

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

51

Effect of Ensemble Methods for Software Fault

Prediction at Various Metrics Level

Shanthini. A
Research scholar,

Department of Computer Science and

Engineering,
Annamalai University,

Annamalai nagar, Tamil Nadu, India

Chandrasekaran.RM
Professor,

Department of Computer Science and

Engineering,
Annamalai University,

Annamalai nagar, Tamil Nadu, India

ABSTRACT

Defective modules in software project have a considerable
risk. It reduces the software quality. Defective modules

decreases customer satisfaction and by increases the

development and maintenance costs. In software development

life cycle, it is very essential to predict the defective modules

in the early stage so as to improve software developers’ ability
to focus on the quality of the software. Software defect

prediction using machine learning algorithms was investigated

by many researchers and concluded that classifiers ensemble

can effectively improve classification performance than a

single classifier. This paper mainly addresses the software
fault prediction using ensemble approaches. We conduct a

comparative study using WEKA tool for various ensemble

methods with perspective of taxonomy. The ensemble

methods include Bagging, Boosting, Stacking, and Voting.

We also compared these ensemble methods for three different
levels of software metrics (Class level, Method level and

Package level). Ensemble classifiers were examined for

various metrics level datasets. Various ensemble classifiers

were examined for three different metrics levels. The

experiments were carried out on the datasets such as NASA
KC1 method level data set, NASA KC1 class level dataset

and Eclipse dataset for package level metrics. The

experiments conducted on these three data sets by applying

ensemble classification methods to predict defect. The

ensemble methods evolved by experiments shows that
bagging performs better than other ensemble methods for

method level and package level dataset. For class level dataset

voting performs better in terms of Area under ROC curve

(AUC – ROC).

Keywords

Defect prediction, Classifier Ensemble; Ensemble

Methodology.

1. INTRODUCTION

Now-a-days the software systems are getting more and more

complex. Due to this complexity, the probability of these
software systems having defective modules is getting higher.

Software quality assurance is a resource and time-consuming

task. Since cost is a vital factor, complete testing of an entire

system is not easy. Therefore, identifying which software

modules are more likely to be defective can help us allocate
limited time and resources effectively. Based on the above

reasoning, it is clear that methods are needed to predict, control

and improve fault handling in general [13]. The type of

methods can be divided into two major classes: methods for

prediction of the number of faults in a specific module and
methods for identification of fault-prone modules. The first

type of methods has been investigated and evaluated, but it has

been difficult to develop a valid model, in particular a model

which is transferable between projects or organizations. Thus,

methods for identification of fault- and failure prone modules
and models for fault prediction are a potential way to improve

software quality and to reduce cost [11].

Data Mining has become a very useful technique to reduce

information overload and improve decision making by

extracting and refining useful knowledge through a process of
searching for relationships and patterns from the extensive

data collected by organization [6] [8]. The extracted

information is used to predict, classify, model, and summarize

the data being mined. In recent years data mining techniques

have been successfully used in software fault detection. The
primary objective of this paper is to show that Bagging and

Voting had better performance than stacking and boosting.

The rest of this paper is organized as follows. Subsequent

sections describe related work. The 3rd section is for the data

source. The 4th and 5th sections present details about metrics
and machine learning approaches used. Performance

evaluation is discussed in the 6th section. Conclusions are

given in the 7th section.

2. REVIEW OF RELATED LITERATURE

Considerable research has been performed on software

metrics and defect prediction models. In [4], the author has

used various machine learning techniques for an intelligent

system for the software maintenance prediction and proposed
the logistic model Trees (LMT) and Complimentary Naïve

Bayes (CNB) algorithms on the basis of Mean Absolute Error

(MAE), Root Mean Square Error (RMSE) and Accuracy

percentage.

Catal et al. [5] examined Chidamber-Kemerer metrics suite

and some method-level metrics (the McCabe’s and Halstead’s

ones) for a defect model which is based on Artificial Immune

Recognition System (AIRS) algorithm. The authors

investigated together 84 metrics from the method-level
metrics transformation and 10 metrics from the class-level

metrics. According to obtained results the authors concluded

that the best fault prediction is achieved when CK metrics are

used with the lines of code (LOC) metric.

Menzies et al. [6] showed that Naive Bayes with logNums
filter provides the best performance on NASA datasets for

software fault prediction problem. Olague et al. [7] found that

the complexity metrics have a good performance in

distinguishing between fault-prone and not fault-prone

classes. In addition, they also found that lesser known metrics

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

52

such as SDMC and AMC were better predictors than the

commonly used metrics LOC and WMC.

Kanmani et al. [8] validated Probabilistic Neural Network

(PNN) and Back propagation Neural Network (BPN) using a

dataset collected from projects of graduate students, in order

to compare their results with results of statistical techniques.

According to Kanmani et al.’s [8] study, PNN provided better
performance.

The use of Machine Learning for the purpose of predicting or

estimating software module’s fault-proneness is proposed by

[11], which views fault-proneness as both a continuous

measure and a binary classification task. Using a NASA
public dataset, a NN is used to predict the continuous measure

while a SVM is used for the classification task. Gondra’s [11]

experimental results showed that Support Vector Machines

provided higher performance than the Artificial Neural

Networks for software fault prediction.

3. FAULT PREDICTION DATA SET

Three different data sets used in this research are obtained

from the bug database of Eclipse and NASA IV and V
Facility Metrics Data Program (MDP). For method level

metrics, NASA KC1 method level dataset is used. Public

NASA KC1 method level dataset include 21 method-level

metrics proposed by Halstead and McCabe. This dataset

consists of 2109 instances and 22 attributes.

We use the data associated with the KC1 project for class

level metrics. This is a real time project written in C++

consisting of approximately 315,000 LOC. There are 10,878

modules and 145 instances. In addition to the method level

metrics, 10 class-level oriented metrics are used.

For package level metrics, the dataset is obtained from bug

database of Eclipse 3.0. The dataset lists the number of pre-

and post-release defects for every package in the Eclipse 3.0.

All data is publicly available and used for defect prediction

models. Dataset consists of following attributes. Each case
contains the following information:

The name attribute indicates the name of the file or package,

to which this case corresponds. It can be used to identify the

source code and may be needed for additional data collection.

The pre-release defects attribute indicates the number of non-
trivial defects that were reported in the last six months before

release of the project.

The post-release defects attribute indicates the number of

non-trivial defects that were reported in the first six months

after release of the project.

The complexity metrics attribute indicates the metrics that

are computed for classes or methods are aggregate by using

average (avg), maximum (max), and accumulation (sum) to

package level.

Structure of abstract syntax tree(s): For each case, we list
the size (=number of nodes) of the abstract syntax tree(s) of

the package.

4. ENSEMBLE METHODS

4.1. Bagging

Bagging is Bootstrap AGGregatING. The main idea of
Bagging is to construct each member of the ensemble from a

different training dataset, and to predict the combination by

either uniform averaging or voting over class labels [3]. A

bootstrap samples N items uniformly at random with

replacement. That means each classifier is trained on a sample
of examples taken with a replacement from the training set,

and each sample size is equal to the size of the original

training set. Therefore, Bagging produces a combined model

that often performs better than the single model built from the

original single training set. Bagging algorithm is shown in
Figure 1.

Input :

Data set D=       ;2211 mm,yx,,,yx,,yx 

Base learning algorithm B;

Number of learning rounds R.

Process:

for i ,R:1,

Di = Bootstrap (D); /* Generate a bootstrap

 sample from D*/

hi = B(Di); /* Train base learner ht from the

 bootstrap sample */

end.

Output :

     


T

t i xhylYyxO
1

maxarg

 /* the value of l(a) is 1 if a is true and 0
 otherwise*/

Figure 1: Bagging Algorithm

4.2. Boosting

Boosting is another popular ensemble method, and Adaboost

is the most well-known of the Boosting family of algorithms
which trains models sequentially, with a new model trained at

each round [1][6]. Adaboost constructs an ensemble by

performing multiple iterations. In this process for each

iteration it uses different example weights. The weight of

incorrectly classified examples will be increased, so that it
ensures misclassification errors for these examples count

more heavily in the next iterations. This procedure provides a

series of classifiers that complement one another, and the

classifiers are combined by voting. Boosting algorithm is

shown in the Figure 2.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

53

Input :

Data set D=       ;2211 mm,yx,,,yx,,yx 

Base learning algorithm B;

Number of learning rounds R.

Process:

Dl(j)=1/m //Initialize the weight distribution

for ,R:,i  2,1

  ;, 1DDBhi  / *Train base learner hi from

 D using distribution D1*/

  ;Pr jjiDjji yxh   /*Measure the

 error of hi*/

;
1

ln
2

1

i

i
i







 //Determine the weight of hi












jjii

jjii

i

i
i

yxf h

yxif h

Z

jD
jD

)()exp(

)()exp()(
)(1





 // Update the distribution, where Zi is a

 

i

jijii

Z

xhyjD)exp()(


 /* Normalization factor with enables

1iD to a distribution*/

end.

Out put :

    


R

i ii xhsignxfsignxO
1

)()(

Figure 2: Boosting Algorithm

4.3. Stacking

Stacking is another ensemble learning technique. In Stacking
scheme, there are two level models which are set of base

models are called level-0, and the meta-model level-1. The

level-0 models are constructed from bootstrap samples of a

dataset, and then their outputs on a hold-out dataset are used

as input to a level-1model. The task of the level-1 model is to
combine the set of outputs so as to correctly classify the

target, thereby correcting any mistakes made by the level-0

models[11] [3]. Stacking algorithm is shown in Figure 3.

Input :

Data set D=       ;2211 mm,yx,,,yx,,yx 

First-level learning algorithms ;,,1 TAA 

Second-level learning algorithms A.

Process:

for ,T:i 1,

 DAh ii  /* Train a first-level individual

 leaner h i by applying the

 first-level */

end; // learning algorithm Ai to the original data set D

;' D // Generate a new data set

for ,m:j 1,

  jiji xhz  /*Use hi to classify the

 training example x j*/

end;

   jjij yTZZZUDD ,,2,1'' 

end.

 .'' DAh  /* Train the second-level learner

 'h by applying the second-level

 learning algorithm A to the new set 'D */

Output :

    xhxhhxO T,,')(1 

Figure 3: Stacking Algorithm

4.4. Voting

Voting is a combining strategy of classifiers. Majority Voting

and Weighted Majority Voting are more popular methods of

Voting [16]. In Majority Voting, each ensemble member votes
for one of the classes. The ensemble predicts the class with

the highest number of vote. Weighted Majority Voting makes

a weighted sum of the votes of the ensemble members, and

weights typically depend on the classifiers confidence in its

prediction or error estimates of the classifier.

5. EXPERIMENTS

We used the WEKA machine learning library as the source of

algorithms for experimentation. We used bagging, boosting,
stacking and voting ensemble algorithms as implemented in

WEKA with default parameters. Bagging and boosting are

implemented with default classifier in WEKA. The base

classifiers used for voting are SVM and Navies Bayes which

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

54

are popular in software defect prediction [9]. The combination

rule of vote is average of probabilities. The level 1 classifier
of stacking is SVM and level 0 classifier used is Navies

Bayes. The data sets described above in section 2 is used to

test the performance of various ensemble methods. The

performances of classifiers are evaluated used RMSE and

AUC-ROC as metrics.

Figure 4: Root Mean Square Error for different level of

metrics using various ensembles methods

5.1 Root Mean Square Error

Root Mean square error (RMSE) is frequently used measure

of differences between values predicted by a model or

estimator and the values actually observed from the thing
being modeled or estimated. It is just the square root of the

mean square error as shown in the equation given below.

Assuming that the actual output is a, expected output is c.

     
n

cacaca nn

22

22

2

11 ... 

The datasets described in section 2 is being used to test the

performance of various ensemble methods. Root Mean Square
Error (RMSE) was evaluated using 10 fold cross validation as

cross validation is the best technique to get a reliable error

estimate. The Root Mean Square Error shown in the Figure 4

reflects the best performance of bagging in terms of

classification rate. The error can be reduced to zero as the
number of classifiers combined to infinity.

5.2 Area under Curve

The dataset described in section 2 is being to test the
performance of various ensemble methods. We adapted ROC

curve in our experiment to evaluate the performance of

ensemble algorithms. Receiver operative Characteristics

(ROC) curve is used as an additional alternative evaluation

metric. AUC-ROC is used as a performance metrics (area
under ROC curve), an integral of ROC curve with false

positive rate as x axis and true positive rate as y axis. If ROC

curve is more close to top-left of coordinate, the

corresponding classifier must have better generalization

ability so that the corresponding AUC will be larger.
Therefore, AUC can quantitatively indicate the generalization

ability of corresponding classifier. Figure 5, 6 and 7 shows the

ROC curves evaluating the performance curve of various

classifiers on the KC1 method level dataset, KC1 class level

dataset and Eclipse package level dataset. Area under the
ROC curve (AUC-ROC) is calculated using trapezoidal

method and the result is shown in the Table1. From the ROC

curves (AUC-ROC) it is evident that, for method level metrics

and package level metrics bagging method gives better
performance. For class level metrics voting method performs

comparatively better than bagging method.

Table1: Performance of Area under ROC Curve for

different metrics

METHODS

AREA UNDER ROC CURVE FOR

METHOD

LEVEL
METRICS

CLASS LEVEL

METRICS

PACKAGE

LEVEL
METRICS

BAGGING 0.809 0.78 0.82

BOOSTING 0.783 0.74 0.78

STACKING 0.79 0.8 0.72

VOTING 0.63 0.82 0.76

Figure 5: ROC for Method Level Metrics

(KC1 method level dataset)

Figure 6: ROC for Class Level Metrics

(KC1 class level dataset)

0.3
0.35

0.4
0.45

0.5

Method
Level

Metrics

Class Level
Metrics

Package
Level

Metrics

ROOT MEAN SQUARE ERROR

Bagging

Boosting

Stacking

Voting

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

 r
a
te

FP rate

ROC FOR METHOD LEVEL METRICS

Bagging

Boosting

Stacking

Voting

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

 r
a
te

FP rate

ROC FOR CLASS LEVEL METRICS

Bagging

Boosting

Stacking

Voting

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

55

Figure 7: ROC for Package Level Metrics

(Eclipse Dataset)

6. CONCLUSION

The goal of our research is to analyze the performance of

various classifiers for various metrics level data set on defect

prediction .We analyzed the performance of the classifiers

using Root Mean Square Error. ROC is also used as an
alternative metric. The area under ROC curves (AUC-ROC) is

calculated by using the trapezoidal method. From the ROC

curve (AUC-ROC) it is evident that, for three different

metrics level dataset (KC1 method level dataset, KC1 class

level dataset and Eclipse dataset) bagging classifier gives
better performance in terms of classification rate. When AUC

is used as an evaluation metric, for KC1 method level dataset

and Eclipse package level dataset, fault prediction rate is 80%

with bagging ensemble which is better when compared with

other ensemble classifier methods. For KC1 class level
dataset, fault prediction rate is 82% with voting ensemble

method using AUC-ROC as a metric. Bagging outperforms

other ensemble methods when performance is evaluated using

both RMSE and AUC-ROC with an exception that for class

level metric, voting performs better than bagging with a
negligible difference. Many researchers may apply machine

learning methods for constructing the model to predict faulty

classes. We plan to replicate our study to predict the models

based on other machine learning algorithms such as ensemble

using neural networks and genetic algorithms.

7. REFERENCES

[1] I.H. Witten and E. Frank, Data Mining: Practical

Machine Learning Tools and Techniques with Java
Implementation, Morgan Kaufmann, 2005.

[2] Knab, P., Pinzger, M., and Bernstein, A., 2006.

“Predicting defect densities in source code files with

decision tree learners,” in the 2006 International

Workshop on Mining Software Repositories.

[3] H. Zhang and X. Zhang, Comments on “Data Mining

Static Code Attributes to Learn Defect Predictors”, IEEE

Trans. on Software Eng., Vol. 33(9), Sep 2007

[4] Sandhu, Parvinder Singh, Sunil Kumar and Hardeep

Singh, 2007 “Intelligence System for Software
Maintenance Severity Prediction”,Journal of Computer

Science, Vol. 3 (5), pp. 281-288.

[5] Catal, C., Diri, B., and Ozumut, B., 2007. “An Artificial

Immune System Approach for Fault Prediction in

Object-Oriented Software,” in 2nd International
Conference on Dependability of Computer Systems

DepCoS-RELCOMEX.

[6] Menzies, T., Greenwald, J., & Frank, A. (2007). Data

mining static code attributes to learn defect predictors.

IEEE Transactions on Software Engineering, 33(1),

[7] Olague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum,

S., 2007. Empirical validation of three software metrics

suites to predict fault-proneness of object-oriented

classes developed using highly iterative or agile software

development processes. IEEE Transactions on Software
Engineering 33 (6), 402– 419.

[8] S.Kanmani, V.R. Uthariaraj, V.Sankaranarayanan,

P.Thambidurai, Objected-oriented software fault

prediction using neural networks, Information and

software Technology 49 (5 (2007)) 483 – 492.

[9] Dr Kadhim M. Breesam, “Metrics for Object Oriented

design focusing on class Inheritance metrics”, 2nd

International conference on dependability of computer

system IEEE, 2007.

[10] K.O. Elish, M.O. Elish, Predicting defect-prone software
modules using support vector machines, Journal of

Systems and Software 81 (5) (2008) 649– 660.

[11] I.Gondra, Applying machine learning to software fault-

proneness prediction, Journal of System and Software

81(2) (2008) 186-195.

[12] Amjan Shaik, Dr C.R.K. Reddy, Dr A Damodaran,

“Statistical Analysis for Object Oriented Design

Software security metrics”, International journal of

engineering and technology, Vol. 2, pg 1136-1142.2010

[13] Software fault prediction: A literature review and current
trends Cagatay Catal, Expert Systems with Applications

38 (2011) 4626 – 4636.

[14] T. Dietterich. An experimental comparison of three

methods for constructing ensembles of decision trees:

bagging, boosting, and randomization. Machine
Learning, vol. 40, No. 2, pages 139 – 157,

[15] Tsoumakas, G., Katakis, I. and Vlahavas, I. “Effective

Voting of Heterogeneous Classifiers”, In Proceedings of

the 15th European Conference on Machine Learning,

Italy, pp 465-476.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

 r
a
te

FP rate

ROC FOR PACKAGE LEVEL METRICS

Bagging

Boosting

Stacking

Voting

