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ABSTRACT 

Secured communication has been a common practice in the social 

life. The main idea of encryption is to transform the message in 

which its original information can only be reconstructed by a 

desired recipient. As data significance can easily be determined in 

transformation domain, it is a preferable domain for encryption of 

digital images. In this work, secured multiple image transmission is 

chosen as the primary application and hence a method is proposed 

for securing multiple images during communication and 

transmission over insecure channel. The multiple images are 

encrypted using Arnold cat Map and then using various Fractional 

Multiresolutional transforms followed by sharing. Recent years 

have also witnessed Fractional Fourier transform (FrFT) domain as 

a potential transformation domain for encryption. Fractional 

combined Multiresolution domain inherits the virtues of 

Multiresolution transform and Fractional domain providing 

improved security. This offers the Fractional order as an extra key, 

in addition to the keys offered by any Multiresolution based 

encryption technique. In the proposed work, Fractional 

Undecimated Dual Tree Complex Wavelet Transform (FrUDT-

CWT) is introduced by coalescing Fractional Fourier Transform 

(FrFT) and Undecimated Dual Tree Complex Wavelet Transform 

(UDT-CWT) inheriting the properties of both FrFT and UDT-

CWT. Multiple image encryption is done using FrUDT-CWT and 

the results are compared with FrDT-CWT and FrWT.   

General Terms 

Fractional multiresolution transforms, Image encryption, Multiple 

image encryption. 

Keywords 
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1. INTRODUCTION 
In the recent years, the security of digital images attracts much 

attention and different methods for image encryption have been 

proposed.  

Nidhi Taneja, Balasubramanian Raman and Indra Gupta [1] 

introduced an efficient selective encryption in Fractional Wavelet 

domain that encrypts only significant subbands using a chaotic 

stream cipher. Relationship between normalized information energy 

and perceptual information of a subband is utilized to select the 

significant subbands. Thorough performance and security analysis 

reflects better perceptual and cryptographic security with less 

computational time. 

Gaurav Bhatnagar, Jonathan Wu and Balasubramanian Raman [2] 

proposed multiple image encryption scheme which is consolidated 

by Fractional Wavelet Transform and chaotic maps. First, all the 

images are encrypted followed by their sharing. The sharing 

process is done considering numerical techniques by making the 

sharing process a system of linear equations. 

Gaurav Bhatnagar, Jonathan Wu and Balasubramanian Raman [3], 

[4] proposed a watermarking technique using Fractional Dual Tree 

Complex Wavelet Transform (FrDT-CWT). The proposed work 

confirms high security, efficiency and robustness. 

Hill.P, Achim.A and Bull.D [5] proposed the technique where 

Undecimated Dual Tree Complex Wavelet Transform (UDT-CWT) 

is introduced together with its application in image denoising. The 

UDT-CWT extends the traditional DT-CWT using the methods of 

filter upsampling and the removal of downsampling developed for 

the Undecimated Discrete Wavelet Transform (UDWT). The UDT-

CWT results in a one-to-one relationship between co-located 

complex coefficients in all subbands and offers improved lower 

scale subband localisation together with improved directional 

selectivity (compared to the UDWT). 

This article develops a simple, yet efficient selective encryption 

technique that considers fractional order as a part of the key 

structure and not the entire security key using various fractional 

multiresolution transforms. Chaos based Arnold cat map is utilized 

to achieve data confidentiality [1]. Multiple image encryption is 

performed using linear sharing process [2]. To achieve exact 

translational invariance, a one-to-one relationship between all co-

located coefficients at all scales and improved directional 

selectivity with the property of describing the information of spatial 

and frequency domain time-frequency, FrDT-CWT is proposed by 

performing UDT-CWT [5] in the fractional domain.  

2. PRELIMINARIES FOR PROPOSED 

TECHNIQUE 

2.1 Fractional Wavelet Transform (FrWT) 
FrWT is a realization of the wavelet transform in FrFT domain [1]. 

FrFT has a unique property of describing the information of spatial 

and frequency domain, due to the rotation of time–frequency plane 

over an arbitrary angle [9]. In contrast, Wavelet transform has 

multiresolution property. A combination of these two domains 

results in FrWT, exhibiting multiresolution property and describing 

the spatial as well as frequency domain information. 

The mathematical representation for the FrWT of a one dimensional 

function f (t), having a fractional order 0 < α < 2, is given as 

follows:

   





  dxxextfFsuW
s

jux )())](([),,(
,




                                      (1) 

where s,   and   denote the dilation parameter, translation 

parameter and the mother Wavelet function respectively. 
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2.2 Fractional Dual Tree Complex Wavelet 

Transform (FrDT-CWT) 
The Fractional Dual Tree complex Wavelet transform (FrDT-CWT) 

is a realization of the DT-CWT in the Fractional Fourier domain 

[3]. The FrFT has a unique property of describing the information 

of spatial and frequency domain due to the rotation of the time–

frequency plane over an arbitrary angle. In contrast, the DT-CWT 

has Multiresolution property. A combination of these two domains 

results in FrDT-CWT, which exhibits the Multiresolution property, 

describing the spatial as well as the frequency domain information. 

Mathematically, the FrDT-CWT [4] of any finite energy signal f (t) 

is defined as  
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where φ and ψ are the scaling and Wavelet functions, respectively. 

The function φ gives the scaling coefficients C(n) whereas ψ gives 

the Wavelet coefficients D(j, n), which are further obtained by the 

inner product with f (t), i.e.,  
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where α is the transform order and Kα(t, x) is the transform kernel 

and is given by 

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The core idea behind DT-CWT is the use of complex valued scaling 

and Wavelet functions in Equations (2) - (4), i.e.,  
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where φ1 and ψ1 are the real parts and even functions whereas φ2 

and ψ2 are the imaginary parts and odd functions respectively.  

Using the concept of a complex Wavelet, the complex Wavelet 

transform is given as (i.e., Equations (2) – (4) reduce to) 

 





n

jj

c

j
ntintCtf

ooo

)()()( 21   +  

                                      









n

jj

c

j

jj

ntintD
oon

)()( 21

,

0

           (9) 

where c
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o
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c
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n

D
,

, are the scaling and Wavelet coefficients 

associated with complex Wavelet transform, and are given as 
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Using Equations (10) and (11), Equation (9) becomes 
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The above equation can be rearranged as 
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By separating the real and imaginary parts, Equation (13) becomes 

 





n

jjnj
ntintCtf

ooo

)()()( 211

,
  

 









n

jjnj

jj

ntintD )()( 211

,

0

  

 







 



n

jjnj
ntintCi

ooo

)()( 212

,
  

  







 







 n

jjnj

jj

ntintDi )()( 212

,

0

                                 (14) 

Further, Equation (14) can be written as 

f (t) = TreeReal + iTreeImaginary.                                                       (15) 

 From the above equation, it is clear that two Wavelet tree 

structures are obtained using complex valued scaling and Wavelet 

functions. Hence, this transform is usually denoted as the DT-CWT 

[4]. The most important property of DT-CWT is that both trees 

have the ability to reconstruct the signal perfectly. Therefore, the 

inverse DT-CWT can be viewed as the inverse Wavelet transform 

of both the real and imaginary trees, which gives the two signals, 

and the optimum signal is calculated by averaging these two 

obtained signals. These two real signals are then averaged to obtain 

the final output. Due to the separability of the transform, the higher-

dimension FrDT-CWT can be obtained by taking 1D transform 

along each direction. 

2.3 Arnold cat map 
An Arnold Cat Map is a mapping of the form: (x, y) to modulus

),2,( Nyxyx  . The mapping shears the original image, and the 

modulus function folds the image into the original image area. 
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where A = 




1

1
 




2

1
, ( yx , ) is the new position of original pixel 

position (x, y), when the Arnold cat map is performed once. As 

determinant of the transformation matrix A is 1, the map is area 

preserving by nature. 

3. PROPOSED TECHNIQUE 

3.1 Fractional Undecimated Dual Tree 

Complex Wavelet Transform (FrUDT-CWT) 
The DT-CWT provides near shift invariance and improved 
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directionality within a more compact representation. The structure 

of the DT-CWT uses two separate trees to form Hilbert filter pairs 

within each subband. The magnitude response of this pair of filters 

is very near to being shift invariant. Another benefit of this 

transform is improved directional resolution (in the two 

dimensional version). But the subsampled subbands of the DT-

CWT have a restricted number of coefficients directly related to 

each spatial position in the signal or image: a relationship that is 

often required within analysis applications. 

To enable such analysis, undecimated form of the DT-CWT i.e., 

UDT-CWT is used where each subband has the same resolution as 

the signal. As the UDT-CWT contains no subsampling it exhibits 

perfect shift invariance. It also offers a one-to-one relationship 

between all co-located coefficients and the original samples and 

also between collocated coefficients. 

 
Fig 1: Decomposition using UDT-CWT 

In Figure 1 [5], the crosses indicate the positions where 

downsampling would normally occur in the decimated DT-CWT. 

The subsampling of the DT-CWT has been removed. To offset this 

effect at the next and subsequent levels, each of the q-step filters is 

upsampled (i.e. zeros are inserted between filter coefficients) [5]. 

The FrUDT-CWT is the realization of UDT-CWT in the Fractional 

Fourier domain. The FrFT has a unique property of describing the 

information of the spatial and frequency domain due to the rotation 

of the time–frequency plane over an arbitrary angle. The UDT-

CWT shows exact translational invariance, a one-to-one 

relationship between all co-located coefficients at all scales and 

improved directional selectivity and complex subbands. Hence, 

FrUDT-CWT combines the properties of both FrFT and UDT-

CWT. 

3.2 Proposed multiple image encryption 

technique 
The step-by-step procedure of the proposed work is explained here.   

1. Perform α-order (Key1), k-level Fractional 

Multiresolution decomposition (FrWT, FrDT-CWT, 

FrUDT-CWT) of the input images. 

2. Scramble the sub-bands using n-iterations (Key2) of the 

Arnold Cat map.  

3. Generate a random binary matrix B using a seed value b 

(Key3). The size of B is same as that of the subband. 

4. XOR the coefficients in the scrambled sub-band with the 

matrix B. This is mathematically represented as follows: 

 

                      M (i, j) = A (i, j)   B (i, j)                           (17) 

where A (i, j) denotes the Arnold scrambled coefficient, 

B (i, j) denotes value from random binary matrix and M 

(i, j) denotes the modified subband.  

5. Take the inverse Fractional Multiresolution transform to 

retrieve the encrypted images.  

6. Generate a random matrix W with a seed value (Key3). 

Multiply the generated random matrix with the key value 

lesser than 0.01 (Key4) to get positive weight factor 

matrix.   

7. Construct a linear system with the help of positive weight 

factor matrix as shown in Eq. 18. 

8. The pixels are shared for all values of x and y and hence 

shared encrypted images are obtained [2].  

The linear system is constructed as follows: 
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where x and y are pixel positions in the images and  j = 1, 

2, ., L gives the corresponding pixel in the shared 

encrypted images. 

4. RESULTS AND DISCUSSION 
For multiple image encryption in Fractional multiresolution 

transforms, 15 test images of size 256 x 256 are chosen. The test 

images are encrypted individually using FrWT, FrDT-CWT and 

FrUDT-CWT followed by sharing. The test images used in this 

work are shown in Figure 2. 

 
Fig 2: Test Images of size 256 * 256 

4.1 Multiple image encryption using 

Fractional Wavelet Transform 
5-level Wavelet Transform is performed over FrFT of order (1,1) to 

get 5-level FrWT. After performing 5-level FrWT, every subband is 

encrypted separately. For each level, 4 subbands are obtained and 

hence 20 subbands are obtained after 5-level FrWT. Here, the size 

of the subbands is reduced by the factor of 2 at each level. So, it is 

notpossible to find an iteration value for which Net Pixel Change 

Rate (NPCR) value is high for all subband. Hence, iteration value is 

taken as 7 as it produces better overall NPCR value on all subbands 

of various sizes. Inverse 5-level FrWT is performed to obtain the 
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encrypted image. The encrypted images using FrWT of test images 

in Figure 2 are shown in Figure 3. 

Fig 3: Encrypted images using FrWT 

 
Fig 4: Shared encrypted images using FrWT 

The multiple encrypted images are shared using the linear system 

for increased security. The seed value used for positive weight 

matrix generator is taken as K3 * K4, where K3 is 6345921 and K4 

value taken here is 0.00234 which is used as a security key while 

desharing at the receiver. The shared encrypted images are shown 

in Figure 4. 

When compared with the encrypted images, the shared encrypted 

images show better confusion. 

4.2 Multiple image encryption using 

Fractional Dual Tree Complex Wavelet 

Transform 
5-level DT-CWT is performed over FrFT of order (1,1) to get 5-

level FrDT-CWT. After performing 5-level FrDT-CWT, every 

subband is encrypted separately. For each level, 16 subbands are 

obtained and hence 80 subbands are obtained after 5-level FrDT-

CWT.  

 
Fig 5: Encrypted images using FrDT-CWT 

 
Fig 6: Shared encrypted images using FrDT-CWT 

Here, the size of the subbands is reduced by the factor of 2 at each 

level. The subbands are encrypted separately followed by multiple 

image encryption as done in section 4.1. The encrypted image and 

shared encrypted images for various test images in Figure 2 are 

shown in Figure 5 and Figure 6 respectively. 

4.3 Multiple image encryption using Fractional 

Undecimated Dual Tree Complex Wavelet 

Transform 
5-level UDT-CWT is performed over FrFT of order (1, 1) to get 5-

level FrUDT-CWT. After performing 5-level FrUDT-CWT, every 

subband is encrypted separately. For each level, 16 subbands are 

obtained and hence 80 subbands are obtained after 5-level FrUDT-

CWT. 

 
Fig 7: Encrypted images using FrUDT-CWT 

Fig 8: Shared encrypted images using FrUDT-CWT  

Here, the size of the subbands is same as that of the original image 

at each level. It is found that for an iteration value of n = 20, highest 

Net Pixel Change Rate (NPCR) value is obtained and hence 20 

iterations are performed in encryption process. Inverse 5-level 

UDT-CWT is performed to obtain the encrypted image. The 

sharing process for multiple image encryption is performed the 

same way as given in sections 4.1 and 4.2. The encrypted images 

and shared images for various test images in Figure 2 are shown in 

Figure 7 and Figure 8 respectively. 
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4.4 Correlation Coefficient Analysis 
To estimate the encryption quality of the proposed encryption 

algorithm, the correlation coefficient between adjacent pixel values 

is calculated using Equation (19). Correlation computes the degree 

of similarity between two variables for highly correlated images, 

the correlation coefficient is almost 1. 
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where w , w ,
w

  and 
w

 are the original image, encrypted image, 

mean of original image and mean of encrypted image. 

The correlation between adjacent horizontal and vertical pixels are 

analysed for the original and encrypted images in various Fractional 

Multiresolution Transforms and the results are shown in Table 1. 

Correlation coefficients between two variables X and Y are 

expressed as values between +1 and -1. A coefficient of +1 

indicates a perfect positive correlation i.e., Very strong positive 

linear relationship between X and Y. Y increases as X increases. A 

coefficient of -1 indicates a perfect negative correlation i.e., Very 

strong negative linear relationship between X and Y. Y decreases as 

X increases. A coefficient of zero indicates zero linear relationship 

i.e., Y does not tend to increase or decrease as X increases.  

Table 1. Correlation Coefficient Analysis 

Test 

Images 

Original 

Image 

Encrypted Image 

FrWT 
FrDT-

CWT 

FrUDT-

CWT 

Cameraman 
H 0.9915 -0.0521 0.1437 0.1356 

V 0.8162 0.0794 0.0093 0.0063 

Lena 
H 0.9373 -0.0449 0.1388 0.1256 

V 0.9355 0.0574 0.0162 0.0112 

Barbara 
H 0.9760 -0.0314 0.1343 0.1056 

V 0.9896 0.0585 0.0135 0.0096 

Baboon 
H 0.9386 -0.0602 0.1526 0.1269 

V 0.8238 0.0661 0.0099 0.0038 

Boat 
H 0.9470 -0.0346 0.1325 0.1125 

V 0.9558 0.0632 0.0099 0.0026 

Clown 
H -0.4600 0.0551 0.1201 0.1023 

V 0.4931 0.0937 0.0087 0.0025 

Bird 
H 0.9903 -0.0214 0.1394 0.1149 

V 0.9776 0.0796 0.0174 0.0087 

Plane 
H 0.9384 -0.0524 0.1399 0.1156 

V 0.9441 0.0737 0.0181 0.0089 

House 
H 0.9647 -0.0112 0.1280 0.1052 

V 0.8947 0.0847 0.0167 0.0098 

Pepper H 0.9446 -0.0352 0.1553 0.1259 

V 0.9089 0.0458 0.0129 0.0094 

Rays 
H 0.9605 -0.0125 0.1179 0.1098 

V 0.9687 0.0643 0.0182 0.0112 

Building 
H 0.9789 -0.0162 0.1381 0.1127 

V 0.9928 0.0772 0.0152 0.0195 

Gull 
H 0.9658 -0.0434 0.1221 0.1018 

V 0.9342 0.0754 0.0134 0.0119 

View 
H 0.9150 -0.0675 0.1416 0.1123 

V 0.9333 0.0568 0.0148 0.0112 

Fly 
H 0.7623 -0.0435 0.1481 0.1121 

V 0.6568 0.0347 0.0054 0.0023 

It is observed from Table 1 that the correlation between adjacent 

pixels is highly reduced in all the encrypted images than the 

original images. It is inferred that encrypted images using FrWT 

has reduced correlation coefficient when compared with FrDT-

CWT and FrUDT-CWT. 

4.5 NPCR Analysis 
Net Pixel Change Rate (NPCR) test is a common measure used to 

check the effect of one pixel change on the entire image. This will 

indicate the percentage of different pixels between two images. 

The NPCR value for the encrypted images calculated using the 

formula in Equation (20) for various Fractional Multiresolution 

Transforms are shown in Table II. 

%100
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





NM

jiD
NPCR

ji
                                    (20) 

where D(i, j) = 0 if A(i, j) = Ac(i, j) and D(i, j) = 1 if A(i, j)  Ac(i, 

j). A(i, j) and Ac(i, j) are the pixel position in original image and 

encrypted image respectively. 

The range of NPCR is 0 to 1. NPCR value of 0 implies that all 

pixels in the encrypted image remain with same values as in 

original image. NPCR value of 1 implies that all pixel values in the 

encrypted image are changed compared to those in the original 

image.  

Table 2. NPCR ANALYSIS 

Test 

Images 

FrWT 

(%) 

FrDT-CWT 

(%) 

FrUDT-CWT 

(%) 

Cameraman 99.6170 99.8230 99.8276 

Lena 99.4888 99.7559 99.7985 

Barbara 99.5010 99.7726 99.7750 

Baboon 99.4690 99.7757 99.7932 

Boat 99.5621 99.8291 99.8725 

Clown 99.5132 99.7742 99.8474 

Bird 99.5209 99.8001 99.8259 

Plane 99.7742 99.7940 99.8428 

House 99.5117 99.7986 99.8123 

Pepper 99.5438 99.8535 99.8595 

http://whatis.techtarget.com/definition/positive-correlation
http://whatis.techtarget.com/definition/negative-correlation
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Rays 99.9969 99.9435 99.9435 

Building 99.4247 98.5855 98.6025 

Gull 99.6338 99.8444 99.8581 

View 99.5605 99.7849 99.8199 

Fly 99.6674 99.8169 99.8372 

It is observed in Table 2 that the NPCR value is higher for all the 

encrypted images obtained using FrUDT-CWT when compared 

with the encrypted images using FrWT and FrDT-CWT. 

4.6 UACI Analysis 
UACI (Unified Average Changing Intensity) test is one of the 

common tests to find the difference between encrypted and original 

image. A small change in original image must cause some 

significant change in encrypted image. UACI is helpful to identify 

the average intensity of difference in pixels between the two 

images. 

%100
255

|),(),(|1







jiAjiA

NM
UACI c                                  (21) 

where A and Ac are the pixel positions in the original image and 

encrypted image respectively. M is the height by pixels of the 

images and N is the width by pixels of the images.  

The UACI value for the encrypted images using various Fractional 

Multiresolution Transform are shown in Table 3. 

  Table 3. UACI ANALYSIS 

Test Images 
FrWT 

 (%) 

FrDT-CWT 

 (%) 

FrUDT-

CWT (%) 

Cameraman 27.2174 42.5706 43.1509 

Lena 23.6202 38.7063 40.0356 

Barbara 24.1763 39.4857 41.2558 

Baboon 23.1484 37.7682 39.2854 

Boat 24.4752 38.2389 39.4481 

Clown 24.8429 44.3755 45.9091 

Bird 23.9202 39.9640 42.2597 

Plane 35.4970 36.8611 37.6544 

House 25.2705 37.9128 37.9516 

Pepper 25.0825 40.7574 41.6699 

Rays 42.5832 76.8021 77.8054 

Building 23.7346 45.5502 47.5815 

Gull 29.0275 63.9282 65.2508 

View 24.0782 40.8686 43.7240 

Fly 27.9609 36.4838 39.2784 

It is observed that the UACI value is higher for encrypted images 

obtained using FrUDT-CWT when compared with the encrypted 

images using FrWT and FrDT-CWT. 

5. CONCLUSION 
In Multiple Image Encryption using Multiresolutional Fractional 

Transforms, Arnold Cat Map is used. FrUDT-CWT is introduced 

by coalescing Fractional Fourier Transform and Undecimated Dual 

Tree Complex Wavelet Transform inheriting the properties of both 

FrFT and UDT-CWT. It is observed from NPCR and UACI 

analysis that encryption is better in FrUDT-CWT than in FrDT-

CWT and FrWT due to perfect shift invariance property of FrUDT-

CWT. In the proposed work, four security keys are used i.e,. 

Fractional order (Key1 = 1), Seed value used in Encryption (Key2 = 

6345921), Arnold Iteration Value (K3 = 5 for FrWT and FrDT-

CWT; K3 = 20 for FrUDT-CWT), Key value used in Sharing 

Process (K4 = 0.00234). As a future scope of this work, multiple 

image encryption technique can be done using other Fractional 

Multiresolution transforms and other chaotic maps like Baker’s 

map, Henon map, etc as well as other sharing processes with 

increased security keys. 
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