

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.4, March 2013 – www.ijais.org

51

Hardware Implementation of LZMA Data

Compression Algorithm

E.Jebamalar Leavline
Department of ECE Bharathidasan Institute of

Technology, Anna University Tiruchirappalli – 620
024 Tamilnadu, India

D.Asir Antony Gnana Singh
Department of CSE Bharathidasan Institute of

Technology, Anna University Tiruchirappalli – 620
024 Tamilnadu, India

ABSTRACT

Data transmission, storage and processing are the integral

parts of today’s information systems. Transmission and

storage of huge volume of data is a critical task in spite of the

advancements in the integrated circuit technology and

communication. In order to store and transmit such a data as it

is, requires larger memory and increased bandwidth

utilization. This in turn increases the hardware and

transmission cost. Hence, before storage or transmission the

size of data has to be reduced without affecting the

information content of the data. Among the various encoding

algorithms, the Lempel Ziv Marcov chain Algorithm (LZMA)

algorithm which is used in 7zip was proved to be effective in

unknown byte stream compression for reliable lossless data

compression. However the encoding speed of software based

coder is slow compared to the arrival time of real time data.

Hence hardware implementation is needed since number of

instructions processed per unit time depends directly on

system clock. The aim of this work is to implement the

LZMA algorithm on SPARTAN 3E FPGA to design hardware

encoder/decoder with reduces circuit size and cost of storage.

General Terms

Data Compression, VLSI

Keywords

Data compression, encoding, decoding, unknown byte stream,

LZMA algorithm, compression ratio, FPGA

1. INTRODUCTION
Reducing the size of the data so as to reduce the storage space

and transmission time is essential in information and

communication systems. The demand for on-line storage is

growing day by day due to the drastic improvements in the

information technology during the past decade. The cost of

communication channels such as cellular telephone and

satellite television transmission is another driving force for

increase in the use of data compression in the field of

communication. Thanks to the compression algorithms, these

facilities are available at affordable cost. Due to the explosion

of the world-wide web network, too much data have to be

moved at a time with the available channel capacity. With

compression, it is possible to reduce the amount of data

transmitted, without sacrificing the amount of information

conveyed [1].

Data-compression techniques fall under two broad categories

namely lossy and lossless compression. In spite of achieving

higher compression rates, lossy data compression schemes

allow certain loss of accuracy of the data. Lossy compression

is effective in applications such as image and voice coding

where loss of accuracy is tolerable up to certain levels. Until

recently, lossy compression has been primarily implemented

using dedicated hardware. In the past few years, powerful

lossy-compression programs have been moved to desktop

CPUs, but even so the field is still dominated by hardware

implementations [2]. On the other hand, the loss less

compression schemes generate an exact duplicate of the input

data stream after a compress/expand cycle. Storing database

records, spreadsheets, or word processing files uses loss less

compression the loss of even a single bit could be calamitous.

Lossless data compression is generally implemented using

one of two different types namely statistical modeling or

dictionary-based compression.

Statistical modeling reads in and encodes a single symbol at a

time using the probability of that character’s appearance.

Dictionary based modeling uses a single code to replace

strings of symbols. In dictionary-based modeling, the coding

problem is significantly reduced, leaving the model supremely

important [2, 3]. Also, Adaptive models have been proposed

[4-8] in which, data does not have to be scanned once before

coding in order to generate statistics. Instead, the statistics are

continually modified as new characters are read in and coded.

One problem with adaptive models is that they start knowing

essentially nothing about the data. Most adaptive algorithms

tend to adjust quickly to the data stream and will begin

turning in respectable compression ratios after only a few

thousand bytes. Yet, the adaptive algorithms are able to adapt

themselves to local conditions [2].

A dictionary-based compression scheme reads in input data

and looks for groups of symbols that appear in a dictionary.

A pointer or index into the dictionary can be output instead of

the code for the symbol if a string match is found. The

compression ratio depends on the amount of match occurs.

But dictionary based methods introduce overhead because the

dictionary needs to be transmitted along with the text [2].

Huffman coding was the choice for data compression for

many decades [8]. However in recent years the Lempel Ziv

algorithm has taken over the Huffman algorithm almost

completely, which belongs to the class of universal source

coding algorithms. This algorithm is a variable to fixed length

coding scheme. This means any sequence of source output is

uniquely parsed into phrases of varying length and these

phrases are encoded using code words of equal length [9].

Lempel Ziv Marcov chain Algorithm is a variant of this

Lempel Ziv Algorithm. LZMA is found to be highly efficient

for unknown data stream compared with Huffman algorithm.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.4, March 2013 – www.ijais.org

52

Depending on the processor speed the compressing and

decompressing speed differs. LZMA is best suited for

compressing data streams generated at 10-20 Mbps in Real-

time environment.

In this paper, we propose the hardware architecture for the

LZMA algorithm. The proposed architecture was

implemented in Spartan 3E FPGA family under Xilinx

environment. The rest of this paper is organizes as follows. In

section 2, the related background work is presented. In section

3, the LZMA is explained. The proposed hardware

architecture and experimental setup is detailed in section 4.

The synthesis results are presented in section 5 and the paper

is concluded in section 6.

2. BACKGROUNDS
Most of the general-compression schemes in the data

compression literature use statistical modeling. But the in two

algorithms proposed in [10, 11] by Jacob Ziv and Abraham

Lempel drew attention towards dictionary-based methods to

achieve better compression ratios [2].

2.1 LZ78
The first simple compression algorithm described by Ziv and

Lempel is commonly referred to as LZ77 [10]. The dictionary

consists of all the strings in a window into the previously read

input stream. When new groups of symbols are being read in,

the algorithm searches for matches with strings found in the

previous data already read in. Then the matches are encoded

as pointers and sent as the output. LZ77 encoding is simple

and faster. The variants of LZ77 are used in popular programs

such as PKZIP and LHarc [2]. LZ77 is effective only when

the input data is highly redundant or repetitive.

2.2 LZ78
LZ78 [11] builds its dictionary with of all of the previously

seen symbols in the input text rather than having a limited-

size window into the preceding text. But instead of having

access to all the symbol strings in the preceding text, a

dictionary of strings is built a single character at a time. This

incremental procedure works very well at isolating frequently

used strings and adding them to the table. Unlike LZ77

methods, strings in LZ78 can be extremely long, which allows

for high-compression ratios [2].

2.3 LZMA
The Lempel–Ziv–Markov chain algorithm (LZMA) is an

algorithm for lossless data compression and it was first used

in the 7z format of the 7-Zip archiver [12]. The first idea of

LZMA implementation was found in [13]. There LZMA is

proposed as a subordinate block in image compression.

Further, FPGA implementation issues of LZ77 are discussed

in [15, 16]. Being inspired by [14-17], FPGA implementation

of LZMA data compression algorithm has been developed

using SPARTAN 3E FPGA.

3. LZMA DATA COMPRESSION

ALGORITHM
The dictionary based LZ77 algorithm codes byte sequences

from former contents instead of the original data. In general

only one coding scheme exists; all data will be coded in the

same form:

• Address to already coded contents

• Sequence length

• First deviating symbol

If no identical byte sequence is available from former

contents, the address is 0, the sequence length is 0 and the

new symbol will be coded. LZ77 [10] also uses a dynamic

dictionary to compress unknown data with the use of sliding

window algorithm. LZMA uses a Delta Filter and Range

Encoder in addition to the original LZ77 algorithm as shown

in Figure 1.

Figure 1. LZMA Coding Scheme

3.1 Delta Encoding and Decoding
The Delta Filter shapes the input data stream for effective

compression by the sliding window. It stores or transmits data

in the form of differences between sequential data rather than

complete files. The output of the first byte delta encoding is

the data stream itself. The subsequent bytes are stored as the

difference between the current and its previous byte. For a

continuously varying real time data, delta encoding makes the

sliding dictionary more efficient [18, 19].

Example:

Sample input sequence : 2,3,4,6,7,9,8,7,5,3,4

Output sequence encoded : 2, 1, 1, 2, 1, 2,-1,-1,-2,-2, 1

Number of symbols in input : 8

Number of symbols in output : 4

3.2 Sliding Dictionary Algorithm
There are two types of dictionaries namely static dictionary

and adaptive dictionary. In static dictionaries the entries are

predefined and constant according to the application of the

text whereas in adaptive dictionaries, the entries are taken

from the text itself and created on-the-fly. A search buffer is

used as dictionary as in Figure 2, and the sizes of these buffers

depend on the parameters of the implementation. Patterns in

text are assumed to occur within range of the search buffer.

The offset and length are encoded separately, and a bit-mask

is also encoded. Use of suitable data structure for the buffers

will reduce the search time for longest matches. Sliding

Dictionary encoding is more difficult than decoding as it

needs to find the longest match [17]. The basic steps in sliding

dictionary algorithm are shown in Figure 3.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.4, March 2013 – www.ijais.org

53

Search Buffer

Look-

ahead

buffer

…this is a text that

is being

Read

through

window...

 Figure 2. Sliding Dictionary Concept

Figure 3: Sliding Dictionary Algorithm

3.3 Range Coder
Range encoder encodes all the symbols of the message into a

single number to achieve greater compression ratios. It

efficiently deals with probabilities that are not exact powers of

two. The range encoder uses the following steps.

 Given a large-enough range of integers, and probability

estimation for the symbols.

 Divide the initial range into sub-ranges whose sizes are

proportional to the probability of the symbol they

represent.

 Encode each symbol of the message by reducing the

current range down to just that sub-range which

corresponds to the next symbol to be encoded.

The decoder must have the same probability estimation the

encoder used, which can either be sent in advance, derived

from already transferred data [20].

Figure 4: Sample Sliding Dictionary Coding. 12 characters

compressed into 6 tuples. (String to be encoded:

abracadabrad, Output tuple: (offset, length, symbol)

Figure 5 Sample sliding Dictionary Decoding

4. FPGA IMPLEMENTATION OF LZMA

DATA COMPRESSION
The proposed architecture for hardware implementation of

LZMA is shown in Figure 6.

 Figure 6. Proposed architecture for hardware implementation

of LZMA

The encoder is made of four routines: init, renormalize,

encode a symbol and flush encoder. Init must be called before

starting to encode symbols, both encode and renormalize code

the symbols, and flushing is done when you have encoded all

the symbols. The decoding has five routines: init,

renormalize, decode symbol, update state and flush. Update

Input 7 6 5 4 3 2 1

(0,0,a) a

(0,0,b) a b

(0,0,r) a b r

(3,1,c) a B r a c

(2,1,d) A B r A c a d

(7,4,d) abrac A D a B r a d

Search Buffer Look-ahead buffer Output

Build the Source Tree

Find the Best Match

Start Recursion

Update the Tree with

Fresh Scanned Symbols

Optional Clean-Up of the Oldest
Branches

Input Data

Coded Data

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.4, March 2013 – www.ijais.org

54

state must be called after knowing the symbol's range, so you

can extract it from the number. These routines have been

developed using VHDL [21, 22].

5. EXPERIMENTAL RESULTS AND

DISCUSSION

5.1 Experimental Setup
The experimental set up for the proposed hardware

architecture for LZMA is shown in Figure 7. The proposed

architecture is tested on Spartan 3E FPGA with Xilinx ISE

11.1i. The real data input is given from PC through serial

communication to the FPGA development board. The FPGA

is programmed using USB programmer. The Compressed and

decompressed data are displayed with LEDs.

Figure 7. Experimental set up for the proposed hardware

architecture for LZMA

5.2 Results and Discussion
The compression ratio for various input data sizes are shown

in Table 1. The HDL synthesis Summary and the device

utilization details for both encoder and decoder are given in

Table 2. The LZMA is consistent over a range of input data

sizes and the average compression ratio achieved is 57.135

which is comparable with the compression ratio achieved in

7Zip. The compression ratio (CR) is calculated as follows.

CR = (Output Data Size/Input Data Size) X 100%

CR Achieved in 7ZIP = (138 bytes/260 bytes) *100 = 53.1 %

CR Achieved Practically = (37 bytes/64 bytes) *100= 57.8 %

Table 1: Compression Ratio achieved for various data

sizes with LZMA

S.No

Size of

Input Data

(Byte)

Size of

Compressed Data

(Byte)

Compression

Ratio

(in %)

1 32 18 56.275

2 64 37 57.813

3 128 73 57.031

4 256 146 57.422

Average Compression Ratio 57.135

6. CONCLUSIONS
The simple, portable and efficient LZMA compression

algorithm is implemented using HDL that provides an

excellent platform for Real-time compression applications.

The proposed hardware architecture is tested with Spartan 3E

FPGA device for various input data sizes and the compression

ratio was calculated. Encoding and decoding processes are

fully functional at 50 MHz and Compression Ratio is

comparable with that of real compression ratio. Further this

architecture can be extended to application specific integrated

circuits so as to design a specific hardware chip for the LZMA

compression algorithm.

7. REFERENCES
[1] Alistair Moffat, Andrew Turpin klwer. Compression and

Coding Algorithms. Academic Publishers Massachusetts

(2002).

[2] Mark Nelson, Jean-loup Gailly, “The Data compression

Book”,2nd Edition, M&T Books, New York, NY (1995).

[3] S. Shanmugasundaram and R.Lourdusamy. A

Comparative Study Of Text Compression Algorithms.

International Journal of Wisdom Based Computing. 1,

3(2011)

[4] Gennady Pekhimenko Vivek Seshadri Onur Mutlu,

“Base-Delta-Immediate Compression: A Practical Data

Compression Mechanism for On-Chip Caches” SAFARI

Technical Report No. 2012-001 (June 19, 2012)

[5] Fout, Nathaniel, Ma and Kwan-Liu, An Adaptive

Prediction-Based Approach to Lossless Compression of

Floating-Point Volume Data. IEEE Transactions on

Visualization and Computer Graphics. 18 , 12 (2012)

2295- 2304.

[6] M.Smith, I.Posner and Paul Newman. Adaptive

compression for 3D laser data” The International Journal

of Robotics Research. 30,7, (2011) 914–935.

[7] Sacaleanu, D.I ,Stoian, R, and Ofrim, D.M, An adaptive

Huffman algorithm for data compression in wireless

sensor networks. 10th International Symposium on

Signals, Circuits and Systems (ISSCS), 2011 Page(s): 1-

4

[8] Satpreet Singh and Harmandeep Singh. Improved

Adaptive Huffman Compression Algorithm.

International Journal of Computers & Technology.1

,1(2011) 16-22

[9] John G. Proakis, Masoud Salehi. Fundamentals of

Communication Systems. Pearson Education (2006).

[10] J.Ziv and A.Lampel. A Universal Algorithm for

Sequential Data Compression. IEEE Transactions on

Information Theory. 23,3(1997) 337–343.

[11] J.Ziv and A.Lampel. Compression of Individual

Sequences via Variable-Rate Coding. IEEE Transactions

on Information Theory. 24, 5(1978) 530–536.

[12] Igor Pavlov, “7z format”, http://www.7-zip.org/7z.html

[13] Ranganathan, N and Henriques, S. High-speed VLSI

designs for Lempel-Ziv-based data compression. Circuits

and Systems II: Analog and Digital Signal Processing,

40,2,(1993) 96–106.

[14] Zongjie Tu and Shiyong Zhang. A Novel Implementation

of JPEG 2000 Lossless Coding Based on LZMA.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.4, March 2013 – www.ijais.org

55

Proceedings of the Sixth IEEE International Conference

Computer and Information Technology, (2006).

[15] Mohamed A. Abd El Ghany, Magdy A. El-Moursy and

Aly E. Salama. Design and Implementation of FPGA-

based Systolic Array for LZ Data Compression.

Proceedings of IEEE International Symposium on

Circuits and Systems, (2007).

[16] S Rigler, W Bishop and A Kennings. FPGA-Based

Lossless Data Compression using Huffman and LZ77

Algorithms. Proceedings of Canadian Conference on

Electrical and Computer Engineering, (2007).

[17] Ashwini M. Deshpande, Mangesh S. Deshpande and

Devendra N. Kayatanavar. FPGA Implementation of

AES encryption and decryption. Proceedings of

International Conference on Control, Automation,

Communication And Energy Conservation (2009).

[18] David Salomon. Data Compression: The Complete

Reference. Second Edition, Springer New York, Inc.

(2000).

[19] Simon Haykin. Communication Systems. 4th Edition,

John Wiley and Sons,(2001).

[20] Arturo Campos. Range encoder.URL:

http://www.arturocampos.com/ac_range.html

[21] Wayne Wolf. FPGA-Based System Design, Pearson

Education, (2004).

[22] Jayaram Bhasker.. A VHDL Primer. Third Edition,

Prentice Hall P T R, (1999).

Table 2 :HDL Synthesis and Device Utilization Summary for LZMA Encoder and Decoder

Macro

Statistics

Encoder Decoder

Details Quantity Details Quantity

ROMs 16x8-bit ROM 2 16x14-bit ROM 1

Adders/

Subtractors

32-bit adder - 7

32-bit Subtractor - 17
24 32-bit Subtractor 2

Counters
32-bit down counter - 2

32-bit up counter- 2
4

32-bit down counter-1

32-bit up counter -2
3

Registers

1-bit register - 127

14-bit register - 16

32-bit register - 4

7-bit register - 1

148

1-bit register -5

14-bit register - 1

3-bit register -2

32-bit register - 2

8-bit register - 17

27

Comparators

16-bit comparator equal - 6

24-bit comparator equal - 5

32-bit comparator equal - 4

32-bit comparator great equal - 3

32-bit comparator greater - 2

32-bit comparator less - 2

32-bit comparator less equal - 3

40-bit comparator equal - 3

48-bit comparator equal - 2

56-bit comparator equal - 1

8-bit comparator equal - 7

38
32-bit comparator great equal - 2

2

Multiplexers

120-bit 4-to-1 multiplexer -1

14-bit 16-to-1 multiplexer - 1

2

32-bit 4-to-1 multiplexer - 5

32-bit 8-to-1 multiplexer - 2

8-bit 16-to-1 multiplexer - 1

8-bit 4-to-1 multiplexer -32

8-bit 8-to-1 multiplexer -48

88

Timing

Summary

Speed

Grade: -4

Minimum period

Minimum input arrival time before

clock

Maximum output required time

after clock

Maximum combinational path

delay

Maximum Frequency

17.342ns

4.335ns

4.283ns

No path found

57.66MHz

Minimum period

Minimum input arrival time

before clock

Maximum output required time

after clock

Maximum combinational path

delay

Maximum Frequency

18.542ns

4.335ns

4.283ns

No path found

53.93MHz

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.4, March 2013 – www.ijais.org

56

Figure 8: RTL Schematic View of LZMA Encoder

Figure 9. RTL Schematic View of LZMA Decoder

