem [24],

Generalized Assignment Problem [25], Job shop scheduling

[26], Training neural networks [12], dynamic allocation of

internet servers [7] and so on. Relatively fewer works have

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

43

been carried out on continuous and numerical optimization

problems. Yang developed a virtual bee algorithm (VBA) to

solve the numeric function optimizations [10]. To minimize

functions with two-parameters, Yang employed a swarm of

virtual bees that started by randomly moving around the

search space and interacting when they find any good quality

nectar represented by the value of the objective function better

than some predefined threshold. The optimal solution is

obtained from the intensity of bee interactions. VBA is tested

on two functions with two parameters, one is unimodal and

the other is multimodal. Results show that VBA is much

efficient than the genetic algorithm. Pham et al. [11] proposed

a bee inspired optimization algorithm, the Bees Algorithm,

which is applicable to both combinatorial and functional

optimization problems. It is applied on eight benchmark

functions and results show that it outperforms deterministic

simplex method, stochastic simulated annealing optimization

procedure, genetic algorithm and ant colony system, in terms

of both final solution quality (i.e., accuracy) and convergence

speed (number of iterations). Karaboga has developed an

artificial bee colony (ABC) algorithm [4] which has fewer

parameters and employed it for optimizing multivariable

functions. Basturk and Karaboga presented another variant of

ABC algorithm, extended the experimental results of the

original ABC algorithm on five multi-dimensional benchmark

functions and compared the results with genetic algorithms

[2], [3]. In this paper, we have further improved the basic

ABC algorithm by introducing ABC with Balanced

Explorations and Exploitations (ABC-BEE) which

incorporates a mutation step size adjustment scheme within

the basic ABC algorithm. From the experiments, we found

that ABC-BEE provides better results on most of the

benchmark functions, which indicates the effectiveness of the

proposed adjustment scheme.

The rest of this paper is organized as follows. Section 2

describes the basic ABC algorithm. The proposed variant

ABC-BEE is presented in the following section 3. Section 4

provides details of the benchmarking problems, parameter

settings of the different algorithms and compares the results.

Section 5 draws conclusion of this study and leaves a few

suggestions as future research directions.

2. THE ABC ALGORITHM
Honey bees in a colony show remarkable self-organization

and co-ordination skills in their food foraging behavior. Bees

have to forage over a vast area in search of good sources of

food. After an initial exploration stage, more bees are

employed to collect honey from the more profitable food

sources whereas fewer bees are assigned to the less worthy

food sources. Some scout bees are also assigned for

exploration to find newer food sources. If the quality of a food

source declines after some exploitation, this information is

also shared with other bees so that fewer bees are now

attracted to this source. After the quality of a food source falls

below some threshold, the bees assigned to it abandon it. The

foraging process is initiated by scout bees that start searching

for flower patches suitable as food sources. Quality is

measured as a combination of some values, such as quantity

and density of sugar, ease of access, distance from the colony

etc. After they return to the hive, those scout bees that found a

patch with quality above some threshold, deposit their nectar

and then go to the ‘dance floor’ to perform a dance known as

the ‘waggle dance’. This dance plays the key role to

communicate information among the bees about the food

sources. The waggle dance contains three pieces of

information: i) the quality of the flower patch of this dancing

bee, ii) the distance of the flower patch from the hive, iii) the

direction from the hive that you have to travel in order to

reach the flower. The ‘onlooker’ bees, waiting around the

dance floor, observe the waggle dances of these ‘employed’

bees that have found good food sources and pick any one of

them to become its ‘follower’ and collect nectar from its

flower patch. The better a flower patch as a food source, the

bigger is the number of follower bees along with its employed

bee. However, if the patch is no longer good enough, it will

not be advertised in the next waggle dance and the bees

recruited for it as employed or follower bees will choose

either to follow some other employed bee or start working as

a scout bee to randomly explore the search space for finding

new food source.

The ABC algorithm mimics the food foraging behavior of the

honey bees with these three groups of bees: employed bees,

onlookers and scouts. A bee working to forage a food source

(i.e. solution) previously visited by itself and searching only

around its vicinity is called an employed bee. Employed bees

perform waggle dance to propagate information of its food

source to other bees. A bee waiting around the dance floor to

choose any of the employed bees to follow is called an

onlooker. A bee randomly searching a search space for

finding a food source is called a scout. For every food source,

there is only one employed bee and a number of follower

bees. The scout bee, after finding a good food source also

becomes an employed bee. In ABC algorithm

implementation, half of the colony is employed bees and the

other half is the onlookers. Number of food sources (i.e.,

solutions) is equal to the number of employed bees. An

employed bee whose food source is exhausted (i.e. solution

has not improved after several attempts) becomes a scout. The

detailed pseudocode is given below.

Step 1) Generate an initial population of N individuals. Each

individual is a food source (i.e. solution) and has D attributes,

where D is the dimensionality of the problem.

Step 2) Evaluate the fitness of each individual.

Step 3) Each employed bee searches in the neighborhood of

its current position to find a better food source. For each

employed bee, generate a new solution, vi around its current

position, xi using (1).

 vij = xij + φij (xij – xkj) (1)

Here, k{1, 2, …, Nemp} and j{1, 2, …, D} are randomly

chosen indices. Nemp is the number of employed bees. Φij is a

uniform random number generated from the range [-1, 1].

Step 4) Compute the fitness of both xi and vi. Apply greedy

selection scheme to choose the better one.

Step 5) Calculate the selection probability, Pi for each

solution, xi and normalize by

 1

N

k

k

i iP fit fit



  (2)

Step 6) Assign each onlooker bee to a solution, xi at random

with probability proportional to Pi

Step 7) Produce new food positions (i.e. solutions), vi for each

onlooker bee using the corresponding employed bee xi by

using (1).

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

44

Step 8) Evaluate the fitness of each employed bee, xi and its

produced onlooker bee, vi. Apply greedy selection scheme to

keep the one with better fitness and discard the other.

Step 9) If a particular solution has not been improved over a

number of cycles, then select it for abandonment. Replace it

by placing a scout bee at a food source placed uniformly at

random over the search space using (3), i.e., for j = 1, 2, ..., D

 xij = minj + rand (0,1) * (maxj – minj) (3)

Step 10) Keep track of the best food source position (solution)

found so far.

Step 11) Check for termination. If the best solution found is

acceptable or maximum number of iterations has elapsed, stop

and return the best solution found so far. Otherwise go back to

step 2 and repeat.

3. ADJUSTMENT OF MUTATION STEP

SIZE WITH ABC-BEE
The proposed variant, ABC-BEE is different from the original

ABC algorithm in three aspects. First, ABC-BEE alters (1)

which is used by steps 3 and 7 of the original ABC algorithm

for reproducing new solutions from the existing ones. Second,

ABC-BEE executes an ‘adjustment phase’ periodically after

every t generations to automatically adapt the magnification

factors, i.e., the Mij values that it maintains for every

dimension, j of every bee, xi. Third, ABC-BEE employs a

larger interval of [–3, 3] instead of the narrower [–1, 1]

interval used by the original ABC algorithm. All these three

schemes work together to facilitate more effective mutations

to produce better offspring. The magnification factors that

ABC-BEE maintains and adapts periodically help the

mutation process perform better exploitations and

explorations across the search space. Thus (1), which

conducts the mutation process, now gets tuned by the Mij

values that try either to enlarge or to shrink the Φij [–3, 3]

values to facilitate exploration or exploitation respectively, as

illustrated in (4).

vij = xij + Mij * φij * (xij – xkj) (4)

All Mij values are initiated to 2.0 during the beginning of the

search process. As the search progresses across several peaks

and plateaus or flat regions of the fitness landscape, the Mij

values are automatically adjusted by the periodically invoked

adjustment phases in order to take care of the current

situation. Small values (less than unity) for Mij would shrink

the product Mij * Φij in (4) to facilitate small mutation steps

and thus ensure exploitation around the existing solution, xi.

On the contrary, large enough values for Mij would expand the

product Mij * Φij in order to promote large mutation steps

which would help the search process quickly get rid of local

optima and perform more explorations of the search space.

Whether exploitation or exploration is better at current search

stage might not be apparent or could not be predicted

beforehand. So the adjustment phase executes periodically

after each t generations, performs mutations with different

range of Mij values and promotes only those Mij values that

produce more successful mutations.

Fig. 1 presents the pseudocode of the mutation step size

adjustment cycle that is invoked periodically after every t

generations. In this cycle, ABC-BEE adapts the magnification

factor values of all the bees involved in the optimization

process. The adjustment phase generates two uniform random

values v1 and v2 for each employed and onlooker bee from the

two Gaussian distributions with (mean, std. dev.) set to (0, α1)

and (0, α2) respectively. Now, for every individual bee xi,

three different offspring solutions (i.e., new food sources) are

generated by using (4): one by employing the existing value

of Mij and two more offspring by using Mij = 2-v1
 and 2

v2

respectively. Since α1 is much smaller than α2, hence the

magnitude of v1 is likely to be smaller than its counterpart v2.

Thus the magnification factor, Mij = 2–
v1

 would generate small

steps for better exploitations, while Mij = 2
v2

 would produce

large steps for more search space explorations. Now,

ABC-BEE evaluates the fitness of the three offspring and

accepts the best one for the next generation. Also, it updates

the Mij to the weighted average of its current value and the

magnification factor value that has produced the best

offspring (say, Mij[k]) using the following formula.

Mij = β * Mij + (1-β) * Mij[k] (5)

However, the adjustment phase, as presented in Fig. 1, often

causes the Mij values to gradually decrease with generations,

because exploitative small mutation steps usually have better

chance to succeed than explorative larger steps. The

continuous decrement of Mij values shrinks the mutation steps

which eventually might make the search process get trapped

at locally optimal points. To avoid this, ABC-BEE adopts a

simple, yet effective scheme. If a particular Mij drops

continuously over the last s1 generations, and is never

increased over these last s1 generations without any fitness

improvement of the solution xi, then ABC-BEE manually

resets Mij to 1.0 and keeps it constant at 1.0 for the next s2

generations (otherwise, Mij may quickly revert back to its

smaller values again because of the weighted averaging). This

resetting of magnification factors to higher values promotes

larger mutation steps and helps get rid of any local optimum

whenever any solution gets trapped there.

Fig. 1: Pseudo code of the mutation step size adjustment

phase, which is invoked periodically after every t

generations

Procedure Adjustment Phase

for each bee i

 for j = 1 to D

 {
 v1 = absolute (Gaussian_Random (0, α1))
 v2 = absolute (Gaussian_Random (0, α2))

 Mij [1]= 2–v1

 Mij [2]= 2v2

 Mij [3]= Mij

 for count = 1 to 3
 {

 vij [count] = vij computed from (4), but

 with Mij =Mij [k]

 fitness[count] = Fitness (vij [count])
 }

 Find k such that fitness[k] is the minimum
 over the array, fitness[1…3]

 Mij = β * Mij + (1- β) * Mij [k]
 }

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

45

4. EXPERIMENTS

4.1 Benchmark functions
A function is called multimodal if it has multiple local optima.

In order to minimize such a function, the search process must

be able to avoid being trapped around the locally optimal

points. The difficulty increases with the dimensionality of the

problem, because the number of local minima increases

exponentially with the number of dimensions. To compare the

performance of the proposed ABC-BEE with the original

ABC, PSO, PS-EA and GA, we employ five multimodal

benchmark functions [21], [27] each with dimensionality set

to 10, 20, and 30.

Table 1 shows the benchmark functions used for comparison.

The first function, f1 is the multimodal Griewank function. It

reaches the global minimum value of 0 when the variables are

(0, 0, …, 0). Initialization range of the variables is

[−600, 600]. The product term present in f1 introduces strong

interdependence among the variables. So the techniques

which try to optimize each variable separately without

considering the others will fail with this function. The curse of

high-dimensionality, combined with its regularly distributed

multimodality makes the minimization process quite difficult

for any algorithm.

The second function is the Rastrigin function, f2. The first

term in f2 [27] comes from the sphere function, while the

second term with cosine product introduces regularly

distributed multimodality. The initialization range is set to

[-15, 15]. The function reaches the value of 0 at its unique

global minimum (0, 0, …, 0). The third function is the

Rosenbrock function which reaches 0 at the global minimum

(1, 1, …, 1). The global minimum is inside a narrow parabolic

shaped flat valley. The variables are strongly dependent and

gradients usually do not direct to the global minima. Both the

functions are considered very challenging and have repeatedly

been used with the optimization algorithms. The fourth

function is the Ackley function which has the minimum value

of 0 at its global minimum (0, 0, …, 0). Its initialization range

is [−32.768, 32.768]. The exponential term with cosine sum

introduces numerous local minima. Any algorithm using only

gradient steepest descent will be trapped in a local minimum.

So the algorithm has to combine both explorative and

exploitative schemes to reach the global minimum avoiding

numerous local minima during optimization. The fifth

function is Schwefel function which has the minimum value

of 0 at its global minimum (420.9867, 420.9867, …,

420.9867). Its initial range is [−500, 500]. The function has

plenty of peaks and valleys. Unlike the previous functions, the

global minimum is near the edge of the search space.

Moreover, the function has a second best minimum which is

far-away from the unique global minimum. This causes a

great difficulty during the optimization process and many

search algorithms get trapped in the second best minimum.

4.2 Parameter Settings for the algorithms
GA, PSO, PS-EA, ABC and ABC-BEE — all have two

parameters in common: the population size and maximum

number of generations. The population size has been set to

125 and the maximum number of generations is set to 500,

750 and 1,000 for the problems with dimensions of 10, 20 and

30 respectively, as specified in [21].

Settings for GA, PSO and PS-EA: The particular GA

scheme we employed is specified in [21] with its parameter

values. It includes single point uniform crossover, crossover

rate of 0.95, uniform random selection, linear ranking fitness

function, Gaussian mutation and mutation rate of 0.1. The

particular version of PSO we used is based on two distinct

equations with three parameters — w, φ1 and φ2, as in [21].

Here, φ1 and φ2 are learning rates and w is the inertia weight.

As specified in [21], φ1 and φ2 are set to be 2.0 and w is varied

linearly with iterations from 0.9 to 0.7. Another algorithm we

employed is Particle Swarm Inspired Evolutionary Algorithm

(PS-EA). PS-EA is a hybrid approach employing techniques

from both the fields of PSO and EA. PS-EA performs an

updating operation of each individual in the population using

the Inheritance Probability Tree (PIT). This is part of the

‘Self-updating Mechanism’ (SUM) of PS-EA. SUM may

dynamically adjust the inheritance probabilities in PIT. This

Dynamic Inheritance Probability Adjustment (DIPA) is

implemented by SUM considering the convergence rate of the

algorithm during particular iterations. An initial infeasible set

of inheritance probabilities, as suggested in [21], are used to

test the performance of the DIPA module in PS-EA.

Settings for ABC and ABC-BEE: We used colony size of

125 with the percentage of both employed and onlooker bees

set to 50% of the colony. The number of scout bees is set to 1.

Maximum number of generations is set to 500, 750 and 1000

for the problems with dimensions of 10, 20 and 30

respectively. The number of fitness evaluations in an

adjustment phase is three times than that of a typical

generation, so each adjustment phase of the ABC-BEE

algorithm is counted as three generations. This ensures a fair

comparison between ABC and ABC-BEE by allowing equal

number of fitness evaluations by both the algorithms. The

adjustment phase is invoked after every t = 25 generations.

With some preliminary experiments, other parameters are set

as: s1 = 25, s2 = 10, α1= 0.50, α2=4.0 and β = 0.15.

4.3 Experimental Results
GA, PSO, PS-EA, ABC, and ABC-BEE — each is run 50

times on every benchmark function. The mean of the best

function values over all the runs for each function is presented

in Table 2. Results indicate that ABC-BEE outperforms other

algorithms by several orders of magnitude for most instances.

It is remarkable that ABC-BEE reaches very close proximity

of the global minima for all the functions, while the basic

ABC algorithm fails to reach sufficiently close to the global

minima on a number of occasions, such as the high

dimensional Schwefel and Rosenbrock functions. Although

ABC outperforms ABC-BEE for 30D Ackley function (f4),

the performance difference is not statistically significant, as

we have found in t-test with 95% degree of confidence.

It is also observed that ABC-BEE has much better rate of

convergence for most of the functions. To evaluate the

convergence rates quantitatively, we now measure the number

of generations that is required by both ABC and ABC-BEE to

locate the global minima. Locating the global minimum x*is

defined as reaching a function value f(x) such that |f(x) – f(x*)|

≤10-1. Table 3 shows that ABC-BEE locates the global

minima with such accuracy faster than the basic ABC

algorithm. For some functions, such as f3 and f5, ABC often

fails to reach such proximity of the global minima within

1000 generations, which is marked as “failed” in Table 3. In

contrast, ABC-BEE often locates the global minima within a

few hundred generations. The only instance where ABC

shows little bit faster convergence is the Ackley function, f4,

but this difference is not statistically significant, as we have

found in t-test (not shown) with 95% degree of confidence.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

46

How much the proposed adjustment phase can improve the

mutation operation? To find out, we now compare the

successful mutation rates achieved by ABC and ABC-BEE.

Here ‘success rate’ of a mutation scheme is defined as the

percentage of better offspring produced by that scheme.

Results from Table 4 demonstrate that the percentage of

successful mutations is often much higher with ABC-BEE in

comparison to ABC. In some instances, such as f2, f3 and f5,

the success rate by ABC-BEE is almost double of ABC.

These success rates nicely coincides with the results in

Table 2, because the optimization performance (presented in

Table 2) of ABC-BEE is most noticeably better than ABC for

these same three functions, i.e., f2, f3 and f5. Such a beautiful

correlation between better results and higher mutation success

rates directly indicates that the proposed adjustment phase, as

employed by ABC-BEE, yields relatively better offspring by

mutation step size adjustments and thus contributes towards

the improvement of the performance of the algorithm.

Table 1. Benchmark functions for experimental study. D: dimensionality of the function, S: search space,

fmin: function value at global minimum, C: function characteristics with values — U: Unimodal,

M: Multimodal, S: Separable and N: Non-Separable.

No Function D S C fmin

f1 Griewank 10, 20, 30 [-600, 600]D MN 0

f2 Rastrigin 10, 20, 30 [-5.12, 5.12]D MS 0

f3 Rosenbrock 10, 20, 30 [-30, 30]D UN 0

f4 Ackley 10, 20, 30 [-32, 32]D MN 0

f5 Schwefel 10, 20, 30 [-500, 500]D MS 0

Table 2. Mean of the best function values found over 50 independent runs for each function by GA, PSO, PS-EA, ABC

and the proposed ABC-BEE algorithm. The best result for each function is shown in boldface font.

Function D GA PSO PS-EA ABC ABC-BEE Best Results By

f1

10 0.050228 0.079393 0.222366 8.7 x 10-4 9.45 x 10-14

ABC-BEE 20 1.0139 0.030565 0.59036 2.10 x 10-8 1.08 x 10-14

30 1.2342 0.011151 0.8211 2.87 x 10-9 7.82 x 10-12

f2

10 1.3928 2.6559 0.43404 0 0

ABC

ABC-BEE
20 6.0309 12.059 1.8135 1.45 x 10-8 3.13 x 10-13

30 10.4388 32.476 3.0527 0.033874 6.59 x 10-9

f3

10 46.3184 4.3713 25.303 0.034072 1.32 x 10-7

ABC-BEE 20 103.93 77.382 72.452 0.13614 7.80 x 10-5

30 166.283 402.54 98.407 0.219636 2.99 x 10-4

f4

10 0.59267 9.85 x 10-13 0.19209 7.8 x 10-11 3.09 x 10-14

ABC

ABC-BEE
20 0.92413 1.178 x 10-9 0.32321 1.6 x 10-11 1.79 x 10-13

30 1.0989 1.491 x 10-6 0.3771 3 x 10-12 3.16 x 10-12

f5

10 1.9519 161.87 0.32037 1.27 x 10-9 6.63 x 10-18

ABC-BEE 20 7.285 543.07 1.4984 19.83971 9.10 x 10-10

30 13.5346 990.77 3.272 146.8568 0.009081

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

47

Table 3. Number of generations required by ABC and ABC-BEE to reach the global minimum.

Results are averaged over 50 independent runs.

Function Dimensionality ABC ABC-BEE
Better

Convergence By

f1 30 238.5 181.8 ABC-BEE

f2 30 319.6 210.7 ABC-BEE

f3 30 Failed 491.0 ABC-BEE

f4 30 183.3 186.9 ABC

f5 30 Failed 835.5 ABC-BEE

Table 4. Comparison of successful mutation rates achieved by ABC and ABC-BEE.

Results are averaged over 50 independent runs.

Function Dimensionality
Successful Mutation Rate (%) Better

Performance By ABC ABC-BEE

f1 30 18.2 23.8 ABC-BEE

f2 30 11.2 19.5 ABC-BEE

f3 30 6.8 12.6 ABC-BEE

f4 30 25.1 22.3 ABC

f5 30 5.5 10.9 ABC-BEE

5. CONCLUSION AND FUTURE

RESEARCH DIRECTIONS
This paper introduces ABC-BEE, an improvement over the

basic ABC algorithm incorporating an automatic adjustment

phase for the mutation step size. ABC-BEE is evaluated on a

number of benchmark functions and is compared with a

number of population-based and swarm intelligence

algorithms. Experiments and empirical results from

ABC-BEE clearly suggest the effectiveness of adopting the

proposed mutation step size adjustment phase which employs

Gaussian and Exponential distributions to produce both large

and small steps and then picks the more successful step

lengths. However, there are several future research directions

suggested by this study. First, ABC-BEE mostly follows a

greedy management of the magnification factors (i.e., the Mij

values), as it tends to travel towards the magnification factor

values that lead to immediate fitness improvements. A more

sophisticated and less greedy adjustment phase may further

improve its performance. Second, ABC-BEE demonstrates

excellent capacity to locate the global optima, so one

interesting idea would be to hybridize ABC-BEE with other

existing algorithms. ABC-BEE could be employed on a

problem that is partially solved by another algorithm while the

global optimum is still unknown. It would be interesting to

find out whether ABC-BEE can improve the final solution

quality. Third, ABC-BEE has been applied only to the

continuous function optimization problems. It would be

interesting to study how well ABC-BEE performs for other

optimization problems, especially the discrete and real world

optimization problems.

6. REFERENCES

[1] D. Karaboga, B. Basturk, “On the performance of

artificial bee colony (ABC) algorithm”, in Applied Soft

Computing, vol. 8, no. 1, pp. 687-697, 2008.

[2] D. Karaboga, B. Basturk, “Artificial Bee Colony (ABC)

Optimization Algorithm for Solving Constrained

Optimization Problems”, in Proceedings of the 12th

international Fuzzy Systems Association world congress

on Foundations of Fuzzy Logic and Soft Computing, June

18-21, 2007, Cancun, Mexico.

[3] B. Basturk, D. Karaboga, “An artificial bee colony

(ABC) algorithm for numeric function optimization”, in

Proceedings of the IEEE Swarm Intelligence Symposium

2006, Indianapolis, Indiana, USA, 12–14 May 2006.

[4] D. Karaboga, “An idea based on honey bee swarm for

numerical optimization”, Technical Report-TR06,

Erciyes University, Engineering Faculty, Computer

Engineering Department, 2005.

[5] P. Lucic, D. Teodorovic, “Vehicle Routing Problem with

Uncertain Demand at Nodes: The Bee System and Fuzzy

Logic Approach”, in Fuzzy Sets in Optimization, Editor

J.L. Verdegay, Springer-Verlag, Berlin Heidelbelg, pp.

67-82, 2003.

[6] P. Lucic, D. Teodorovic, “Bee system: Modeling

Combinatorial Optimization Transportation Engineering

Problems by Swarm Intelligence”, in Preprints of the

TRISTAN IV Triennial Symposium on Transportation

Analysis, Sao Miguel, Azores Islands, pp. 441-445,2001.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

48

[7] S. Nakrani, C. Tovey, “On Honey Bees and Dynamic

Allocation in an Internet Server Colony”, Proceedings of

2nd International Workshop on the Mathematics and

Algorithms of Social Insects, Atlanta, Georgia, USA,

2003.

[8] D. Teodorovic, M. Dell'Orco, “Bee Colony Optimization

- A Cooperative Learning Approach to Complex

Transportation Problems”, in Advanced OR and AI

Methods in Transportation, pp. 51-60, 2005.

[9] H. Drias, S. Sadeg, S. Yahi, “Cooperative Bees Swarm

for Solving the Maximum Weighted Satisfiability

Problem”, IWAAN International Work Conference on

Artificial and Natural Neural Networks, Barcelona,

Spain, pp. 318-325, 2005.

[10] X. S. Yang, “Engineering Optimizations via Nature-

Inspired Virtual Bee Algorithms”, IWINAC2005, LNCS

3562, J. M. Yang and J.R. Alvarez (Eds.), Springer-

Verlag, Berlin Heidelberg, pp. 317-323, 2005.

[11] D. T. Pham, E. Kog, A. Ghanbarzadeh, S. Otri, S. Rahim,

M. Zaidi, “The Bees Algorithm – A Novel Tool for

Complex Optimization Problems”, IPROMS 2006

Proceeding 2nd International Virtual Conference on

Intelligent Production Machines and Systems, Oxford,

Elsevier, 2006.

[12] D. T. Pham, E. Koc, A. Ghanbarzadeh, S. Otri,

“Optimization of the Weights of Multi-Layered

Perceptions Using the Bees Algorithm”, in Proceedings

of 5th International Symposium on Intelligent

Manufacturing Systems, Sakarya, Turkey, pp. 38-46,

2006.

[13] H. F. Wedde, M. Faruq, Y. Zhan, “BeeHive: An Efficient

Fault-Tolerant Routing Algorithm Inspired by Honey

Bee Behavior”, Ant Colony, Optimization and Swarm

Intelligence, Eds. M. Dorigo, Lecture Notes in Computer

Science 3172, Springer Berlin, pp. 83-94, 2004.

[14] D. E. Goldberg. Genetic Algorithms in Search,

Optimization and Machine Learning. Reading: Addison-

Wesley Longman, 1989.

[15] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT

Press, Cambridge, 2004.

[16] R. Eberhart, Y. Shi and J. Kennedy. Swarm Intelligence.

Morgan Kaufmann, San Francisco, 2001.

[17] J. H. Holland. Adaptation in Natural & Artificial

Systems. University of Michigan Press, Ann Arbor, MI,

1975.

[18] M. Mathur, S. B. Karale, S. Priye, V. K. Jayaraman, B.

D. Kulkarni, “Ant Colony Approach to Continuous

Function Optimization”. Ind. Eng. Chem. Res. 39(10),

2000, 3814-3822.

[19] G. Bilchev and I. C. Parmee, “The Ant Colony Metaphor

for Searching Continuous Design Spaces”, in Selected

Papers from AISB Workshop on Evolutionary

Computing, 1995, pp. 25-39.

[20] M. Dorigo, G. D. Caro, L. M. Gambardella, “Ant

algorithms for Discrete optimization”, Artificial Life,

vol. 5, no. 2, pp. 137-172, 1999.

[21] D. Srinivasan, T. H. Seow, “Evolutionary Computation”,

CEC ’03, 8–12 Dec. 2003, 4(2003), Canberra, Australia,

pp. 2292–2297.

[22] V. Tereshko, A. Loengarov, “Collective Decision-

Making in Honey Bee Foraging Dynamics”, Comput. Inf.

Sys. J., vol. 9, no. 3, pp. 1–7, 2005.

[23] K. Benatchba, L. Admane, M. Koudil, “Using bees to

solve a data-mining problem expressed as a max-sat one,

artificial intelligence and knowledge engineering

applications: a bio-inspired approach”. in Proceedings of

the First International Work-Conference on the Interplay

Between Natural and Artificial Computation, IWINAC

2005, Las Palmas, Canary Islands, Spain, 15–18, June

2005.

[24] L. P. Wong , M. Y. H. Low , C. S. Chong, “A Bee

Colony Optimization Algorithm for Traveling Salesman

Problem”, Proceedings of the 2008 Second Asia

International Conference on Modelling & Simulation

(AMS), pp. 818-823, May 13-15, 2008.

[25] A. Baykasoglu, L. Ozbakor and P. Tapkan, “Artificial

Bee Colony Algorithm and Its Application to

Generalized Assignment Problem”, chapter 8 in Swarm

Intelligence, Focus on Ant and Particle Swarm

Optimization, I-Tech Education and Publishing, Vienna,

Austria, 2007, ISBN 978-3-902613-09-7.

[26] C. S. Chong, A. I. Sivakumar, M. Y. H. Low , K. L. Gay,

“A bee colony optimization algorithm to job shop

scheduling”, Proceedings of the 38th conference on

Winter simulation, December 03-06, 2006, Monterey,

California.

[27] X. Yao, Y. Liu, and G. Lin, “Evolutionary Programming

Made Faster”, IEEE Transactions on Evolutionary

Computation, Vol-3, No. 2, 1999.

