
 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 5– No.3, February 2013 – www.ijais.org 

 

25 

Reduction of Maximum Flow Network Interdiction 

Problem: Step towards the Polynomial Time Solutions 

 
Pawan Tamta, 

Department of Mathematics, 
Kumaun University Nainital, 

Uttarakhand, India. 

 
 

Bhagwati Prasad Pande, 
Department of Information 

Technology, 
Kumaun University Nainital, 

Uttarakhand, India. 

 

H.S. Dhami, 
Department of Mathematics, 
Kumaun University Nainital, 

Uttarakhand, India. 

 

ABSTRACT 

In the present work an attempt is being made to reduce the 

Maximum Flow Network Interdiction Problem (MFNIP) in to 

the Subset Sum Problem so as to get some algorithms solvable 

in polynomial time. Previously developed algorithms are 

either applicable to some special cases of MFNIP or they do 

not have a constant performance guarantee. Our reduction has 

paved the way towards the development of fully polynomial 

time approximation schemes for Maximum Flow Network 

Interdiction Problem.  

1. Introduction- 

The maximum flow network interdiction problem (MFNIP) 

takes place on a network with a designated source node and a 

sink node. The objective is to choose a subset of arcs to 

delete, without exceeding the budget that minimizes the 

maximum flow that can be routed through the network 

induced on the remaining arcs.   

Much of the recent work [5, 6, 10, and 13] admits MFNIP as 

strongly NP-hard problem. MFNIP admits a very simple 

integer programming formulation [35]. A number of valid 

inequalities are known for this IP, but the integrality gap is 

still large [3].  

From mid nineties to now efforts have been made to develop 

some effective algorithms for MFNIP. Initially some naive 

algorithms were developed for interdiction problem such as a 

branch- and-bound strategy for general graph [14], and 

methods of varying quality for inhibition of s-t planar graph ( 

planer graphs with both the source and sink on the outer face) 

([22], [16]).  

 Later in nineties efforts were made to categorize the problem 

and some polynomial time algorithms were developed on 

planner graphs for MFNIP. In 1993 Phillips [26] proved 

MFNIP as weakly NP Complete for planner graphs. At the 

same time Wood [35] introduced the Integer Linear Program 

(ILP) for MFNIP and proved it strongly NP Hard problem. 

Once MFNIP was  proved as NP Hard problem, efforts were 

made to develop approximation algorithms for MFNIP.   

Phillips [26] developed a fully-polynomial-time 

approximation scheme for NIP but on planar networks only.  

Near 2000 in some articles decomposition method was used to 

develop approximation algorithms for some sections of 

MFNIP. A number of authors, for example ([5], [23], [33]) 

have used the decomposition method to find true 

approximation algorithms for combinatorial optimization 

problems. Others such as [7] have used decomposition to 

prove structural results about the set of feasible solutions for a 

combinatorial optimization problem.  

For the first time Burch et al. [9] made efforts to provide a 

polynomial-time algorithm for NIP for the general case, but 

again the algorithm could not give the constant performance 

guarantee. 

The decomposition method had been used in that algorithm 

that either returned a 


1
1 -approximate optimal solution or 

a 1 - pseudo approximation. However that was not 

known a priori that which solution returned. In this context   

is a user-specified error parameter. All of this work used 

Integer Program for MFNIP as the starting point. 

After that less attention were paid to develop the linear 

program and approximation algorithms for MFNIP and much 

of the work included the study of variants of network 

interdiction problem ([10],[11],[12],[17], [18],[20] ,[12] 

,[31]).  

The special case of MFNIP when an interdictor removes 

exactly k arcs from the network in order to minimize the 

maximum flow in the resulting network is known as the k-

Most Vital Arcs Problem [27], this problem has also been 

named as the Cardinality Maximum Flow Network 

Interdiction Problem (CMFNIP) [35]. 

Recently Altner et al [3], developed two valid inequalities 

namely Source to Node path inequality and Node to Sink path 

inequality for linear programming relaxation of CMFNIP. 

Altner [3] showed that, even when strengthened by valid 

inequalities the integrality gap of the standard integer program 

for CMFNIP is not bounded below by a constant.  

In this paper an effort is being made to reduce MFNIP in to 

the Subset Sum Problem. The Subset- Sum Problem has a 

Fully Polynomial Time Approximation Scheme (FPAS). 

Therefore our work paves the way towards the development 

of some algorithms solving the problem in polynomial time.   

2. Preliminaries 

Altner [3] has defined a network as ),( AN  where N  is 

the set of nodes and A  is the set of arcs. He has assumed that 

all of networks have a unique source NS and a unique 

sink .Nt  Arc that originates from node u and terminates 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V8M-4XCYJ8T-2&_mathId=mml11&_user=9438896&_cdi=5874&_pii=S0167637709001151&_rdoc=8&_issn=01676377&_acct=C000050221&_version=1&_userid=9438896&md5=9b3374d17cc80dd5b527b9b8169ecf3a
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V8M-4XCYJ8T-2&_mathId=mml12&_user=9438896&_cdi=5874&_pii=S0167637709001151&_rdoc=8&_issn=01676377&_acct=C000050221&_version=1&_userid=9438896&md5=78c6c96444234d27447456e92de0f04d


 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 5– No.3, February 2013 – www.ijais.org 

 

26 

at node v has been denoted as ),( vu  by him. The s–t cut has 

been referred by him as  either a set of arcs that disconnects 

s  from t  upon their removal, or alternatively, as a 

bipartition of the nodes where s and t  are not in the same 

partition. He has further denoted an undirected graph as 

),( EV  where V is the set of vertices and E is the set of 

edges, an edge between vertices u  and v by },{ vu  and an 

arc between node i  and j as ),( ji  . The arc capacity of 

every arc ),( ji  has been given by Cij. 

Wood [35] proposed the integer linear program for MFNIP 

and defined the decision variables as: 

 v
 1, if Nv  is on the sink side of the cut, it is 0 

otherwise. Nv   

 
e

1, if Ae  is in the cut and is interdicted, it is 0 

otherwise. Ne  


e

 1, if Ae  is in the cut and is not interdicted, it is 0 

otherwise. Ne  

Integer linear program for complete formulation of MFNIP 

has been defined by him as under:  

(2.1) 

Minimize 
eec   

Subject to the conditions 

(2.2) 

0
),(),(
  vuvuvu  

 (2.3) 

1 st
                  (2.4) 

R
eeAe r  

               (2.5) 

Nv
v

 ],1,0[                                              (2.6) 

Ae
e

 ],1,0[                                        (2.7) 

Ae
e

 ],1,0[                                                    

Altner [2] obtained the following natural linear programming 

relaxation forW and denoted it as (W-LP), by replacing the 

binary constraints (2.5), (2.6), (2.7) with non negativity 

constraints  

(2.8) Ae

AeNv

e

ev





]1,0[

,]1,0[,]1,0[




                              

 

In order to strengthen W-LP for CMFNIP Altner [2] proposed 

two inequalities named as Node to sink path inequality and 

Source to node path inequality.  

Node to sink path inequality 

(2.9) 

pP

PPP
R

tutu

tueAe tuutu

Nand

RR



 



 



 ,)()(
  

Where p
R

tu
 denotes the family of all sets of arc-disjoint 

tu  paths that contain more than R paths. 

Source to Node Path Inequality  

(2.10) 

pP

P
R

usus

Ae euus

Nand

P
R

tu







 




 ,0
)(

)(

 

Where p
R

us
denotes the family of all sets of arc-disjoint

us   paths that contain strictly greater than R paths. 

In this paper we modify the integer program of Wood [35] 

and Altner [3] to get rid of   variables so that the 

inequalities turns in to the equalities. For that purpose first we 

propose a reduction algorithm to reduce any complicated 

network in to a simple network of disjoint paths in polynomial 

time. 

3- Proposition of Reduction Algorithm. 

In this section we propose an algorithm namely reduction 

algorithm to reduce the complicated network in to a simple 

network of disjoint source to sink paths. 

The algorithm was earlier proposed by us in [25], here we 

present a modified form of that algorithm. A network is 

defined as ),( AN  where N  is the set of nodes and A  is 

the set of arcs. All networks have a unique source Ns and 

a unique sink .Nt  Arc that originates from node l and 

terminates at node m is denoted by ),( ml . The set of nodes 

directly connected to source node is defined as l  where

Nl  .  

We denote the set of different paths originating from any node 

li  and terminating at sink t as - P
t

i
 and paths belonging 

to that set P
t

i
 as ..........,qp

t

i

t

i
. .Similarly the set of 

different source to sink paths is denoted by P
t

s
 and paths 

belonging to the set P
t

s
 as ..........,qp

t

s

t

s
 . We further 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V8M-4XCYJ8T-2&_mathId=mml30&_user=9438896&_cdi=5874&_pii=S0167637709001151&_rdoc=8&_issn=01676377&_acct=C000050221&_version=1&_userid=9438896&md5=430a325213d7a9019a92ed7fc3e52f1b
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denote the arc capacity of path p
t

s
 asCp

t

s
and the arc 

capacity of any arc ),( ml  asc
m

l
 . 

The equation set defining the algorithm is given as under.  

Equation 3.1 as proposed under determines source to sink path 

through any node li  by taking all paths from that node to 

the sink node t  .  

(3.1) 

PpPppp
t

s

t

s

t

i

t

i

t

i

t

s
andis  ,),(                                                                                                                                

  

Equation 3.2 as proposed under considers the arc capacity

Cp
t

s
 of any path p

t

s
as the minimum arc capacity of the 

arcs constituting that path. 

(3.2) 

 pcCp
t

s

m

l

t

s
ml  ),(:min

.
 

Equation 3.3 as proposed under states that the arc capacity of 

any arc appearing in more than one path is the difference of 

actual arc capacity of that arc and the arc capacities of the 

previous arcs.  

(3.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cpccqp
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l

t

s
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s
ml ),(                                                                                             

 

The reduction algorithm consisting of the equation sets 3.1 to 

3.3 transforms the complicated network (figure 3.1) in to a 

simple source to sink path disjoint network (figure 3.2) in 

polynomial time, as in any directed graph having N  nodes 

the maximum number of arcs are )1( NN  and the 

algorithm searching out each arc for possible source to sink 

path, the maximum number of efforts cannot exceed

..)1(
2

NNNNN 
 

Figure: 3.1
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Figure: 3.2 

 

Figure 3.1 and figure 3.2 give the description of the reduction 

algorithm.
 

4. Reduction of MFNIP in to the Subset 

Sum Problem. 

In this section we reduce the Maximum Flow Network 

Interdiction Problem in to the Subset Sum Problem.  

Once we have reduced the network in section 3, we are left 

with the network of disjoint paths only (figure 3.20). Therefore 

the Maximum Flow Network Interdiction Problem has been 

reduced in to the problem of choosing the feasible subset of 

paths (paths to be interdicted) with maximum amount of flow 

in them, among the given objects (disjoint paths). 

The procedure takes as input a set

},.........,{
/2/21/1 xxx cnfncfcf

S  , where x cnfn /
 

represents thenth
 arc having amount of flow fn  and the 

interdiction cn . Here the target value t  is the interdiction 

budget. The aim is to find a subset of set 

},.........,{
/2/21/1 xxx cnfncfcf

S   with maximum 

amount of flow fn  so that the total interdiction cost of the 

subset ci  does not exceed the interdiction budget t . This is a 

well known Subset Sum Problem. 

 

5. Conclusion 

Subset Sum Problem is a well known Np-hard problem which 

admits a Fully Polynomial Time Approximation Scheme 

(FPAS). The reduction of MFNIP in to the Subset Sum 

Problem provides a promising direction towards obtaining the 

Fully Polynomial Time Approximation Scheme for MFNIP. 
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