

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 9, July 2013 – www.ijais.org

 5

Analysis and Performance Assessment of CPU Scheduling
Algorithms in Cloud using Cloud Sim

Monica Gahlawat

L.J Institute of Computer Applications,
Ahmadabad (Gujarat)

Priyanka Sharma
Institute of Science & Technology for

advanced studies and Research, Anand (Gujarat)

ABSTRACT

Scheduling refers to a set of policies and mechanisms to

control the order of work to be performed by a computer

system. CPU is by far the most important resource of the

computer system. Recent advances in software and

architecture of the system increased the complexity of the

processing as the computing is now distributed and parallel.

Job scheduling is complex in this environment. The VM

(Virtual Machine) can use a distinctive VCPUs (Virtual CPU)

running queue for each physical CPU, which is referred to

Partition Queue Model (PQM). As a contrast, a Sharing

Queue Model (SQM) of CPU scheduling algorithm can be

used. This paper is analyzing and evaluating the performance

of various CPU scheduling in cloud environment using

CloudSim.

General Terms

CPU Scheduling algorithms, distributed and parallel

computing, cloud computing.

Keywords

Virtual machine, virtual CPU, Cloud computing, CPU

scheduling algorithms

1. INTRODUCTION
Scheduling refers to the set of policies to control the order

of work to be performed by a computer system. Job

scheduling is very challenging task in cloud computing

because it is parallel and distributed architecture.

 The job completion time determination is difficult in cloud

because the job may be distributed between more than one

Virtual machine. Virtual CPUs are assigned to each virtual

machine. The virtual CPUs can use the shared running queue

for each physical CPU or PQM can be used to use a separate

queue for each physical CPU.

 Before analysing and evaluating various CPU scheduling

algorithms we first establish some terminology and classical

ways of classifying the CPU schedulers. The CPU schedulers

are basically classified as Proportional Schedulers and fair-

share schedulers.

Proportional schedulers allocate CPU in proportion to the

weights given to the virtual machines. This scheduler can not

be viewed as a fair scheduler. A fair scheduler is that which

allocates all the VM a time-averaged form of proportional

sharing based on the actual use measured over long time

periods. For example if two clients are sharing a system with

equal CPU share then proportional scheduler will allocate the

CPU to active clients according to their weights. It can be

termed as space shared CPU allocation strategy. The clients

cannot interfere into other clients CPU time even if the other

client’s CPU is free to use. The counterpart of these kinds of

algorithms is fare-share schedulers. In Fair share schedulers if

one client is blocked and one is active we can assign more

CPU time to active client and when the second one become

active then the CPU is assigned to the second client to catch

up with client1. The Schedulers can also be scheduled as time

shared basis. In time-shared scheduling the equal time is

provided to each client’s job. When client1 finishes the CPU

can be allocated dedicatedly to client2

CPU schedulers can also be categorized preemptive and

non-preemptive. In preemptive scheduling the algorithm is

executed every time when a new task comes to the system. If

the new task has the higher priority over the running task then

the CPU will preempts the running task and executes the new

task. In non preemptive scheduling the CPU allows every task

to complete its CPU slice.

2. CPU SCHEDULING ALGORITHMS
 CPU scheduling algorithms [8] decides how the CPU

cycles should be allocated to the applications to achieve good

performance. In a simple system running a single process, the

time spent waiting for I/O is wasted, and those CPU cycles are

lost forever. A scheduling system allows one process to use

the CPU while another is waiting for I/O, thereby making full

use of otherwise lost CPU cycles. In case of multiple

processors, the scheduling gets more complicated, because

now there is more than one CPU which must be kept busy and

in effective use at all times. The scheduling algorithm should

be designed such that it is capable of balancing the load

between multiple processors

Multi-processor systems may be Heterogeneous. It is a set

of cores which may differ in area, performance, power

dissipated etc or Homogenous, where each core is same as the

other. Even in the latter case there may be special scheduling

constraints, such as devices which are connected via a private

bus to only one of the CPUs.

The challenge is to make the overall system as "efficient"

and "fair" as possible. Whenever the CPU becomes idle, it is

the job of the CPU Scheduler (a.k.a. the short-term scheduler)

to select another process from the ready queue to run next.

 The storage structure for the ready queue and the

algorithm used to select the next process are not necessarily a

FIFO queue. There are several alternatives to choose from, as

well as numerous adjustable parameters for each algorithm

2.1.1 Goals of CPU Scheduling Algorithm
Fairness is important under all circumstances. A scheduler

must make sure that each process gets its fair share of the

CPU and no process can suffer starvation

Efficiency: Scheduler should keep the system (or in

particular CPU) busy cent percent of the time when possible.

If the CPU and all the Input/output devices can be kept

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 9, July 2013 – www.ijais.org

6

running all the time, more work gets done per second than if

some components are idle.

Response Time: A scheduler should minimize the

response time for real time applications.

Turnaround: A scheduler should minimize the time batch

users must wait for an output.

Throughput: A scheduler should maximize the number of

jobs processed per unit time.

A little thought will show that some of these goals are

contradictory. It can be shown that any scheduling algorithm

that favours some class of jobs hurts another class of jobs. The

amount of CPU time available is finite, after all. So a good

scheduling algorithm can be decided by focusing on the

scheduling criteria explained in the figure 1.1.

Figure 1.1 Scheduling Criteria

3. EXISTING CPU SCHEDULING

ALGORITHMS
Conventional operating systems typically employ a simple

notion of First Come First Serve or priority for process

scheduling. After advances in hardware technologies

(Virtualization, multi-core CPUs), the scheduling scenario

also changed and various sophisticated scheduling algorithms

come in the existence.

 Paper [1] presents the difference between the three CPU

schedulers (Borrowed Virtual Time (BVT), Simple Earliest

Deadline First (SEDF) and Credit Scheduler) available in Xen

also presents the analysis of the performance of the schedulers

in different workloads.

 The BVT algorithm works on the virtual time. The algorithm

dispatches the runnable VM with smallest virtual time first.

This algorithm is a better choice for real time latency sensitive

applications. The latency sensitive clients can get the priority

over other by distorting the virtual time. The term “warp” is

used for this process. The client affectively “borrows” the

virtual time from its future CPU allocations because of this

reason only the algorithm is named as “borrowed virtual

time”.

 SEDF is a dynamic algorithm used for real time operating

systems. It places processes in a priority queue. Whenever a

scheduling event occurs i.e. task finishes, new task released,

etc., the queue will be searched for the process closest to its

deadline. This process is the next to be scheduled for

execution. This algorithm in an extension of Shortest job first.

 Credit Scheduler is the best fair share algorithm than BVT

and SEDF. This algorithm is best fit for real time

multiprocessor environment. In this algorithm each CPU has a

priority queue of runnable VCPUs (Virtual CPUs). As VCPUs

runs it consumes credits. Negative credit means the priority is

over. This algorithm is also good for load balancing. When

the credit of the VCPU becomes negative other VCPUs will

get the priority over it. Active VMs earn credits every 30ms

according to their weights, and burn credits as they run.

Active VMs can be in either priority UNDER, meaning they

have positive credit, or OVER, meaning negative. VCPUs in

UNDER will always run ahead of VCPUs in priority OVER.

Scheduling within a priority is round-robin. These scheduling

algorithms works on VM level

 [2] Presented the analysis of the performance of Berger

Model and proposed model for job scheduling in cloud

environment using CloudSim. This algorithm works at one

upper level of the CPU scheduling algorithms and

implemented in Data centre Broker so that Broker can decide

which job should be bind to which VM. This algorithm is also

works on VM level Scheduling

[5] Proposed a shared queue model for CPU scheduling

algorithm and compared it with Partition queue algorithm that

is used in both Xen and VMvare. The results shows that the

shared queue model is more efficient than the partition queue.

[7] Explains the CPU scheduling policies in virtual

environment. First-Come, First-Served (FCFS) is a traditional

allocation policy that assigns one task per resource in the

order in which the tasks have been submitted to the system.

FCFS algorithm has the biggest drawback that the processes

those are coming after other processes have to wait for the

processes in the queue to complete. In cloud environment if

any client want priority and is ready to pay more for

immediate processing of his application then FCFS algorithm

is not a good choice for the scenario presented above.

 FCFS-NoWait (FCFS-NW) [7] is an extension to FCFS

where jobs are not queued when no available VMs exist.

Instead, this policy assigns jobs to VMs that are already

running other jobs, round robin. This policy eliminates the

wait time, but may introduce bottlenecks in the execution of

jobs.

FCFS-MultiQueue is an extension to FCFS where several

FCFS queues, one for each range of job durations, are

maintained. The simplest case considered here, FCFS-2Q, has

two queues, one for short jobs and another for long jobs.

Although an estimation of the runtime is necessary for this

policy, it is enough to have partial knowledge of it to classify

jobs [7].

[9] Describes various algorithms like SJF (Shortest Job

First). The algorithm is based on the priority. The process

which is small has the higher priority over other processes.

The algorithm can be pre-emptive or non-preemptive. If pre-

emptive, the disadvantage with this algorithm is starvation.

Round robin algorithm assigns CPU to each process a fixed

time slice. All the processes have equal priority.

[7] Describes a CPU scheduling algorithm SRT (Shortest

Remaining time). The ready queue will be on the basis of the

process which is going to be completed recently. Priority

based algorithm can be used to provide customers priority

http://en.wikipedia.org/wiki/Priority_queue

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 9, July 2013 – www.ijais.org

7

based scheduling. This algorithm is best suited for the cloud

environment. The cloud providers can give cost based

scheduling to the customers. The customer who wants to

complete the jobs first should have to pay more for the CPU

cycles.

4. EXPERIMENTAL SETUP
The CloudSim 3.0[6] toolkit is used to simulate cloud

environment. The experiments are performed with Sequential

assignment which is default in CloudSim and other two very

common CPU scheduling algorithms i.e FCFC, SJF and

priority scheduling. The less number is termed as the higher

Priority . The jobs arrival is Uniformly Randomly Distributed

to get generalized scenario. The configuration of the cloud

includes 2 datacenters, 2 VMs and 3 hosts. We have

implemented the algorithm using 4 cloudlets for simplicity

and also analyzed the algorithms for more cloudlets .As the

cloudlets (applications) are submitted by the user it is the task

of the cloud broker (Cloud broker works on behalf of client

and finds out the best VM to run the application, the VM is

decided by looking at different parameters like size,

bandwidth, cost of VM) to assign those tasks to the VM and

then Virtual Machine Manager (VMM) decides the host on

which this VM should be allocated based on the VM

Allocation policy. After VM is assigned to the host the VM

starts running the cloudlets i.e. applications. Here CPU

scheduling algorithms come into existence. Every VM has a

virtual CPU called PE in CloudSim. The VM can have one PE

or more which simulates the original multi-core CPUs. We

have analyzed the two very common and basic CPU

scheduling algorithms i.e. first come First Serve and Shortest

Job First Algorithm. The Analysis in the table 1 shows that

the cloudlets are sorted based on the size of the Cloudlet in

shortest job first algorithm which results in less turnaround

time and waiting time. The throughput will be more in case of

SJF (Shortest Job First).

Table1: Analysis of FCFS and SJF and Priority Scheduling in Cloud Environment

Table 2: Turnaround time by increasing the cloudlets

No of Cloudlets FCFS SJF PS

5 4.5285 4.1290 4.2569

10 9.057 8.258 8.5138

15 18.114 16.516 17.0276

20 36.228 33.032 34.0552

25 72.456 66.064 68.1104

Cloudlet

ID

Cloudlet

Length

FCFS SJF Priority Scheduling

(PS)

 Seq.

No.

Turnaroun

d Time

Waiting

Time

Seq.

No.

Turnarou

nd Time

Waiting

Time

Seq. No Turnarou

nd Time

Waiting

Time

0 1000 0 1 0 0 1 0 0 1 0

1 2000 1 3 1 3 4.5 2.5 2 3.5 1

2 3000 2 6 3 1 7.5 4.5 1 5.5 3.5

3 1500 3 7.5 6 2 2.5 1 3 7 5

 4.375 2. 5 3.875 2 4.25 2.3

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 9, July 2013 – www.ijais.org

8

5. CONCLUSIONS
The results show that shortest job first and priority scheduling

algorithms are beneficial for the real time applications.

Because of these algorithms the clients can get precedence

over other clients in cloud environment. The cloud providers

with these algorithms can decide their cost model. If any

client will get priority over the other the client has to pay

more money .In this paper we have analyzed only three very

common algorithms. In future we will simulate other adaptive

and dynamic algorithms suited the virtual environment of

cloud.

6. REFERENCES
[1] Ludmila Cherkasova, and I.N. Sneddon, “Comparison of

the Three CPU Schedulers in Xen,” published in ACM

SIGMETRICS Performance Evaluation Review archive ,

September 2007Pages 42-51

[2] V. Venkatesa Kumar and K. Dinesh, “Job Scheduling

Using Fuzzy Neural Network Algorithm in Cloud

Environment” Bonfring International Journal of Man

Machine Interface, Vol. 2, No. 1, March 2012

[3] Monika Choudhary, Sateesh Kumar Peddoju , “A

Dynamic Optimization Algorithm for Task Scheduling in

Cloud Environment” International Journal of

Engineering Research and Applications (IJERA) ISSN:

2248-9622 Vol. 2, Issue 3, May-Jun 2012, pp.2564-2568

[4] David Villegas, Athanasios Antoniou,Seyed Masoud

Sadjadi, and Alexandru Iosup.” An Analysis of

Provisioning and Allocation Policies for Infrastructure-

as-a-Service Clouds: Extended Results” Draft, Dec

2011.report number PDS-2011-009, ISSN 1387-2109,

Accessed on 10 Mar 2012.

[5] Xindong You; Xianghua Xu; Jian Wan; Congfeng Jiang,

"Analysis and Evaluation of the Scheduling Algorithms

in Virtual Environment," Embedded Software and

Systems, 2009. ICESS '09. International Conference on ,

vol., no., pp.291,296, 25-27 May 2009

[6] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov,

Cesar A. F. De Rose, and Rajkumar Buyya, CloudSim: A

Toolkit for Modeling and Simulation of Cloud

Computing Environments and Evaluation of Resource

Provisioning Algorithms, Software: Practice and

Experience (SPE), Volume 41, Number 1, Pages: 23-50,

ISSN: 0038-0644, Wiley Press, New York, USA,

January, 2011.

[7] Maria Abu, Aminu Mohammed Sani Danjuma and Saleh

Abdullahi.”A Critical Simulation of CPU Scheduling

Algorithm using Exponential Distribution” IJCSI

International Journal of Computer Science Issues, Vol. 8,

Issue 6, No 2, November 2011

[8] Salot, Pinal. "A survey of various CPU scheduling

algorithms in clouds.”, International Jounal of Research

in Engineering and Technology ISSN: 2319 – 1163, pp

131-135

[9] Oyetunji, E. O., and A. E. Oluleye. "Performance

Assessment of Some CPU Scheduling

Algorithms." Research Journal of Information and

Technology 1.1 (2009): 22-26.

[10] Lingyun Yang, Jennifer M. Schopf, and Ian Foster. 2003.

Conservative Scheduling: Using Predicted Variance to

Improve Scheduling Decisions in Dynamic

Environments. In Proceedings of the 2003 ACM/IEEE

conference on Supercomputing (SC '03). ACM, New

York, NY, USA, 31-. DOI=10.1145/1048935.1050182 2

http://www.buyya.com/papers/CloudSim2010.pdf
http://www.buyya.com/papers/CloudSim2010.pdf
http://www.buyya.com/papers/CloudSim2010.pdf
http://www.buyya.com/papers/CloudSim2010.pdf
http://www.buyya.com/papers/CloudSim2010.pdf

