

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.9, December 2012 – www.ijais.org

14

Importance of Inheritance and Interface in OOP Paradigm
Measure through Coupling Metrics

 Gopal Goyal
M.Tech Scholar

PCST, Indore, India
India

Sachin Patel
HOD, IT

PCST, Indore, India
India

ABSTRACT

A large numbers of metrics have been proposed for measuring

properties of object-oriented software such as size, inheritance,

cohesion and coupling. The coupling metrics presented in this

paper exploring the difference between inheritance and interface

programming. This paper presents a measurement to measure

coupling between object (CBO), number of associations between

classes (NASSocC), number of dependencies in metric (NDepIN)

, number of dependencies out metric (NDepOut) , Number of

children (NOC) and Depth of Inheritance Tree (DIT) in object

oriented programming. A measurement is done for C# inheritance

and interface programs. The metric values of class inheritance

and interface prove which program is good to use and beneficial

for C# developers.

Keywords –OOP, OOA, CBO, Inheritance, Interface,

Coupling

1. INTRODUCTION

Object-oriented design and programming is the dominant

development paradigm for software systems today. Recently so

many languages are object-oriented (OO) programming

languages [2]. In object oriented programming we provide

abstraction by classes and interfaces. Classes are used to hold

functional logic and an interface is used to organize source code.

According to object oriented programming, the class provides

encapsulation and abstraction and the interface provides

abstraction and cannot inherit from one class but can implement

multiple interfaces. The above said differences are minor and they

are very similar in structure, complexity, readability and

maintainability of source code [1]. Here, the difference in usage

of class inheritance and interface concepts are measured for C#

programs by coupling metrics. Density of source code directly

relates to cost and quality. For measuring complexities, we have

cohesion and coupling models. The coupling models presented in

the literature show many possible interactions that can occur

between objects in the software systems and offer metrics to

measure complexity. Software engineering best practices promote

low coupling between components in order to decrease

interdependencies and facilitate evolution. This paper presents a

comparison between object oriented interfaces and inheritance

class.

2. PREVIOUS WORK ON OO SOFTWARE

METRICS

Object-oriented measurement has become an increasingly popular

research area. Metrics are powerful support tools in software

development and maintenance. They are used to assess software

quality, to estimate complexity, cost and effort, to control and

improve processes. The metrics that are important to calculate

reusability are related to inheritance and coupling.

A. Traditional Metrics

McCabe Cyclomatic Complexity (CC): Cyclomatic complexity is

a measure of a module control flow complexity based on graph

theory [3]. Cyclomatic complexity of a module uses control

structures to create a control flow matrix, which in turn is used to

generate a connected graph. The graph represents the control

paths through the module. The complexity of the graph is the

complexity of the module [4], [3]. Fundamentally, the CC of a

module is roughly equivalent to the number of decision points

and is a measure of the minimum number of test cases that would

be required to cover all execution paths. A high Cyclomatic

complexity indicates that the code may be of low quality and

difficult to test and maintain.

Source Lines of Code (SLOC): The SLOC metric measures the

number of physical lines of active code, that is, no blank or

commented lines code [5]. Counting the SLOC is one of the

earliest and easiest approaches to measuring complexity. It is also

the most criticized approach [6]. In general the higher the SLOC

in a module the less understandable and maintainable the module

is.

Comment Percentage (CP): The CP metric is defined as the

number of commented lines of code divided by the number of

non-blank lines of code. Usually 20% indicates adequate

commenting for C++ [7]. A high CP value facilitates in

maintaining a system.

3. OBJECT –ORIENTED PROGRAMMING

The terms "objects" and "oriented" in something like the modern

sense of object-oriented programming seem to make their first

appearance at MIT in the late 1950s and early 1960s[8]. The

object-oriented approach encourages the programmer to place

data where it is not directly accessible by the rest of the program.

Instead, the data is accessed by calling specially written

functions, commonly called methods, which are either bundled in

with the data or inherited from "class objects." An object-oriented

program will usually contain different types of objects, each type

corresponding to a particular kind of complex data to be managed

or perhaps to a real-world object or concept such as a bank

account, a hockey player, or a bulldozer. Numerous software

metrics related to software quality assurance have been proposed

in the past and are still being proposed. Several books presenting

such metrics exist, such as Fenton‘s [12], Sheppard‘s [13] and

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.9, December 2012 – www.ijais.org

15

others. Although most of these metrics are applicable to all

programming languages, some metrics apply to a specific set of

programming languages. Among metrics of this kind, are those

that have been proposed for object–oriented programming

languages.

4. CLASS INHERITANCES AND

INTERFACES

Inheritance is one of the fundamental concepts of Object

Orientated programming, in which a class ”gains” all of the

attributes and operations of the class it inherits from, and can

override/modify some of them, as well as add more attributes and

operations of its own. In Object Oriented

Programming, inheritance is a way to compartmentalize

and reuse code by creating collections of attributes and behaviors

called objects that can be based on previously created objects.

In classical inheritance where objects are defined by classes,

classes can inherit other classes. The new classes, known

as subclasses (or derived classes), inherit attributes and behavior

(i.e. previously coded algorithms) of the pre-existing classes,

which are referred to as super classes, ancestor classes or base

classes. The inheritance, relationships of classes gives rise to a

hierarchy. The inheritance concept was invented in 1967

for Simula [8]. Interfaces allow only method definitions and

constant attributes. Methods defined in the interfaces cannot have

implementations in the interface. Classes can implement. The

interface by providing bodies for the methods defined in the

interface. An interface is a contract between a client class and a

server class [8]. It helps to decouple the client from the server.

Any intended change on the methods defined in the interface will

impact both the client and server classes. Possible changes are as

follows: 1) changing the name of a method, 2) changing the

signature of a method, and 3) changing the return type of a

method. There are two other possible changes that worth noting.

If a new method is added to an interface, this will also impact the

server and client classes that currently use or implement the

interface. On the other hand if the implementation detail of a

method inside a server class is changed, this change only affects

the client class and not the interface. This specific case is more a

code issue than a design issue and therefore it is not a concern in

this evaluation. Interfaces have another very important role in the

C# programming language. Interfaces are not part of the class

hierarchy, although they work in combination with classes. The

C# programming language does not permit multiple inheritance

(inheritance is discussed later in this lesson), but interfaces

provide an alternative. In C#, a class can inherit from only one

class but it can implement more than one interface. Therefore,

objects can have multiple types: the type of their own class and

the types of all the interfaces that they implement. This means

that if a variable is declared to be the type of an interface, its

value can reference any object that is instantiated from any class

that implements the interface.

5. COUPLING METRICS

Several authors have introduced different approaches and

proposed measures to coupling in object-oriented systems [10]. In

this paper two CK metric and three Genero M metrics are used

for measure coupling performance.

B. Number of children (NOC)

 Number of children metric was introduced by CK [9]. NOC

defines number of immediate sub-classes subordinated to a class

in the class hierarchy. This metric measures how many sub-

classes are going to inherit the methods of the parent class. NOC

relates to the notion of scope of properties. If NOC grows it

means reuse increases. On the other hand, as NOC increases, the

amount of testing will also increase because more children in a

class indicate more responsibility. So, NOC represents the effort

required to test the class and reuse.

C. Coupling Between Objects-CBO

 According to CK [9] “CBO for a class is a count of the

number of other classes to which it is coupled”. A class is

coupled with another if the methods of one class use the methods

or attributes of the other class. An increase of CBO indicates the

reusability of a class will decrease. Multiple accesses to the same

class are counted as one access. Only method calls and variable

references are counted. Thus, the CBO values for each class

should be kept as low as possible [9].

D. Number of Dependencies In(NDepIN)

 The Number of Dependencies In metric (NDepIN) is defined

as the number of classes that depend on a given class [10]. This

metric is proposed to measure the class complexity due to

dependency relationships. The greater the number of classes that

depend on a given class, the greater the inter-class dependency

and therefore the greater the design complexity of such a class.

E. Number of Dependencies Out(NDepOut)

 The Number of Dependencies Out metric (NDepOut) [10] is

defined as the number of classes on which a given class depends.

It is better to minimize NDepOut value, since; higher values

represent a situation in which many dependencies are spreading

across the class diagram

F. Number of Association(NASSocC)

 The Number of Association per Class metric is defined as the

total number of associations a class has with other classes or with

itself. This metric is used to measure complexity and coupling [9,

10]. When the number of associations are less the coupling

between objects are reduced. This metric was introduced by

Brian.

G. Depth of Inheritance Tree (DIT)

 Depth of inheritance of the class is the DIT metric for the

class. In cases involving multiple inheritances, the DIT will be the

maximum length from the node to the root of the tree. DIT is a

measure of how many ancestor classes can potentially affect this

class [9].

6. PROPOSED APPROACH

Goal: Exploring the difference between class inheritance and

interface in C# programming through coupling metrics.

Hypothesis: SIX object oriented metrics are used for coupling

measures in object oriented class inheritance and interface

programs.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.9, December 2012 – www.ijais.org

16

1. Two C# programs are used with inheritance concept in this

paper.

2. These programs are introduced with maximum possible

interface.

3. All six metrics are applied to both inheritance and interface

programs.

4. The results are compared between inheritance and interface

coupling measures.

7. RESULTS

The metrics discussed above are applied for both inheritance and

interface programs. The results are show in Table 1 and Table 2.

H. Measures the difference between Inheritance and Interface

To validate the above metrics two object oriented inheritance

programs have been taken and possible interfaces have been

introduced in class inheritance programs. The first study

considered is a vehicle classification class inheritance program

which is represented in Figure 1.

class Vehicle

 {

 public string name;

 public int wheelscount;

 public void getData()

 {

 }

 public void displayData()

 {

 }

 }

class LightMotor :Vehicle

 {

 public int speedlimit;

 public int capacity;

 }

class HeavyMotor : Vehicle

 {

 public int speedlimit;

 public int capacity;

 public string permit;

 }

class GearMotor : LightMotor

 {

 public int gearcount;

 }

class NongearMtor : LightMotor

 {

 }

class Passenger : HeavyMotor

 {

 public int sitting;

 }

class Goods : HeavyMotor

 {

 }

Figure 1: Vehicle classification using Class Inheritance –

adopted from [11]

The above said class inheritance Figure 1 is introduced with

possible number of interface and represented in Figure 2.

interface Lightmotor

{

 public void Getspeedcap();

}

 interface Vehicle

 {

 public void GetData();

 public void DisplayData();

 public void Getnamewc();

 }

 interface Heavymotor

 {

 public void Getspeeder();

 }

class Gearmotor : Vehicle, Lightmotor

 {

 public int gearcount;

 public void GetData();

 public void DisplayData();

 public void Getnamewc();

 public void Getspeedcap();

 }

class Nongearmotor : Vehicle

 {

 public void GetData();

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.9, December 2012 – www.ijais.org

17

 public void DisplayData();

 public void Getnamewc();

 }

class Passenger : Vehicle, Heavymotor

{

 public void GetData();

 public void DisplayData();

 public void Getnamewc();

 public void Getspeeder();

}

class Goods : Vehicle, Heavymotor

 {

 public void GetData();

 public void DisplayData();

 public void Getnamewc();

 public void Getspeeder();

 }

Figure 2: Vehicle classification using Interface

For the above said two programs the coupling metrics are

measured and tabulated in Table 1. By comparing the table values

for both the programs the interface values are reduced for almost

all metrics.

Table 1: Comparing Measures for Figure 1 & 2.

Fig
1

Metric

Classes

CBO

NASSoc

C

NDepI

N

NDep

Out

NOC

DIT

Vehicles

2

2

2

0

2

2

Lightmo

tor

3

3

2

1

2

2

Heavym

otor

3

3

2

1

2

2

Gearmot

or

1

1

0

1

0

0

Nongear

motor

1

1

0

1

0

0

Passenge

r

1

1

0

1

0

0

Goods

1

1

0

1

0

0

Vehicles

0

0

0

0

0

0

Lightmo

tor

0

0

0

0

0

0

Heavym

otor

0

0

0

0

0

0

Fi

g

2

Gearmot

or

0

0

0

0

0

0

Nongear

motor

0

0

0

0

0

0

Passenge

r

0

0

0

0

0

0

Goods

0

0

0

0

0

0

The Second program chosen is shapes hierarchy and is given in

Figure 3.

class Shape

{

 public void Draw();

 public void Element();

}

class RegularPolygon:Shape

{

 public int Linesegment;

 public void Perimeter();

}

class Ellipse: Shape

{

 public int curved;

 public int Surface;

}

class Triangle : RegularPolygon

{

 public int sumofangles = 180;

 public void setsides();

 public void Area();

}

class Rectangle : RegularPolygon

{

 public int sumofangles = 360;

 public void setsides();

 public void Area();

}

class Circle : Ellipse

{

 public int symmetrical;

 public void Circumference();

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.9, December 2012 – www.ijais.org

18

}

class Salene : Triangle

{

 public int Nosidesequal;

}

class Isosceles : Triangle

{

 public int sideequal2;

 public int Anglesequal2;

}

class Equilateral : Triangle

{

 public int sidesequal3;

 public int Anglesequal3;

}

class Square : Rectangle

{

 public int oppositesidequal;

 public int angles4;

}

Figure 3: Class Inheritance program for Shapes

The above class inheritance program is converted into interface

concept program and is represented as Figure 4.

interface Shape

{

 public void Draw_Element();

}

interface RegularPolygon

{

 public void Linesegment();

 public void Perimeter();

}

interface Ellipse

{

 public void Circumference();

}

class Triangle : Shape

{

 int Sumofangles = 180;

 public void Draw_Element();

 public void setsides();

 public void Area();

}

 class Rectangle : RegularPolygon

{

 int sumofangles = 360;

 public void Perimeter();

 public void Linessegment();

 public void setsides();

 public void Area();

}

class Circle : Ellipse

{

 int symmetricalpictur;

 public void Circumference();

}

class Scalene : Triangle

{

 int notequalsides;

}

class Isosceles : Triangle

{

 int sidesequal;

 int angleequal;

}

class Equilateral : Triangle

{

 int sidesequal;

 int angleequal;

}

class square : Rectangle

{

 int opposite;

 int sidesequal;

 int anglesequal;

}

Figure 4: Program for shapes using Interface

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.9, December 2012 – www.ijais.org

19

For Figure 3 and Figure 4 the above said metric values are

measured and tabulated in Table 2.

Table 2: Coupling Measures for Figure 3 & 4.

Figure

3

Metric

Classes

CBO

NAS

SocC

NDep

IN

NDep

Out

NOC

DIT

Shape

2

2

2

0

2

2

Regular

polygon

3

3

2

1

2

2

Ellipse

2

2

1

1

1

1

Triangle

4

4

3

1

3

3

Rectangle

2

2

1

1

1

1

Circle

1

1

0

1

0

0

Scalene

1

1

0

1

0

0

Isosceles

1

1

0

1

0

0

Equilateral

1

1

0

1

0

0

Square

1

1

0

1

0

0

Fig 4

Shape

0

0

0

0

0

0

Regular

polygon

0

0

0

0

0

0

Ellipse

0

0

0

0

0

0

Triangle

3

3

3

0

3

3

Rectangle

1

1

1

0

1

1

Circle

0

0

0

0

0

0

Scalene

1

1

0

1

0

0

Isosceles

1

1

0

1

0

0

Equilateral

1

1

0

1

0

0

Square

1

1

0

1

0

0

By Comparing the table values from Table 1 and Table 2 for the

above programs the total coupling measures for each metric for

all programs are tabulated in Table 3.

Table 3: Coupling Measures for total Inheritance and

Interface programs

Metric

 Figure

CBO

NAS

SocC

NDepI

N

NDep

Out

NOC

DIT

Figure 1 12 12 6 6 6 6

Figure 2 0 0 0 0 0 0

Figure 3 18 18 9 9 9 9

Figure 4 8 8 4 4 4 4

Graph 1: Coupling Measures Comparison

8. CONCLUSION

This paper presents an idea on how to reduce coupling in object

oriented programming. It is helpful for the developers to check

which concept is best between inheritance and interface. When

CBO is reduced reusability will be increased. We have proposed

an approach to measure the reusability of object oriented program

based upon CK metrics. Since reusability is an attribute of

software quality, we can quantify software quality by measuring

software reusability. Hence, this approach is important to measure

difference between class inheritance and interface.

9. REFERENCE
[1] I. Jacobson, G. Booch, and J. E. Rumbaugh, The unified

software development process. Addison-Wesley, 1999.

[2] V. Krishnapriya, Dr. K. Ramar, “ Exploring the Difference

between Object Oriented Class Inheritance and Interfaces

0

5

10

15

20

Figure 1 Figure 2 Figure 3 Figure 4

CBO

NASSocC

NDepIN

NdepOut

NOC

DIT

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.9, December 2012 – www.ijais.org

20

Using Coupling Measures”, 2010 International Conference

on Advances in Computer Engineering, 978-0-7695-4058-

0/10 $26.00 © 2010 IEEE.

[3] McCabe and Associates, Using McCabe QA 7.0, 1999,

9861Broken Land Parkway 4th Floor Columbia, MD 21046.

[4] McCabe, T. J., “A Complexity Measure”, IEEE

Transactions on Software Engineering, SE-2(4), pages 308-

320, December 1976.

[5] Lorenz, Mark & Kidd Jeff, Object-Oriented Software

Metrics, Prentic, Hall, 1994.

[6] Tegarden, D., Sheetz, S., Monarchi, D., “Effectiveness of

Traditional Software Metrics for Object-Oriented Systems”,

Proceedings: 25th Hawaii International Conference on

System Sciences, January, 1992, pp. 359-368.

[7] Rosenberg, L., and Hyatt, L., “Software Quality Metrics for

Object Oriented System Environments”, Software assurance

Technology Center, Technical Report SATC-TR-95-

1001,NASA Goddard Space Flight Center, Greenbelt,

Maryland 20771.

[8] http://en.wikipedia.org/wiki/Object-oriented_programming.

[9] Chidamber S. and Kemerer C.: “A Metrics Suite for Object

Oriented Design”, IEEE Transactions on Software

Engineering, vol. 20, no. 6, pp. 476-493, 1994.

[10] Marcela Genero, Mario Piattini and Coral Calero,“ A Survey

of Metrics for UML Class Diagrams”, in Journal of Object

Technology, Vol. 4, No. 9, Nov-Dec 2005.

[11] Pradeep Kumar Bhatia, Rajbeer Mann, “ An Approach to

Measure Software Reusability of OO Design”,

Proceedings of 2nd International Conference on Challenges

& Opportunities in InformationTechnology(COIT-

2008),RIMT-IET,Mandi gobindgarh, March 29, 2008.

[12] N. Fenton & S.L. Pfleeger, ―Software Metrics: A Rigorous

& Practical Approach‖, Second edition, 1997, International

Thomson Computer Press. M.J. Sheppard & D. Ince,

―Derivation and Validation of Software Metrics,

Clarendon Press, Oxford, UK, 1993.

