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ABSTRACT 

In this paper, design of linear phase FIR digital differentiators 

is investigated using convex optimization. The problem of 

differentiator design is first described in terms of convex 

optimization with different optimization variables’ options, 

taken one at a time. The method is then used to design first 

order low pass differentiators and results are compared with 

Salesnick’s technique and Parks McClellan algorithm. The 

designed FIR low pass differentiator has improvement in 

transition width and flexibility to optimize different 

parameters. The concept of low pass differentiation is further 

generalized to fractional order differentiators.  Fractional 

order differentiators are designed by using minmax technique 

on mean square error. Design examples demonstrate easy 

design procedure and flexibility in the process as well as 

improvement over existing fractional order differentiators in 

terms of mean square error in passband. Finally, fractional 

order differentiators are designed and used for texture 

enhancement of color images. Better texture enhancement 

than existing filtering approaches is established based on 

average gradient and entropy values. 
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differentiator, Full band differentiator, Image Enhancement. 
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1. INTRODUCTION 
FIR filters are characterized by following equation 

                 

   

   

                         

where   is input signal and   is impulse response. So, they are 

linear systems described by convolution relation in input and 

output [1], [2]. Its frequency response is given by 

                  
   

   

                       

The response can also be written as vector product, as in [3] 

                                                

The vector            and   contains real valued filter 

coefficients. FIR filters have the advantage of linear phase if 

filter coefficients are symmetric or anti-symmetric about its 

center point. The frequency response of linear phase filter can 

be expressed as 

                                                

where          is amplitude response of the filter, such that 

                                                      

here    is half of impulse response and                

The parameters    and   depend on length of impulse 

response and type of FIR linear phase filter [2]. These 

parameters for the four types of filters are given by 

TABLE 1: Properties of the four types of FIR filters 

            

Type I N/2 0               

Type II N/2 
-

     
          

 

 
     

Type 

III 
N/2 0            

Type 

IV 
N/2 

-

     
          

 

 
     

 

Digital differentiator is a very important tool in signal 

processing applications [4]. Higher order differentiation is 

used in biomedical signal processing, radar and sonar, image 

processing, velocity and acceleration measurement etc. [5]. 

Low pass digital differentiators are used to avoid unwanted 

amplification of noise, as in case of full band ones [6]. The 

higher order case of low pass differentiators’ design becomes 

significant as they suffer from noise amplification at higher 

frequencies even more, because of their exponentially 

increasing gain. In recent years, fractional operators are 

investigated extensively in all engineering fields. They have 

gathered attention due to their application to fractal dimension 

of science [7]. The frequency response of a fractional order 

low pass differentiator with order   is given by         
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(a)                                                (b) 

Fig 1 : (a) Magnitude response of differentiator with specifications n = 43,    = 0.4  ,    = 0.55    (b) Error curve of 

differentiator designed with specifications n = 43,    = 0.4  ,    = 0.55   

 
 

(a)            (b) 

Fig 2 : Linear phase of the designed filter in example (a) Group delay introduced by of the design example filter (b) Impulse 

response of the design example filter 

 

    
     

                         

                          
                     

where    and    are passband and stopband cutoff 

frequencies respectively. 

Optimization design of FIR filters is carried out in two steps 

[3]. Firstly, characteristic specification by equality or 

inequality constraints. Then optimal value of a chosen 

performance metric is calculated using the optimization 

procedure. The problem can be very difficult to solve but if 

inequality constraints are convex and equality constraints are 

affine then any local optimum is global optimum. This highly 

simplifies the task. Software tools (e.g. [8] and [9]) are 

available to find global optimum with a little programming, 

such a MATLAB toolbox we have used in this paper is CVX 

[8]. Recently, algorithms have been developed that solve 

convex problems very efficiently [10]. The tools available 

easily detect infeasibility, arising from inability to solve the 

problem. FIR filter design problems are convex optimization 

problems when symmetry constraints are imposed e.g. in the 

case of linear phase filter design.  

A first order low pass digital differentiator that minimizes 

passband error ( ) is incorporated here as a design example. 

This optimization problem can be expressed in terms of 

spectral mask such that 

                                    minimize        

              subject to  +  ≤        ≤  -        [0,   ]        

            ≤                                                 

here filter coefficients,        , and passband ripple   are 

optimization variables.   ,   , filter order n, stopband 

attenuation   are problem parameters. Passband ripple and 

stopband attenuation can also be expressed in decibels i.e. as 

            and            . The filter order taken in the 

example is n = 43, passband frequency is    = 0.4   and 

stopband frequency is    = 0.55  , stopband attenuation is  
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(a) (b) 

 

(c) 

 

(d) 

Fig 3 : Magnitude and error plots of convex, Salesnick’s, Parks-McClellan and Alaoui’s techniques  (a) Magnitude response 

for    = 0.35    (b) Error curves for    = 0.35    (c) Magnitude response for    = 0.52    (d) Error curves for    = 0.52  

taken as 50 dB. No constraints are imposed on magnitude 

response in transition region. If the problem is feasible and 

can be solved, then half of the impulse response (  ) is 

obtained. The end part of methodology is changing the 

impulse response to an anti-symmetric form, so that the 

designed filter has linear phase. Magnitude response of the 

filter is plotted in Figure 1(a). Impulse response   is shown in 

Figure 2(b), constant group delay of the filter designed can be 

seen in Figure 2(a). As the transfer function of the designed 

filter in   -domain is 

             
   

   

                                    

The error, plotted in Figure 1(b), is difference between 

magnitude response and ideal response. Error graph provides 

insight into passband performance of the filter, it can also be 

produced in terms of percentage (%age) error [12], which is 

equal to 
 

 
     . The above mask problem formulation 

contains semi-infinite inequality constraints [11]. These can 

be approximated by using frequency sampling. It is done by 

taking a set of frequencies in     [0,   ], i.e. 

                

or     [    ] as required. Then we can replace semi-infinite 

inequality constraints with N inequality constraints because 

sampling preserves convexity [11]. N = 30 n is taken here to 

design the filters. Frequency band of approximation depends 

on problem and frequency region of response of the filter. For 

example, we have used approximation in both passband and 

stopband for spectral mask filter design case. For MSE 

minmax design scenario, discussed later in the chapter, the 

approximation is taken upto a particular point in passband 

frequency range (enhancing filter response in that particular 

region).  

2. LOW PASS DIFFERENTIATORS 
The design process of low pass differentiators can be 

categorized into three parts, such that the differentiator is 

designed for given specifications. In the following sections 

linear phase FIR type III digital differentiators are designed 

for first order case. 

2.1 Differentiator design with minimum 

passband error   
This convex problem is same as that we have discussed in 

detail in formulation (7). 

2.2 Differentiator design with minimum 

transition width 
The problem of minimizing transition width (i.e.   ) is 

quasiconvex [11], it can be effectively solved by applying 

bisection on    and keeping other parameters fixed. It means 

that, provided initial cutoff frequencies, then the interval 

between these two points are bisected in consecutive iterations 

till convex problem becomes feasible. Therefore, by applying 

bisection, on each iteration, optimum parameters are 
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calculated to optimize transition width. The optimization 

formulation is same as (7). 

In many applications error of 2% is acceptable in passband of 

low pass differentiator [12], therefore transition width can be 

optimized under this constraint. In this part designed low pass 

digital differentiators are compared with Salesnick’s [6], 

Alaoui’s [12] and Parks McClellan [2] approaches, based on 

transition width. The comparison is done using two design 

cases with specifications n = 29,    = 0.35   and    = 0.52 

 . It can be seen that designed differentiator’s response is 

better in terms of transition region and sharp cut off 

characteristics in Figure 3(b) and Figure 3(d). These features 

are important for suppression of high frequency noise. 

2.3 Differentiator design with minimum 

order n  
In this case, available maximum order of the differentiator is 

provided and then an optimization procedure could be used to 

find minimum order of the filter. By solving the feasibility 

problems, filter length can be minimized. The feasibility 

check consists of same constraints as in (7), with passband 

ripple fixed. An optimization algorithm can be utilized to 

achieve minimum of n. For example, an efficient solution is 

bisection on n. 

We can also pose the problem to design low pass 

differentiators as minmax formulation on mean square error 

           minimize                                              

   subject to         ≤                                               

The same options discussed in the design of first order case 

can also be taken, similarly, in higher order differentiators. 

3. FRACTIONAL ORDER 

DIFFERENTIATOR 
In this section, type IV fractional order digital differentiators 

are designed. To evaluate performance and compare different 

methods the integral squares error of frequency response is 

used 

  
 

 
                

 
  

 

                      

To exploit above relation, minmax technique is applied on 

              . Therefore the unconstrained convex 

optimization problem [14] can be stated as 

     minimize          
          

                               

                    

In the first example, convex optimization approach is used to 

design a fractional order differentiator and it is compared with 

the frequency approximation method described in [15] as well 

as with Radial Basis Function (RBF) design technique [7]. It 

should be noted that flexibility to change the frequency upto 

which the approximation is done (using  ), gives this 

approach an advantage in terms of inband accuracy ( ), this 

will be demonstrated in these design examples. Here design 

parameters taken are n = 10, v = 1.5,   = 0.72, in accordance 

with [7] and [14], magnitude response is shown in Fig. 6 (c). 

The parameters chosen in RBF method are n = 11, I = 5, v = 

1.5, h = 0.05, L = 620 and Gaussian RBF with σ = 2.3, σ is the 

shape function of Gaussian function, the frequency response 

is illustrated in Figure 4(a). The differentiator order equals 

1.5, designed in [15], and plotted in Figure 4(b). Comparison 

illustration using error plots is done in Figure 5(a), it is 

observed that error in case of   = 0.72 is much less than   = 

0.9 case, so that by varying   we can control inband accuracy.                                             

In [14], the differentiator was designed by minimizing error 

up to 0.72  , however here we can easily minimize error with 

an option to vary the differentiator bandwidth.   for different 

values of   of these three of the methods are given in Table II. 

Magnitude response of fractional differentiator for λ = 0.9 is 

shown in Figure 4(b). Hence frequency response is more 

easily and accurately approximated by convex optimization 

technique. 

Another fractional order differentiator is designed with v = 

0.5. The design specifications are n = 60, v = 0.5,   =  . In 

[7], authors have produced improved fractional order 

differentiator, using RBF, with respect to fractional delay 

method. In this design example same method is compared 

with RBF technique with specifications n = 61, I = 20, v = 

0.5, h = 0.1, L = 620 and Gaussian RBF with σ = 2.3. Error   

of RBF fractional order differentiator, for   = 1, is 4.1 x      

and error of convex optimization method is 6.04 x     . The 

response the designed filters are shown in Figure 6, along 

with log-log plot in Figure 7, for more better graphical 

presentation of response at low frequency (especially near 

transition width). There are certain points to be taken care of 

such as slope of ideal differentiator’s frequency response at 

    is infinity so some transition width should be provided 

at the point. This width is illustrated in Figure 6(b), the error 

plot, it is denoted by Δtw in the graph, in this example it is 

taken 0.03  . Differentiator designed in [7] need modification 

in coefficients because of the non-zero gain at    , 

however in this method, the design process is simpler and  no 

requirement of such modifications.  

 

Table II.   comparison of Convex Optimization, Radial Basis and Frequency Approximation based design for λ = 0.72 and 0.9 

                                     

Convex 5.01 x      8.13 x      

Radial Basis 0.0544 1.77 x      

Frequency Approximation 0.0358 1.77 x      
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             (a)           (b) 

 

          (c)               (d) 

Fig 4 : Designed results of fractional order differentiator using (a) Radial Basis Function (RBF) [7]  (b) Frequency Response 

Approximation [15] (c) Conxex Optimization with   = 0.72  (d) Convex Optimization with   = 0.9 
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 Fig 5 : (a) Error plot for first fractional order differentiator design (v = 1.5) with convex optimization, RBF, 

frequency approximation method (b) Error graphs for second filter design (v = 0.5) using convex optimization and RBF 

 

(a)              (b) 

Fig 6 : Designed results of fractional order differentiator for v = 0.5 (a) Convex Optimization (b) Using RBF 
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(a) (b) 

Fig 7 :  Logarithmic magnitude response for  (a) v=1.5  (b) v = 0.5

4. IMAGE TEXTURE ENHANCEMENT  
Image sharpening is a very useful image processing tool. It is 

used in many applications from medical imaging to artificial 

intelligence [7]. Texture enhancement is needed due to 

blurring of the picture. Image sharpening is implemented in 

[7] by generalizing the concept of Laplacian method to 

fraction values. The same technique is used here to 

demonstrate the use of designed novel fractional order 

differentiator, comparison can be done by assessing the 

quality of images. The enhancement of the images can be 

measured using parameters like average gradient and entropy 

[15]. Greater average gradient means clearer image and 

greater entropy shows that the image has greater texture 

details [16], [17]. Their higher value for the processed image, 

for same fractional order (v), depicts more efficient system. 

Average gradient and entropy for a grayscale image, with 

dimensions P X  , are defined as follows 

 

                
 

  
  

 

  
   

       
  

 
 

  
       

  
 
 

 

 

  
 
      

 

   

 

   

 

                     
 

    
 

   

          

                           

The schematic shown in Figure 8 is implemented in 

MATLAB by forward and backward filtering approach. Each 

plane (R, G and B) is passed through the filter independently 

and added to original image and gradient images. Average 

gradient and entropy are calculated for color images by taking 

mean of the three planes (R, G and B). The order of 

differentiation needed for same amount of image sharpening 

is relatively less in case of convex optimization based design 

as compared to RBF approach. The parameters for designed 

type IV differentiator are n = 6,   = 1. The realization of 

implementation is shown in Figure 8. f (x,y) is the original 

image and p (x,y) is enhanced image. Some example images 

taken from [18] are demonstrated in Figure 9 and Figure 10. 

Comparison of Convex Optimization and Radial Basis 

Function (RBF) based designed fractional order digital 

differentiators using average gradient and entropy is done in 

Table III. As it can be seen by the statistics convex 

optimization based filter implementation proves to be better 

image enhancement technique.  

. 

 

Fig 8 : Realization method of image sharpening using fractional order differentiator [7] 
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   (a) 

                  

                                        (b) 

                   

                                       (c) 

                  

                                        (d) 

Fig 9 : Dandelion image and enhanced images using various order of differentiation. (a) Original image (b) v = 0.4 (c) v = 0.8 

(d) v = 1.2 

       

                                 (a) 

        

                                  (b) 
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                                  (c) 

        

                                      (d) 

Fig 10 : Rabbit image and enhanced images using various order of differentiation. (a) Original image (b) v = 0.4 (c) v = 0.8 (d) v 

= 1.2         

Table III. Image enhancement comparison using Average Gradient and entropy of Radial Basis Function, Convex 

Optimization based designs 

Fractional 

Order (v) 

Rabbit Dandeli 

Average Gradient Entropy 
Average 

Gradient 
Entropy 

Convex RBF Convex RBF Convex RBF Convex RBF 

0.4 12.844 12.2122 7.755 7.693 9.799 9.341 7.186 7.197 

0.8 14.084 11.982 7.741 7.699 11.434 9.297 7.218 7.192 

1.2 18.98 15.21 7.7464 7.337 16.488 12.211 7.26 7.22 

 

5. CONCLUSIONS 
The paper describes the design of linear phase digital 

differentiators using convex optimization technique. It is 

shown that various types of differentiator design problems can 

be formulated as convex semi-infinite problems. It is observed 

that the approach is very easy and gives us the flexibility to 

optimize desired parameter of the system. The method is then 

used to design first order low pass differentiators, we have 

discussed different options available separately. It is 

illustrated that the designed differentiator has less transition 

width and overshoot in frequency response, as compared to 

other techniques, [5] and [6]. The problem of fractional order 

case of low pass differentiator could also be solved by using 

minmax technique discussed in the paper. Fractional order 

differentiator designed employing the same method obtains 

better approximation in frequency response as compared to 

Radial Basis Function (RBF) in terms of Mean Square Error 

(MSE). An application of fractional order differentiator is 

shown as image texture enhancement. The sharpening 

obtained by the differentiator is relatively greater than RBF 

method as confirmed by comparison using average gradient 

and entropy of processed images. So, convex optimization 

proves to be a very simple and effective tool for differentiator 

design according to application requirement. It would be 
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interesting to extend the design methodology to two 

dimensional differentiator designs and create requirement 

specific tools. 
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