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ABSTRACT
Clustering is the identification of interesting distribution patterns
and similarities, natural groupings or clusters, within a collection of
objects in a dataset based on some user-defined criteria. Clustering
as an unsupervised learning problem can be distance-based or
conceptual. In distance-based clustering the similarity criterion is
based on distance. Objects belong to the same cluster if they are
close according to a given distance. Conceptual clustering defines
a concept common to all the objects in the cluster. In this case,
objects are clustered based on their fitness to some descriptive
concepts, and not according to distance or similarity measure. The
extension of the usage of the common symbol table is employed in
this paper to the clustering of biological sequences. The method
does not depend on concept as does conceptual clustering. It
does not also use distance measure, rather it uses data structures
(hash table or list) and detect the occurrence of codons by way
of comparing sequence to sequence (pattern-element-wise) using
the codon-based scoring method. The results obtained indicate the
usefulness of the symbol table in biological sequence clustering.
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1. INTRODUCTION
Clustering has to do with the identification of interesting
distribution patterns and similarities, natural groupings or
clusters, within a collection of objects in a dataset. Clustering is
an unsupervised learning problem and can be distance-based or
conceptual. In distance-based clustering the similarity criterion
is based on distance. Objects belong to the same cluster if they
are close according to a given distance. Conceptual clustering
defines a concept common to all the objects in the cluster. In
this case, objects are clustered based on their fitness to some
descriptive concepts, and not according to distance or similarity
measure. The clustering problem can also be solved using the
symbol table.
A symbol table is a compile-time data structure built up during
lexical and syntactic analysis. It is used by the compiler to ensure
type consistency. Type consistency check involves confirmation
of the correctness of the variables, type names and functions.
Type checking is done at semantic analysis stage of the program
compilation process. In the management of the symbol table
the following issues make the symbol table desirable: (a) the
quick insertion of an identifier unto the table, (b) search for an
identifier, (c) efficiency of insertion and access to information
(attributes) about an identifier, and (d) time and space efficiency.
A lexical analyzer is used by compilers to produce sequence of
tokens from program codes. Lexical analyzer reads the program

codes (letters), and saves the letters and/or digits in a buffer. The
string collected in the buffer is thereafter looked in the symbol
table, using the lookup operation. If there is no entry for the
string in the buffer, lookup returns 0. The buffer then contains
a lexeme for a new identifier that was not found in the table. An
entry for the identifier is created using insert method. The index
of the symbol table entry for the string in the buffer after the
insertion is made is now n + 1. This index is communicated to
the parser which in turn returns the token.
On a general programming view, a symbol table is used
to associate values with keys. The application of symbol
table can be extended to the design of a students database
with unique security codes, Internet search with unique
IP addresses, manufacturing industry with unique keys for
products, intelligence monitoring system with unique keys for
locations and individuals [45, 44]. In this paper the symbol table
will be used in line with the codon principle implemented by
COBASM in the clustering of nucleic acids sequences.

2. RELATED WORK ON CLUSTERING
Clustering is an active research area in mathematics, statistics
and numerical analysis [9, 10]. Besides, clustering has been
applied in the following biological areas: in p53 genetic
regulatory network [29, 25], the functional partitioning of genes
based on the gene ontology [49], breast and colon cancer gene
expression data [22], signaling on genome evolution [32], and
protein-protein interaction networks [13, 52, 4, 14, 28, 35].
Others are, on 3D microarray data [60], process monitoring
and control application to continuous digesters [3], and gene
expression pattern and profiles analysis [8, 46, 26, 43, 36, 57,
58, 50, 5, 24].
Clustering is employed in biology to reveal (1) evolutionary
history, (2) conserved motifs or characters in nucleic or amino
acids, and (3) clues about the common biological function of
sequences[51]. Clustering assists in the discovery of the common
2D or 3D structure of nucleic and amino acids. Clustering
also has its application in the determination of genetic network
structures [51]. Also, clustering is used in the identification
of transcriptional regulatory sub-networks in yeasts. Clustering,
as a tool for discovering identical or related genes, helps in
identifying gene function and assigning putative function to
genes whose functions are unknown, and assigning similar
expression to genes with known function [59].
Several methods have been employed in clustering. Conceptual
clustering of nucleic acid sequences based on the codon
usage model is done by Baridam and Owolabi [7]. The
successful application of the average linkage hierarchical
clustering algorithm for the expression data of budding yeast
Saccharomyces cerevisiae and the reaction of human fibroblasts
to serum by Eisen et al [20] heralded the application of cluster
analysis in the grouping of functionally similar genes [56].
In particular, hierarchical clustering has been used to organize
genes into a hierarchical dendrogram on the basis of genes
expression across multiple growth conditions. Cluster analysis,
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Table 1. List implementation of the
symbol table

Identifier Type Space(bytes)
a integer 2
b double 4
c float 4
d character 1
e boolean 1
f long 4

for example in gene expression data, has two aspects: clustering
genes [8, 46], and clustering tissues or experiments [22, 24].
Other fields where clustering have been applied are in
biotechnology, Web analysis, concept decomposition for large
sparse data [19], high dimensional and distributed data [55, 34,
1, 2, 33], spatial data mining [9, 39], intrusion detection systems
[40], imaging [41], circuit partitioning in VLSI design [17],
document clustering [15], and computer vision [21]. Clustering
is also applied in outlier detection or in finding unusual data
objects [18].
Several clustering methods and algorithms have been proposed
by researchers all occasioned by the growing concern about
the quality of clusters generated by clustering algorithms.
Among the clustering algorithms and methods proposed in
biological sciences are: (1) CHAMELEON - used in measuring
the similarity of clusters based on a dynamic model [31], (2)
FOLDALIGNM - developed by Elfar Torarinsson et al [53]
which makes use of multiple alignment in the clustering of
RNA sequences, (3) AMICA - a metric incremental clustering
algorithm [47], (4) the HMM-Clustering algorithm [48, 42], (5)
WARLUS - a similarity retrieval algorithm for image databases
[37], (6) Query-Dependent Banding (QDB) algorithm for RNA
similarity searches [38], (7) KMS for multiple DNA sequence
approximate matching [30], (8) CLARA, (9) CLARANS [39],
(10) MetricMap [54], (11) QTClust algorithm employed in
the identification and analysis of co-expressed genes [27],
(12) CTWC algorithm for coupled two-way clustering analysis
of gene microarray data [23], and (13) the 4C algorithm
[11]. Eric P. Xing et al. [55] developed the CLIFF algorithm
for the clustering of high-dimensional microarray data via
iterative feature filtering. Zhao and Zaki [60] introduced the
TRICLUSTER algorithm for the mining of coherent clusters in
3D microarray data.

3. IMPLEMENTING THE SYMBOL TABLE
It is important to note that a symbol table must allow the
addition and retrieval of information. To achieve this, linear
lists, hash-tables and search trees data structures are used in
the implementation of the symbol table. Each of these schemes,
linear list, hash-table and search tree, is evaluated on the basis
of time required to add n identifiers and make m searches. In
implementation, the linear list is simpler, space efficient, and fast
insertion, but with poor performance when n and m are large. To
insert an element to a table of n elements the table would have
to be searched n times resulting in O(n) in worst case, whereas
to insert n elements, it would take O(n2) in worst case. The
time complexity for these operations (insertions and inquiries)
is therefore O(n(n + m)). On the other hand, the hash-table
scheme is complicated to implement, and requires more space.
However, it provides an average better performance. The search
tree scheme is not as simple as the linear list. The performance
rating is as well poor in comparison to the hashing scheme.
The symbol table is searched every time a name is encountered
in the source text. Changes to the symbol table occur if a new
name or new information about an existing name is discovered.
An example of a linear list implemented symbol table is given in
Table 1.

Table 2. Applying symbol table in sequence
clustering

Identifier Type Frequency
AAA Lysine (Lys) 1
AUU Isoleucine (Ile) 1
UUG Leucine (Leu) 1
GGC Glycine (Gly) 1
CAA Glutamine (Gln) 1
AGG Arginine (Arg) 1
CCC Proline (Pro) 2
UUU Phenylalanine (Phe) 1
AAG Lysine (Lys) 1
GGG Glycine (Gly) 1

Fig. 1. Comparing sequences using the symbol table

4. BIOLOGICAL SEQUENCE CLUSTERING
WITH SYMBOL TABLE

The linear list data structure will be used in the implementation
of the symbol table used in this paper to cluster biological
sequence data because of its simplicity of implementation and
efficiency in relation to space. In the implementation of the
symbol table to the clustering of biological sequences, codons
with their corresponding code names (amino acids), as in the
genetic code, are respectively used to depict identifiers and
identifiers’ type. A source sequence is stored on the symbol
table in the order of the occurrence of the codons. A symbol
table corresponding to the constituents of the target sequence
is generated. Thereafter, the target sequence is compared with
the source sequence through the application of the symbol tables
as shown in Figure 1. The two tables are compared based on
the occurrence of the codons. Results from the comparison are
stored using a boolean value (1 for true, and 0 for false) (see
Table 5. The homology concept [6, 12, 16] is employed to cluster
identical sequences.
Biological data being considered in this paper are those of
nucleic acids - DNA and RNA. Thus biological data set S is of
the form

xi = (AAAAUUUUGGGCCAAAGGCCCUUU (1)
AAGCCCGGG) for RNA

and

xi = (AAAATTTTGGGCCAAAGGCCCTTT (2)
AAGCCCGGG) for DNA.

Using the standard biological code (genetic code), the sequence
in Equation 2 can be represented in the symbol table as given in
Table 2.
The benefit of this method is the ease of clustering biological
sequences based on homology and structural composition. This
method also makes clustering based on sequence alignment
irrelevant. Observe that this method is similar to conceptual
clustering. However, conceptual clustering uses previously
defined concepts (objects and attributes) for all participating
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sequences. The symbol table is created for each participating
sequence and compared with the rest of the sequences in the data
set iteratively. This method employs the creation of identifiers
(codons) based on the existing source sequence. Identifiers that
are not present in the source sequence are ignored. In this setup,
each sequence is a potential source sequence; this means that
each sequence is compared one with another. Corresponding
sequences are clustered through the application of the homology
principle based on the degree of closeness. It is important to note
that nucleic acid sequences are considered homologous (similar)
when at least 70% nucleotides are identical [16]. The homology
principle is defined through the application of the codon-based
scoring method (COBASM) [6].

5. THE CODON-BASED SCORING METHOD
ALGORITHM

The COBASM uses the codon table (genetic code) in the
clustering of biological sequences, and considers grouping the
bases into three, based on their codon arrangements. The reason
for considering groups of three bases is because it is biologically
meaningful to consider three bases as it is useful in the formation
of amino acids. Blocks of two, four or five will not give a
meaningful interpretation of the concept being investigated.
For example, the pairs, GC and AT, are the only compatible
base pairs when considering the pairing of DNA bases in the
formation of DNA’s double helix. The fact that the pair between
A and C are incompatible and chemically unstable, owing to the
loss of the hydrogen bond formed within the base pair, renders
the choice of blocks of two, four or five irrelevant as far as this
thesis is concerned. Therefore, basing the underlying concept
upon a combination of bases other than the codon concept
will render the algorithm ineffective and the search method
inefficient.

————————————————————————
Algorithm 1: The Codon-based Scoring Method Algorithm

Step 1. Initialize source and target sequences
Step 2. Compare length of sequences
Step 3. Do a pattern-element-search for match
Step 4. If match = found, then

score = 1; else score = 0
Step 5. Determine consecutive match
Step 6. If consecutive match = 3, then

score = score+1
Step 7. GOTO Step 3
Step 8. Stop if sequence length is reached.

—————————————————————————

Let su and sv be the source and target sequences, respectively.
Let n represent the number of nucleotides in a sequence; l, the
sequence length; ni, the i-th individual nucleotides (symbols) in
a sequence. The highest match count has occurred if su and sv
are identical, or identical and of the same length n. According to
the definition of COBASM, the highest match count is calculated
as

HCSu = i+
i

3
=

4

3
n. (3)

There can be any level of match count (including zero) between
the source and the target sequences. The 70% homology level is
now calculated from Equation (3) using

Hs =
70

100
.
4

3
n =

14

15
n. (4)

For any two sequences su and sv , the total match (similarity)
count, d(su, sv), is calculated using COBASM as defined in [6],
and they are considered similar if

d(su, sv) ≥ Hs (5)

holds.
Mathematically, COBASM can be defined as:

d(su, sv) =


∑Nk

i,j=1
d(su[i], sv[j]) + 1 if su[i+ 1, i+ 2, i+ 3]

= sv[j + 1, j + 2, j + 3]∑Nk

i,j=1
d(su[i], sv[j]) Otherwise

(6)
for all d(su[i], sv[j]) 6= 0.

6. THE CLUSTERING TASK
The process of clustering sequences based on the use of symbol
table is very straight forward. The first sequence is picked
as the initial centroid. The rest of the sequences in the data
set are compared with the centroid to detect homology. The
homology calculations are done per sequence. The sequence
with the highest percentage homology are clustered, with the
first sequence as the centroid. The next available sequence in
the data set is then set as the centroid irrespective of whether it
is in a cluster. The process of comparison starts again as with
the first sequence. The closest sequences based on the homology
principle are again grouped to form another cluster. The process
starts all over again until the last sequence in the data set is
clustered. The clusters generated from this initial process are
then compared to find the closest sequences in the clusters. The
results gives either fuzzy or hard clustering results (see Tables
3 and 4) The method initially treats all sequences as centroids,
and then narrows to the most significant. So doing, eliminates
the problem of convergence to a local maxima.

7. EXPERIMENTAL RESULTS
A total of 20 synthetic sequences were used for this experiment.
The minimum sequence in the collection is of length 33, and
the maximum 51. Part of the symbol table generated during the
experiment is shown in Table 5. The result of the clustering is
presented in Table 6. As already indicated, symbol tables are
iteratively created, for sequences that have not been clustered,
when all the elements in the data set have been examined against
the source sequence. However, this only applies to sequences of
least similarity with the source sequence.
Observe from Table 6 that the values of d(su, sv) vary from
sequence to sequence when different centroid was set. As
indicated earlier, individual sequences (to form centroid) were
picked with their respective symbol tables. Results obtained
indicates that some sequences are more similar than the other.
Relationships between sequences s5 and s10, s5 and s12, s10 and
s12, are very significant in the application of symbol table in
the clustering. Observe that all sequences belonged to the same
cluster when s1 was set as the centroid, but the clustering of s10
and s12 is stronger than the rest of the sequences in that same
cluster. Also, although s5, s10, and s12 are in the same cluster,
when s5 was set as the centroid, the result became different. This
same trend is noticed between s4, s9, s17 and s15, s19. From
these results, the use of symbol table becomes very important
to make it easy to determine which sequence perfectly belongs
to which ancestor.
A fuzzy and hard clustering tables are presented in Tables 3 and
4. Conducting a fuzzy clustering, 5 clusters were generated. A
hard clustering generated 3 clusters only. Other sequences in
the data set could not be clustered. Another important benefit of
clustering with symbol table is the elimination of false positives
and negatives from clustering result. Sequences that could not be
clustered were left out. No sequence was forced into any cluster
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as would be the case when sequences are clustered based on
alignment concept.

Table 3. Fuzzy clustering from the symbol
table’s result

Cluster Centroid Elements(Sequences)
1 s1 s2, s3, s5, s10, s12
2 s3 s3, s10, s12
3 s15 s15, s16
4 s17 s4, s9, s17
5 s19 s15, s19

Table 4. Hard clustering from the symbol
table’s result

Cluster Centroid Elements(Sequences)
1 s1 s2, s3, s5, s10, s12
2 s15 s15, s16
3 s17 s4, s9, s17

8. CONCLUSION
This paper presented a new dimension to the clustering of
biological sequences by the application of a compile-time data
structure called symbol table to optimize the performance of the
clustering task. Results obtained clearly shows the robustness of
the method.
The method clearly eliminates the introduction of false positives
and the elimination of false negatives. Although the method
works differently and presents better results than clustering with
sequence alignment, there could be slight similarity in clustering
results with conceptual clustering when strict adherence to the
genetic code is observed.
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Table 5. Implementation of the symbol table for sequence clustering

Identifier Type Frequency Contains identifier?
s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

AAA Lysine (Lys) 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0
AUU Isoleucine (Ile) 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1
UUG Leucine (Leu) 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1
GGC Glycine (Gly) 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0
CAA Glutamine (Gln) 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0
AGG Arginine (Arg) 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0
CCC Proline (Pro) 2 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0 1
UUU Phenylalanine (Phe) 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1
AAG Lysine (Lys) 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0
GGG Glycine (Gly) 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0

Table 6. Results of sequence clustering with symbol table

Source Sequence d(su, sv) d(su, sv) ≥ Hs

Hs Length (COBASM)
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