

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No. 5, April 2013 – www.ijais.org

7

Frequent XML Query Caching in ebXML based E-

commerce Applications using Association Rule Mining

Anju Vijayan
PG student

Pondicherry University
India

V. Uma
Assistant professor

Pondicherry University
India

G. Aghila,Ph.D.
Professor

Pondicherry University
India

ABSTRACT

Mining frequent XML query patterns and caching the results

can improve the performance of XML based systems.

Temporal features of queries can be used to guide cache

replacement. Many approaches have been proposed to mine

frequent XML query patterns and caching the results. Those

approaches mine frequent subquery patterns from historical

queries. But for ebXML (electronic business using XML)

based applications in e-commerce, most of the queries will be

of same structure. In such cases instead of mining subqueries,

frequent queries can be mined directly. In this work an

efficient system for frequent XML query caching in ebXML

based e-commerce applications is proposed which

incorporates temporal features of frequent queries for cache

replacement. Association rules are mined between frequent

queries to discover temporal patterns among them.

Semantically closer infrequent queries are clustered and their

associations with frequent queries are also mined. These rules

are used to guide cache replacement so that subsequent query

results will not get replaced from cache.

General Terms

Frequent XML query caching, ebXML, Association rule

mining.

Keywords

Frequent XML query mining, Frequent XML query caching,

ebXML.

1. INTRODUCTION
XML is widely used for data representation and exchange

over internet. Many e-commerce applications use XML for

data exchange because of its self describing property and

semi-structure nature. The drastic use of XML data in e-

commerce applications amplified the significance of frequent

XML query caching. ebXML is a modular suite of

specifications for business parties to exchange data in e-

commerce. Companies using those specifications have

standard data frame to exchange messages and data in e-

commerce[1][8][9].

 The existing methods[4][2][3][5] for caching frequent

XML queries may not be suitable for ebXML based

applications since the frequent pattern mining algorithms used

by those approaches are not utilizing the structural

similarity[1][9] of ebXML queries and degrades performance.

Those approaches [4][2][3][5] mine frequent subtrees using

conventional generate and test strategy. Candidate subtrees

are generated from all query trees and their support is

discovered by comparing them with all query trees. This

approach is not required for ebXML based applications in e-

commerce where majority of XML queries have identical

structure [1]. Therefore ebXMiner developed by Chang et al.

[1] is used by this work to discover frequent queries in single

database scan. ebXMiner first collects identical queries and

then finds their supports. Frequent subqueries are generated

only from infrequent queries.

For cache replacement, this work considers temporal features

of frequent queries to avoid eviction of subsequent query

results from cache. Association rules are mined among

frequent queries to predict which query will probably come

next. Chen et al. [2] proposed a method for mining association

rules to design a rule based LRU for cache replacement.

However, [2] is not suitable for ebXML based applications in

e-commerce since they are not exploiting the fact that most of

ebXML queries will be identical [1]. Approach used in [2]

clustered semantically closer queries together and association

rules are mined among those clusters because direct

association among queries may not be frequent always. In

ebXML based applications most of the queries are identical

and hence most of the queries are frequent. Therefore this

work mines association rules directly between frequent

queries. Infrequent queries are not avoided completely.

Infrequent queries are clustered based on containment of

frequent sub query part. Then association rules are discovered

from those clusters and frequent queries because after / before

a frequent query, similar type of infrequent queries may come.

Since this work considers direct associations among frequent

queries, subsequent query prediction will be more precise. A

modified LRU called frequent query association based LRU

(FA-LRU) is introduced which utilizes the mined associations

for cache replacement so that subsequent query results will

not get replaced.

 Rest of the paper is organized as follows: Section 2 discusses

related works about frequent XML query mining and caching.

Section 3 describes the new approach for XML query caching

in ebXML based e-commerce applications. Section 4

illustrates comparative study of the proposed approach with

existing approaches. Section 5 includes conclusion and future

work. Section 6 contains references of this work.

2. RELATED WORKS

 There are some works to mine frequent xml queries and

caching the results [4][2][3][5][6]. Yang et al. [4] introduced

an algorithm called FastXMiner to mine frequent XML

queries and extended LRU based on those frequent query

patterns. Li et al. [3] proposed an algorithm which finds

frequent XML queries from evolving databases. Hua et al. [5]

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No. 5, April 2013 – www.ijais.org

8

developed QPTMiner algorithm to discover frequent XML

query patterns for cache replacement. Bei et al. [6] introduced

a bottom up approach to mine frequent rooted subtrees for

XML query caching and web access pattern mining. However,

these works [4][3][5] are not incorporating temporal patterns

of frequent queries for cache replacement and frequent query

mining algorithms used by those approaches are not utilizing

the structural similarity of ebXML queries. This work uses

ebXMiner [1] which mines frequent queries by considering

structural similarity of ebXML queries.

In this work, association rules are mined to discover temporal

features of queries. Chen et al. [2] proposed a method for

mining positive and negative association rules for designing a

rule based LRU for XML query caching. However, [2] may

not be suitable for ebXML based e-commerce applications

since they discover frequent subqueries using traditional

generate and test strategy which is time consuming. Then [2]

clustered queries based on the semantics. Association rules

are mined among the clusters. Here in this work association

rules are discovered directly between frequent queries.

Clustering is done only for infrequent queries based on

containment of frequent subqueries. Then association rules are

mined among those clusters and frequent queries. These rules

are used for cache replacement. Since this work makes use of

direct association among frequent queries, subsequent query

prediction will be more accurate.

3. PROPOSED SYSTEM

In this work frequent xml queries are mined from historical

queries using ebXMiner. Frequent subqueries are mined from

infrequent queries. Then infrequent queries are clustered

based on the containment of frequent subqueries. After that

association rules are mined among the frequent queries and

infrequent query clusters. These rules are used for predicting

queries which may come next while cache replacement.

XML queries are represented as trees as shown in Figure 2

since the XML data has the tree structure.

Figure 2: XML Query Tree

 Consider a query database D of 12 queries Q1, Q2, Q3...

Q12. Table 1 shows the sequence of queries at time instant T1

and T2. ebXMiner mines frequent query trees and frequent

rooted subtrees of infrequent queries. Infrequent queries are

grouped into clusters labeled by frequent rooted subtrees to

collect semantically closer infrequent queries together.

Suppose Q1, Q2 and Q3 in figure 3 are infrequent queries and

t1 is a frequent rooted subtree. Then Q1 and Q2 are added into

a cluster labeled by t1 since they both contain t1. If any

infrequent query does not contain any frequent rooted subtree,

that query is discarded. If an infrequent query contains more

than one frequent rooted subtrees, it is added to the cluster

labeled by larger rooted subtree. For example Q3 contains two

frequent rooted subtrees t2 and t3. Therefore Q3 is added to

cluster labeled by t3.

 If two subtrees are of same length, support is taken into

consideration. Query is added to the cluster corresponding to

the subquery with larger support. If support is also same,

cluster dissimilarity metric used in [2] is employed to decide

cluster to which the query should be added. In their work

cluster dissimilarity is measured in terms of number of

infrequent edges in the cluster. A merged tree is generated

from all the trees in the cluster and inter cluster dissimilarity

is measured as the ratio of number of infrequent edges in the

merged tree to total number of edges in the merged tree.
Queries are added to cluster with minimum inter cluster

dissimilarity.

<book>

 <title>Xpath</title>

 <authors>

 <author>sam</author>

 <author>jhonson</author>

 <authors>

 <price>200</price>

 …………

 </book>

 XML document XML query tree

XPat

h
auth

or

sam

author

s
title

book

Clusters Rules

User

query

uery

Figure 1: System Architecture

Cache miss

XML Query

Log

Frequent Query

Miner Query

Result

Frequent

Queries

Infrequent

Queries

 Clustering

Association Rule

Miner

Rules

DB

XML

Databas

e

Cache

Query

Processing

Processi

ng
FA-LRU

Cache

Replacement

Cache hit

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No. 5, April 2013 – www.ijais.org

9

Once infrequent queries are clustered next step is to replace

them with their corresponding clusters. Suppose Q1, Q2, Q7,

Q4, Q9 are infrequent queries and Q1, Q2 belong to cluster

C1. And Q7, Q9 belong to cluster C2. Replace the infrequent

queries with their corresponding clusters as shown in table 2.

Q4 does not belong to any cluster so it is discarded from rule

mining.

 Table 1

ID T1 T2

1 Q3 Q5

2 Q6 Q8

3 Q8 Q2

4 Q10 Q12

5 Q7 Q10

6 Q12 Q4

7 Q1 Q11

8 Q11 Q9

9 Q5 Q6

10 Q3 Q8

11 Q10 Q6

 12 Q5 Q12

 Table 2

3.1 Rule Mining
Next step is to mine positive and negative association rules

between frequent queries and infrequent query clusters. In this

work support-confidence-interest framework [7] [2] is used

for association rule mining. For database D as shown in table

2, Positive association rule is of the form X→Y where

 Support (X → Y) ≥ min_support &

 Confidence (X →Y) ≥ min_confidence &

 Interest (X → Y) ≥ min_interest.

Support (X → Y) is fraction of sequences in database D in

which X is followed by Y.

Confidence (X→Y) = Support (X → Y) / Support (X, _).

Interest (X → Y) =Support (X → Y) / Support (X, _) Support

(_ ,Y).

This work considers negative association rules of the form

X → ¬Y where

 Support (X → ¬Y) ≥ min_support &

 Confidence (X → ¬Y) ≥ min_confidence &

 Interest (X → ¬Y) ≥ min_interest.

Support (X →¬ Y) is fraction of sequences in database D in

which X is not followed by Y.

Confidence (X→¬Y) = Support (X → ¬Y) / Support (X, _).

Interest (X → ¬Y) =Support (X → ¬Y) / Support (X, _)

Support (_, Y)

This work makes use of

 frequent_query→frequent_query

 frequent_query→infrequent_query_cluster

 infrequent_query_cluster→frequent_query

ID T1 T2

1 Q3 Q5

2 Q6 Q8

3 Q8 C1

4 Q10 Q12

5 C2 Q10

6 Q12 #

7 C1 Q11

8 Q11 C2

9 Q5 Q6

10 Q3 Q8

11 Q10 Q6

12 Q5 Q12

Q1

A

B C

F G

B

C D

E

B

A

C

B

D

B

C

E

Q2 Q3

t1

t2 t3

A

B

D E

C

Figure 3

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No. 5, April 2013 – www.ijais.org

10

 infrequent_query_cluster→infrequent_query_cluster

 frequent_query→¬frequent_query

 frequent_query→¬infrequent_query_cluster

 infrequent_query_cluster→¬frequent_query

 infrequent_query_cluster→¬infrequent_query_cluster

associations for cache replacement.

 Algorithm used for rule generation is similar to the

work done by Chen et al. [2]. But here in this work frequent 1

– item generation is avoided since database contains only

frequent queries. Only for infrequent query clusters, support

checking is done. In [2] association rules are mined among

clusters of semantically closer queries. This work considers

associations between frequent queries and infrequent query

clusters.

3.1.1 Algorithm for rule generation
Input: Data base D of frequent queries and infrequent query

clusters, min_support, min_confidence, min_interest

Output: RPos : Set of positive association rule, RNeg : Set of

negative association rule

Method:

(1) Scan database D and discard clusters C

 with Support(C) < min_support

(2) E = 1-item sequence of Database D

(3) K= E × E /* candidate frequent 2- item sequence of

 database D */

(4) for each item (𝑘𝑖 ,𝑘𝑗) ∈ K

(5) if(Support (𝑘𝑖 → 𝑘𝑗 ≥ min_support then

(6) if(Confidence (𝑘𝑖 → 𝑘𝑗) ≥ min_confidence &&

(7) Interest (𝑘𝑖 → 𝑘𝑗) ≥ min_interest

(8) 𝑅𝑝𝑜𝑠 = 𝑅𝑝𝑜𝑠 ∪ {𝑘𝑖 → 𝑘𝑗 }

(9) end if

(10) end if

(11) else

(12) if(Support (𝑘𝑖 → ¬𝑘𝑗) ≥ min_support then

(13) if(Confidence (𝑘𝑖 → ¬𝑘𝑗) ≥ min_confidence &&

(14) Interest (𝑘𝑖 → ¬𝑘𝑗) ≥ min_interest

(15) 𝑅𝑁𝑒𝑔 = 𝑅𝑁𝑒𝑔 ∪ { 𝑘𝑖 → ¬𝑘𝑗 }

(17) end if

(18) end if

(19) end for

3.2 Cache Replacement
 In this work a modified LRU is introduced by incorporating

temporal features of historical queries. Association rules are

mined from frequent queries and semantically closer

infrequent queries. Association rules are used for predicting

queries which may come next. Each time when a new query

comes most recent value Rtop is incremented by one and rule

set is checked for the rules containing Qi on left hand side of

the rule. If no such rules, checking is done to find whether Qi

is contained by any cluster. If Qi is present in any cluster,

checking is done to find the rules corresponding to that

cluster. If any rule of the above mentioned types is found,

replacement value of the corresponding queries/cluster is

updated.

 If any rule of type Qi → Qj , Qi → Ck, Ci → Ck , Ci → Qj is

found, new replacement value of right hand side query or

cluster is updated as R’= R + (Rtop - R) * confidence of the

rule. Since R ≤ R’ ≤ Rtop, eviction of queries which may come

next is delayed. Similarly if any rule of type Qi → ¬Qj, Qi →

¬Ck, Ci → ¬Ck , Ci → ¬Qj is found new replacement value of

right hand side query or cluster is updated as R’ = R - (Rtop -

R) * confidence of the rule. Since R’< R, priority of such

queries are reduced and it speeds up the removal of such

queries from the cache. This strategy is similar to the work of

Chen et al [2]. But [2] followed a generalized approach which

considers associations between clusters of semantically closer

queries for cache replacement. In this work more powerful set

of rules are used for cache replacement which considers inter

frequent query, infrequent query cluster- frequent query,

frequent query-infrequent query cluster and inter infrequent

query cluster associations. Hence subsequent query prediction

is expected to be more accurate and cache replacement will be

more efficient. As a result, average response time can be

reduced by significant amount of time.

4. COMPARITIVE STUDY
This section compares the new approach FA_LRU with

existing techniques LRU_FQPT [2], LRU_AR [4] for

frequent XML query caching.

Table 3: Comparison between LRU_FQPT, LRU_AR and

FA_LRU.

Seri

al

No

Method Description Advantage

Disadvant

age

1
LRU_FQP

T

Frequent

subqueries are

mined and

their results

are cached to

reduce query

response time.

More

efficient

compared to

traditional

LRU cache

replacement

since cache

miss is less

compared to

LRU.

Temporal

features of

frequent

queries are

not

considered

2 LRU_AR

Frequent

subqueries are

mined and

clustered

queries based

on frequent

subquery part.

Association

rules are

Temporal

patterns

among

queries are

considered

for cache

replacement

to avoid

eviction of

Not

appropriate

for ebXML

based

applications

since

structural

similarity of

ebXML

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No. 5, April 2013 – www.ijais.org

11

mined

between the

query clusters

to assist query

replacement

frequent

subsequent

query result.

Query

response

time and

cache miss is

less

compared to

LRU_FQPT

and LRU.

queries is

not

considered

for frequent

query

mining.

3 FA_LRU

Frequent

queries are

mined directly

and infrequent

queries are

clustered

based on

frequent

subquery part.

Association

rules are

mined among

frequent

queries and

infrequent

query clusters

to assist cache

replacement.

More

efficient in

ebXML

based

applications

compared to

LRU_AR,

LRU_FQP

and LRU

since query

response

time

expected to

be less

compared to

them.

Not a

generalized

approach.

Table 4 contains a brief comparison of FA_LRU with existing

methods. For fixed cache size and number of queries ranges

from 100-500, average response time (in seconds) is expected

to be varied as shown in Figure 4. Average response time is

calculated as the ratio of total execution time for answering a

group of queries to total number of queries in the group.

5. CONCLUSION AND FUTURE WORK
 In this work an efficient frequent XML query caching

approach is introduced for ebXML based e-commerce

applications. Since this work considers temporal features of

frequent queries, prediction will be more precise and average

response time is expected to be reduced by significant amount

of time. This work also utilizes frequent subquery patterns of

infrequent queries. Infrequent queries are clustered and their

association with frequent queries is also considered.

Currently this work mines binary associations among queries.

In future sequential relations among queries will also be

considered.

6. REFERENCES
[1] T. Chang, S. Chen, Frequent Xml Query pattern mining

for ebXML applications in Ecommerce, Expert Systems

with Applications, An International journal archive,

Volume 39 Issue 2, February 2012, Pages 2183-2193.

[2] L. Chen, S. S. Bhowmick, L. T. Chia, Mining Positive

and Negative Association Rules from XML Query

Patterns for Caching, Proceedings of the 10th

international conference on Database Systems, 2005,

Pages 736-747.

[3] G. Li, J. Feng, J. Wang, Y. Zang, L. Zhou, Incremental

pattern mining from xml queries for caching, Data

Mining, Sixth International Conference on Computing &

Processing Hardware /Software, 2006, Pages 350-361.

[4] L. H. Yang, M. L. Li, W. Hsu, Efficient mining of XML

query patterns for caching, Proceedings of the 29th

international conference on Very large data bases, 2003,

Pages 69-80.

[5] C. Hua, Frequent Query Patterns Guided XML Caching

and Materialization, Wireless Communications

Networking and Mobile Computing, International

Conference on Communication Networking

Broadcasting, 2007, Pages 3673-3676.

[6] Y. Bei, G. Chen, L. Shou, X. Li, J. Dong , Bottom up

discovery of frequent rooted unordered subtrees,

Information sciences, Volume 179, Issues 1-2, 2 January

2009, Pages 70-88.

[7] X. Wu, C. Zhang, S. Zhang, Mining both positive and

negative association rules. In Proc. of ICML, 2002,

Pages 381-405.

[8] Jin, Z. Yong, Ye, S. Ping, ebXML compatible agent

communication language, Proceedings of international

conference on computational and information sciences,

2011, Pages 361-365.

[9] ebXML. Available from: http://www.ebxml.org/

Figure 4: No: of queries Vs Average response time graph.

0

1000

2000

3000

4000

100 200 300 400 500A
ve

ra
ge

 r
e

sp
o

n
se

 t
im

e

Number of queries

LRU

LRU_FQPT

LRU_AR

FA_LRU

