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ABSTRACT 

Defective modules in software project have a considerable 
risk. It reduces the software quality. Defective modules  

decreases customer satisfaction and by increases the 

development and maintenance costs. In software development 

life cycle, it is very essential to predict the defective modules 

in the early stage so as to improve software developers’ ability 
to focus on the quality of the software. Software defect 

prediction using machine learning algorithms was investigated 

by many researchers and concluded that classifiers ensemble 

can effectively improve classification performance than a 

single classifier. This paper mainly addresses the software 
fault prediction using ensemble approaches. We conduct a 

comparative study using WEKA tool for various ensemble 

methods with perspective of taxonomy. The ensemble 

methods include Bagging, Boosting, Stacking, and Voting. 

We also compared these ensemble methods for three different 
levels  of software metrics  (Class level, Method level and 

Package level). Ensemble classifiers were examined for 

various metrics level datasets. Various ensemble classifiers  

were examined for three different metrics levels. The 

experiments were carried out on the datasets such as NASA 
KC1 method level data set, NASA KC1 class level dataset 

and Eclipse dataset for package level metrics. The 

experiments conducted on these three data sets by applying 

ensemble classification methods to predict defect. The 

ensemble methods evolved by experiments shows that 
bagging performs better than other ensemble methods for 

method level and package level dataset. For class level dataset 

voting performs better in terms of Area under ROC curve 

(AUC – ROC). 

Keywords 

Defect prediction, Classifier Ensemble; Ensemble 

Methodology. 

1. INTRODUCTION 

Now-a-days the software systems are getting more and more 

complex. Due to this complexity, the probability of these 
software systems having defective modules is getting higher. 

Software quality assurance is a resource and time-consuming 

task. Since cost is a vital factor, complete testing of an entire 

system is not easy. Therefore, identifying which software 

modules are more likely to be defective can help us allocate 
limited time and resources effectively. Based on the above 

reasoning, it is clear that methods are needed to predict, control 

and improve fault handling in general [13]. The type of 

methods can be divided into two major classes: methods for 

prediction of the number of faults in a specific module and 
methods for identification of fault-prone modules. The first 

type of methods has been investigated and evaluated, but it has 

been difficult to develop a valid model, in particular a model 

which is transferable between projects or organizations. Thus, 

methods for identification of fault- and failure prone modules 
and models for fault prediction are a potential way to improve 

software quality and to reduce cost [11]. 

Data Mining has become a very useful technique to reduce 

information overload and improve decision making by 

extracting and refining useful knowledge through a process of 
searching for relationships and patterns from the extensive 

data collected by organization [6] [8]. The extracted 

information is used to predict, classify, model, and summarize 

the data being mined. In recent years data mining techniques  

have been successfully used in software fault detection. The 
primary objective of this paper is to show that Bagging and 

Voting had better performance than stacking and boosting.  

The rest of this paper is organized as follows. Subsequent 

sections describe related work. The 3rd section is for the data 

source. The 4th and 5th  sections present details about metrics  
and machine learning approaches used. Performance 

evaluation is discussed in the 6th  section. Conclusions are 

given in the 7th section. 

2. REVIEW OF RELATED LITERATURE 

Considerable research has been performed on software 

metrics and defect prediction models. In [4], the author has 

used various machine learning techniques for an intelligent 

system for the software maintenance prediction and proposed 
the logistic model Trees (LMT) and Complimentary Naïve 

Bayes (CNB) algorithms on the basis of Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE) and Accuracy 

percentage. 

Catal et al. [5] examined Chidamber-Kemerer metrics suite 

and some method-level metrics (the McCabe’s and Halstead’s 

ones) for a defect model which is based on Artificial Immune 

Recognition System (AIRS) algorithm. The authors 

investigated together 84 metrics from the method-level 
metrics transformation and 10 metrics from the class-level 

metrics. According to obtained results the authors concluded 

that the best fault prediction is achieved when CK metrics are 

used with the lines of code (LOC) metric.  

Menzies et al. [6] showed that Naive Bayes with logNums 
filter provides the best performance on NASA datasets for 

software fault prediction problem. Olague et al. [7] found that 

the complexity metrics have a good performance in 

distinguishing between fault-prone and not fault-prone 

classes. In addition, they also found that lesser known metrics  
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such as SDMC and AMC were better predictors than the 

commonly used metrics LOC and WMC. 

Kanmani et al. [8] validated Probabilistic Neural Network 

(PNN) and Back propagation Neural Network (BPN) using a 

dataset collected from projects of graduate students, in order 

to compare their results with results of statistical techniques. 

According to Kanmani et al.’s  [8] study, PNN provided better 
performance. 

The use of Machine Learning for the purpose of predicting or 

estimating software module’s  fault-proneness is proposed by 

[11], which views fault-proneness as both a continuous 

measure and a binary classification task. Using a NASA 
public dataset, a NN is used to predict the continuous measure 

while a SVM is used for the classification task. Gondra’s [11] 

experimental results showed that Support Vector Machines 

provided higher performance than the Artificial Neural 

Networks for software fault prediction. 

3. FAULT PREDICTION DATA SET 

Three different data sets used in this research are obtained 

from the bug database of Eclipse and NASA IV and V 
Facility Metrics Data Program (MDP). For method level 

metrics, NASA KC1 method level dataset is used. Public 

NASA KC1 method level dataset include 21 method-level 

metrics proposed by Halstead and McCabe. This dataset 

consists of 2109 instances and 22 attributes.  

We use the data associated with the KC1 project for class 

level metrics. This is a real time project written in C++ 

consisting of approximately 315,000 LOC. There are 10,878 

modules and 145 instances. In addition to the method level 

metrics, 10 class-level oriented metrics are used.  

For package level metrics, the dataset is obtained from bug 

database of Eclipse 3.0. The dataset lists the number of pre- 

and post-release defects for every package in the Eclipse 3.0. 

All data is publicly available and used for defect prediction 

models.  Dataset consists of following attributes. Each case 
contains the following information: 

The name attribute indicates the name of the file or package, 

to which this case corresponds. It can be used to identify the 

source code and may be needed for additional data collection.  

The pre-release defects attribute indicates the number of non-
trivial defects that were reported in the last six months before 

release of the project. 

The post-release defects attribute indicates the number of 

non-trivial defects that were reported in the first six months 

after release of the project. 

The complexity metrics attribute indicates the metrics that 

are computed for classes or methods are aggregate by using 

average (avg), maximum (max), and accumulation (sum) to 

package level.  

Structure of abstract syntax tree(s): For each case, we list 
the size (=number of nodes) of the abstract syntax tree(s) of 

the package. 

 

 

 

4.  ENSEMBLE METHODS 

4.1. Bagging 

Bagging is Bootstrap AGGregatING. The main idea of 
Bagging is to construct each member of the ensemble from a 

different training dataset, and to predict the combination by 

either uniform averaging or voting over class labels [3]. A 

bootstrap samples N items uniformly at random with 

replacement. That means each classifier is trained on a sample 
of examples taken with a replacement from the training set, 

and each sample size is equal to the size of the original 

training set. Therefore, Bagging produces a combined model 

that often performs better than the single model built from the 

original single training set. Bagging  algorithm is shown in 
Figure 1. 

 

Input :  

Data set D=       ;2211 mm,yx,,,yx,,yx   

Base learning algorithm B; 

Number of learning rounds R.  

Process:  

for i ,R:1,  

Di = Bootstrap (D);  /* Generate a bootstrap  

                                    sample from D*/ 

hi = B(Di);     /* Train base learner ht from the  

                        bootstrap sample */ 

end.  

Output : 

     


T

t i xhylYyxO
1

maxarg                  

              /* the value of l(a) is 1 if a is true and 0  
               otherwise*/ 

 

Figure 1: Bagging  Algorithm 

 

4.2. Boosting 

Boosting is another popular ensemble method, and Adaboost 

is the most well-known of the Boosting family of algorithms 
which trains models sequentially, with a new model trained at 

each round [1][6]. Adaboost constructs an ensemble by 

performing multiple iterations. In this process for each 

iteration it uses different example weights. The weight of 

incorrectly classified examples will be increased, so that it 
ensures misclassification errors for these examples count 

more heavily in the next iterations. This procedure provides a 

series of classifiers that complement one another, and the 

classifiers are combined by voting. Boosting algorithm is 

shown in the Figure 2. 
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Input :  

Data set D=       ;2211 mm,yx,,,yx,,yx   

Base learning algorithm B; 

Number of learning rounds R.  

Process: 

Dl(j)=1/m     //Initialize the weight distribution 

for ,R:,i  2,1  

  ;, 1DDBhi   / *Train base learner hi from  

                                   D using distribution D1*/ 

  ;Pr jjiDjji yxh    /*Measure the  

          error of hi*/            

;
1

ln
2

1

i

i
i







  //Determine the weight of hi  












jjii

jjii

i

i
i

yxf h

yxif h

Z

jD
jD

)( )exp(

)( )exp()(
)(1





        // Update the distribution, where Zi is a 

              
 

i

jijii

Z

xhyjD )exp()( 
  

               /* Normalization factor with enables                    

 
1iD to a distribution*/ 

end. 

Out put : 

    


R

i ii xhsignxfsignxO
1

)()(   

 

Figure 2: Boosting Algorithm 

 

4.3. Stacking 

Stacking is another ensemble learning technique. In Stacking 
scheme, there are two level models which are set of base 

models are called level-0, and the meta-model level-1. The 

level-0 models are constructed from bootstrap samples of a 

dataset, and then their outputs on a hold-out dataset are used 

as input to a level-1model. The task of the level-1 model is to 
combine the set of outputs so as to correctly classify the 

target, thereby correcting any mistakes made by the level-0 

models[11] [3]. Stacking algorithm is shown in Figure 3. 

 

Input :  

Data set D=       ;2211 mm,yx,,,yx,,yx   

First-level learning algorithms ;,,1 TAA   

Second-level learning algorithms A. 

Process: 

for ,T:i 1,  

 DAh ii   /* Train a first-level individual               

                            leaner h i  by applying the  

             first-level */  

end; // learning algorithm Ai to the original data set D 

;' D  // Generate a new data set  

for ,m:j 1,  

  jiji xhz   /*Use hi to classify the  

             training example x j*/  

end; 

   jjij yTZZZUDD ,,2,1''   

end. 

 .'' DAh   /* Train the second-level learner    

                       'h by applying the second-level 

           learning algorithm A to the new set 'D */ 

Output :  

    xhxhhxO T,,')( 1   

 

Figure 3: Stacking Algorithm 

4.4. Voting 

Voting is a combining strategy of classifiers. Majority Voting 

and Weighted Majority Voting are more popular methods of 

Voting [16]. In Majority Voting, each ensemble member votes 
for one of the classes. The ensemble predicts the class with 

the highest number of vote. Weighted Majority Voting makes  

a weighted sum of the votes of the ensemble members, and 

weights typically depend on the classifiers confidence in its 

prediction or error estimates of the classifier.  

5.  EXPERIMENTS 

We used the WEKA machine learning library as the source of 

algorithms for experimentation. We used bagging, boosting, 
stacking and voting ensemble algorithms as implemented in 

WEKA with default parameters. Bagging and boosting are 

implemented with default classifier in WEKA. The base 

classifiers used for voting are SVM and Navies Bayes which 
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are popular in software defect prediction [9]. The combination 

rule of vote is average of probabilities. The level 1 classifier 
of stacking is SVM and level 0 classifier used is Navies  

Bayes. The data sets described above in section 2 is used to 

test the performance of various ensemble methods. The 

performances of classifiers are evaluated used RMSE and 

AUC-ROC as metrics.  

 

Figure 4: Root Mean Square Error for different level of 

metrics using various ensembles methods         
 

5.1 Root Mean Square Error 

Root Mean square error (RMSE) is frequently used measure 

of differences between values predicted by a model or 

estimator and the values actually observed from the thing 
being modeled or estimated. It is just the square root of the 

mean square error as shown in the equation given below. 

Assuming that the actual output is a, expected output is c. 

     
n

cacaca nn

22

22

2

11 ... 
 

The datasets described in section 2 is being used to test the 

performance of various ensemble methods. Root Mean Square 
Error (RMSE) was evaluated using 10 fold cross validation as  

cross validation is the best technique to get a reliable error 

estimate. The Root Mean Square Error shown in the Figure 4 

reflects the best performance of bagging in terms of 

classification rate. The error can be reduced to zero as the 
number of classifiers combined to infinity. 

5.2 Area under Curve 

The dataset described in section 2 is being to test the 
performance of various ensemble methods. We adapted ROC 

curve in our experiment to evaluate the performance of 

ensemble algorithms. Receiver operative Characteristics 

(ROC) curve is used as an additional alternative evaluation 

metric. AUC-ROC is used as a performance metrics (area 
under ROC curve), an integral of ROC curve with false 

positive rate as x axis and true positive rate as y axis. If ROC 

curve is more close to top-left of coordinate, the 

corresponding classifier must have better generalization 

ability so that the corresponding AUC will be larger. 
Therefore, AUC can quantitatively indicate the generalization 

ability of corresponding classifier. Figure 5, 6 and 7 shows the 

ROC curves evaluating the performance curve of various  

classifiers on the KC1 method level dataset, KC1 class level 

dataset and Eclipse package level dataset. Area under the 
ROC curve (AUC-ROC) is calculated using trapezoidal 

method and the result is shown in the Table1. From the ROC 

curves (AUC-ROC) it is evident that, for method level metrics  

and package level metrics bagging method gives better 
performance. For class level metrics voting method performs 

comparatively better than bagging method.  

Table1: Performance of Area under ROC Curve for 

different metrics 

METHODS 

AREA UNDER ROC CURVE FOR 

METHOD 

LEVEL 
METRICS 

CLASS LEVEL 

METRICS 

PACKAGE 

LEVEL 
METRICS 

BAGGING 0.809 0.78 0.82 

BOOSTING 0.783 0.74 0.78 

STACKING 0.79 0.8 0.72 

VOTING 0.63 0.82 0.76 

 

Figure 5: ROC for Method Level Metrics         

(KC1 method level dataset) 

 

 

Figure 6: ROC for Class Level Metrics              

(KC1 class level dataset) 
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Figure 7: ROC for Package Level Metrics           

(Eclipse Dataset) 

6. CONCLUSION 

The goal of our research is to analyze the performance of 

various classifiers for various metrics level data set on defect 

prediction .We analyzed the performance of the classifiers    

using Root Mean Square Error. ROC is also used as an 
alternative metric. The area under ROC curves (AUC-ROC) is 

calculated by using the trapezoidal method. From the ROC 

curve (AUC-ROC) it is evident that, for three different 

metrics level dataset (KC1 method level dataset, KC1 class 

level dataset and Eclipse dataset) bagging classifier gives  
better performance in terms of classification rate. When AUC 

is used as an evaluation metric, for KC1 method level dataset 

and Eclipse package level dataset, fault prediction rate is 80% 

with bagging ensemble which is better when compared with 

other ensemble classifier methods. For KC1 class level 
dataset, fault prediction rate is 82% with voting ensemble 

method using AUC-ROC as a metric. Bagging outperforms 

other ensemble methods when performance is evaluated using 

both RMSE and AUC-ROC with an exception that for class 

level metric, voting performs better than bagging with a 
negligible difference. Many researchers may apply machine 

learning methods for constructing the model to predict faulty 

classes. We plan to replicate our study to predict the models 

based on other machine learning algorithms such as ensemble 

using neural networks and genetic algorithms.  
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