

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

28

Business Aspect of Software Reusability

Dinesh Kumar Saini
Faculty of Computing and IT, Sohar University,

Oman
Faculty of Engineering and IT, University of

Queensland, Australia

Moinuddin Ahmad
Faculty of Business, Sohar University, Oman

ABSTRACT

In today’s saturated process and product market where time,

money and productivity is very crucial, software reuse is

considered to be one of the most promising approaches for

increasing productivity [1]. A good software reuse process

facilitates the increase of productivity, quality, and reliability,

and the decrease of costs and implementation time. By re-

using existing software, in addition not having to re-

implement it, one can avoid downstream costs of maintaining

additional code, and if the re-used artifacts has been

thoroughly tested and increase the overall quality of the

software product. Several industrial and governmental

initiatives are underway to increase the reuse of software,

involving both adjustments to process, and the adoption of

new technologies. Reusability is not always fruitful because

some time reusability requires more effort than building new

so careful study should be carried out when to reuse and when

to build. In this paper effort are made to clear financial

evidence of the benefits of reuse. This paper involves an

exhaustive study on comparison of economic models of

software reusability, their benefits and drawbacks.

General Terms

Business, Computer Science, Software Development,

Software System, Reusability

Keywords

Software, Reusability, Economic Cost Models, Productivity,

and Reliability

1. INTRODUCTION

Software reuse is the process of implementing or updating

software systems using existing software assets. Although

first reaction may lead you to believe that a "software asset" is

simply another term for source code, this is not the case.

Software assets, or components, include all software products,

from requirements and proposals, to specifications and

designs, to user manuals and test suites. Anything that is

produced from a software development effort can potentially

be reused [2,3,4, 6, and 8].

 An initial investment is required to start a software reuse

process, but that investment pays for itself in a few reuses. In

short, the development of a reuse process and repository

produces a base of knowledge that improves in quality after

every reuse, minimizing the amount of development work

required for future projects, and ultimately reducing the risk

of new projects that are based on repository knowledge [3, 8,

11, and 14].

Software component reuse does not just indicate the reuse of

application code. It is possible to reuse specification and

designs. The potential gains from reusing abstract product of

development process such as specifications may be greater

than those from reusing code components .Application system

reuse, subsystem reuse, module or object reuse and function

reuse are number of levels in which the software is divided.

Sub-system and module reuse are less usable [10].

Reusable program involves more overhead in accordance

while designing a new one time system. The cost shall involve

related technical, organizational, process, tools and associated

training for the people of the organization [13, 14].

A well-defined procedure, tools and a library should be

created and maintained to achieve good quality and

productivity of the system that is under development. Asset

management tools like designs, architectures etc are required

in full scale development that will help in the integration and

speed up modifications, maintenance [9].

The domain area specialists shall decompose the domain into

smaller partitions, these partitions can be developed

independently and can be used for future changes [4].In order

to understand the concept of long term benefits of

productivity and reusability, it is necessary for the existing

staff to be motivated for the importance of the same [13].

In most engineering disciplines the developed process is based

on components reuse. Software system design usually

consider that all component to be designed especially for the

system being developed. There is no common base apart from

libraries such as windows system libraries of reusable

software components. By using widespread and systematic

software reuse, demands for lower software design and

maintenance costs, along with increased quality can be met

[20, 24].

2. SOFTWARE RELIABILITY

It is impossible to achieve absolute reliability specification but

reusable components may have an associated quality

explanation [15]. Software development with reuse is an

approach which tries to maximize the reuse of existing

software components [11]. Benefit of this approach is that

overall development costs of the software are decreased. Cost

reduction is only one potential benefit of software reuse.

Systematic reuse in the development offers further

advantages:

Due to repeated use and test, high quality product are

produced. Every successful reuse of an asset increases it

reliability level, increases its usefulness in the reuse

repository, and decreases the risk of failure [18].If we use a

function which is already exists, there is less uncertainty in

the cost of reusing that component than in the costs of

development. Instead of doing the same work on different

project environment, the application specialists can develop

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

29

reusable components which encapsulate their knowledge

[17].Software system or product, that time is minimal in

comparison to development time for a new module [16].

Reusing software components speeds up system production

because both development and validation time should be

reduced [14].

3. OBJECT ORINATATION

One of the reasons that object-oriented programming is

becoming more popular is that software reuse is becoming

more important [21,23]. It is observed that perfective

maintenance accounts for 60 percent of all maintenance, while

adaptive and corrective maintenance each account for about

20 percent of maintenance. Since 60% of maintenance activity

is perfective, an evolutionary phase is an important part of the

lifecycle of a successful software product [20].

Object-oriented programming languages encourage software

reuse in a number of ways. Class definitions provide

modularity and information hiding. Late-binding of procedure

calls means that objects require less information about each

other, so objects need only to have the right protocol [22].

A polymorphic procedure is easier to reuse than one that is

not polymorphic, because it will work with a wider range of

arguments. Class inheritance permits a class to be reused in a

modified form by making subclasses from it. Class

inheritance also helps form the families of standard protocols

that are so important for reuse. These features are also useful

during maintenance. Modularity makes it easier to understand

the effect of changes to a program. Polymorphism reduces the

number of procedures, and thus the size of the program that

has to be understood by the maintainer. Class inheritance

permits a new version of a program to be built without

affecting the old [22].

4. SOFTWARE REUSABILITY

Software reuse is the use of existing software in the

development of new software. Two types of decisions are

involved in software reuse. The first is whether to acquire the

software to reuse or not. In fact, this decision is unnecessary if

the software to be reused is already possessed as a result of

some other activity (for example, code that is cut-and-pasted

is usually not developed with its later reuse in the mind).

The second decision is whether to reuse the software in

particular instances or not. Because the reuse process involves

finding the software, understanding how to reuse it, and

perhaps modifying it before it is actually reused, it can be

more attractive to redevelop[19,22]. In economics, software

reuse is an investment.

Acquiring reusable software is an initial cost. The act of

reusing the software should only go ahead if the cost of

reusing is less than it would cost to create the software afresh.

Economic models of reuse can help make decisions

concerning reuse investment. Their main use is to present the

estimated net benefits of a potential reuse investment, but

because reuse savings can be difficult to determine even after

reuse has taken place, another use of economic models is to

estimate the net benefit due to reuse after the event[8,11].

5. SOFTWARE REUABLE MODEL

The assistance provided by reuse models is twofold:

1) They enumerate costs and benefits.

2) They break down some of these costs and benefits into

combination of parameters for which values are more easily

obtained.

DB =




system

s

#

1 [(average Normal Code unit Cost – average

Reused Code unit Cost) # Reused Code units] . (1)

There is non-linear Relationship between system size and

system costs.

Reused Cost = Normal Cost  (1-RCR). (2)

(RCR) = Relative cost of Reuse.

Reuse with modification

DB = (Normal Cost – Reused Cost unmodified) + (Normal

Cost - Reused Cost modified). (3)

Reused Cost modified = DB (Reused Cost modified)

DB = Normal Cost – (Reused Cost - modification unmodified

+ modification cost). (4)

5.1 Reusable Model

Things that are reused are code units and components reused

If reuse is not component based, the part which has been

reused rather than developed can be considered one

component.

DB=

    
   


systems

s

components

c

creuses

r

ccodeunits

l

lrcs lrcusedCostsNormalCost
#

1

#

1

,#

1

,#

1

,,, ,,,Re

 (5)

Instead of summing we can take averaging for component

reuses.




n

i

ix
1 =

nx
n

i

n

i










1

1

= average x  n.DB =




components

c

#

1 [(average normal cost
c

- average reused cost
c

) #

reuses
c

]. (6)

Average normal costs =












components

c

ctnormalav
components

#

1

cos.
#

1

.

 (7)

Reused cost = F b + U b +I b +N b +P b +O b +F w + U w +M w +I

w +N w +P w +O w . (8)

Where b = black box reuse (without modification).

 w = white box reuse (with modification).

 F = cost to find reusable software (location cost).

 U = cost to understand the reusable software.

 I = cost to integrate reusable software.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

30

M = cost to modify the reusable software (white box

only).

N = cost to develop new software if the reuse

attempt fails.

P = an incentive payment to the reusable software

producer.

 O = other reused costs not mentioned above.

Development cost DC =

 lclc

codeunits

i

components

c

tsusedtNormal ,,

#

1

#

1

cosRecos 


.

 (9)

The cost of maintenance with reuse us the same as that

without reuse. High quality reusable software results in

consumer benefits. Quality can increase directly through extra

testing by the producer and also indirectly through feedback

(bug report) from the consumers of the software

MB =

 .ReRe
,,,,,,

#

1

#

1

#

1

#

1

lrcs
useCostwithuseutCostswitho lrcs

codeunits

l

reuse

r

component

c

system

s






 (10)

MC =




codeunits

l

components

c

#

1

#

1 Producer’s maintenance Cost lc. .

 (11)

Software Reusability metrics, models and analysis carried out

suggests quite strongly that Reuse Software in the

circumstances. where there are economic and financial

benefits to be gained and this we can save the clients money

and can have better customer Relationship and can compete in

the market with competitors[28]. Software industry treats

reuse in a financially desirable way. In the software industry,

an investment should pay back. In the software industry the

accuracy of the results of reusability are directly related to the

quality of the data that is fed into the model. Accuracy is

nothing but closeness to reality. Results may not give always

accurate results so for this sensitivity analysis is done.

NVP Analysis for Software Reusability

NVP =
yd

CFYn

y)1(1 

 . (12)

PI =


TotalCost

itsTotalBenef

PI = useCostwith

usetCostwithou

Re

Re

.

(13)

Mathematical modeling is proved to be very useful for

validation and verification of the software reusability metrics

[10, 20].The other benefits of the software metrics are:-

Development Benefits, Maintenance, Quantification of the

benefits and costing validation, Use of economic models for

validation, Economic models of reuse can help in taking

decision concerning reuse investment, Economic models tell

about financial property of reuse, cost saving and profitability

ratio. Reuse metric emphasize on quantity of reuse in a system

and value addition through reusability [31,32,34,35]. Software

metric for reusability will supply models with values for their

parameters.

6. COMPARISION OF MODELS

There are numerous economic models present. They are not

discussed in detail here as they are available in many texts.

But in this section, an effort has been made to differentiate

these economic models in a tabular form on the basis of

parameters they use, benefits and disadvantages [3,4, 7, 8,

17]. Comparison of models Table I. is given below:

7. CONCLUSION

As the saying goes, "no pain, no gain," and the reuse of

software is no exception. The product line approach to

software reuse requires substantial upfront investment with

substantial, but not immediate, benefits. Much commitment,

planning, and effort are required to begin a reuse program.

Reuse processes and procedures must be incorporated into the

existing software development process. Repositories of

software assets must be created and maintained. Despite the

initial overhead, there are high benefits to software reuse, if

appropriate processes are invoked and the requisite planning

takes place. Product quality and reliability can increase.

Project development time can decrease, along with associated

project costs.

Models Parameters Benefits Disadvantages

1. Schimsky Avg. normal code unit cost, avg. reused code unit cost, no.

of reused code units, avg. new reusable code unit cost,

library overhead.

i) Most simplest model.

ii) Library related cost is also

included as library overhead

in development cost.

i) Mainly

concentrated with

code price and

units.

ii) Maintenance

Benefits and

Maintenance costs

are not included.

2. Gaffney

and Durek

Cost of development with reuse relative to without reuse,

proportion of reused code, relative cost of incorporating

reused code, relative cost of creating reusable code, no. of

i) Perhaps the best known

model.

i) Maintenance

Benefit and

Maintenance cost

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

31

uses. ii) Takes into consideration

no. of systems and no. of

reuses.

are not included.

ii) Assumes that

code is reused in

each system and all

code written for

reuse is actually

used.

3. Gaffney

and

Cruickshank

Unit cost of the system, unit cost of reusing code, unit cost

of new code developed, unit cost of creation of reusable

code, total size of system(in code units), amount. of new

code developed, amount. of reused code incorporated,

available reuse functionality, expected no. of systems.

i) Generalization of model 2.

ii) Does not imply that same

code is used in each system.

iii) Costs are shared equally

by all the systems.

i) Maintenance

Benefit and

Maintenance costs

are not included.

4. Raymond

and Hollis

Avg. normal unit cost, avg. modified unit cost, no of

modified code units (in each system), new reusable

software cost, no. of systems.

i) General form of ROI

(Return-On-Investment).

ii) Reuse without

modification is free.

i) Maintenance

Benefit and

Maintenance cost

are not included.

5. Poulin and

Caruso

Avg. normal code unit cost, RCR, avg. cost per error, avg.

no. of errors per code unit, no. of reused code units, COTS,

startup costs and overhead, RCWR.

i) Maintenance benefit is

included.

ii) Startup costs, overhead

and COTS are taken into

account.

i) Maintenance cost

is not included.

ii) Assumes that

investment payback

within a year.

6. Poulin Avg. normal code unit cost, RCR, no. of reused code units,

avg. cost per error, avg. no. of errors per code unit, RCWR

i) Both MB and MC are

included

ii) Takes into account the full

cost of creating reusable

software.

i) Startup costs,

overhead and

COTS are not

included.

ii) Assumes that all

reusable code is

maintained even if

it is not used.

7. COCOMO No. of person months, delivered source code instructions,

amt. of design modified, amt. of code modified, integration

required, avg. normal code unit cost, RCR, no. of modified

code units.

i) One of the best software

cost-estimation model.

ii) Also gives weight age to

the design modified (not only

the code part).

i) Reuse without

modification is not

considered.

ii) α, β are

empirical constants.

iii) Maintenance

Benefit and

Maintenance cost

are not included.

8. COCOMO

II

Avg. normal code unit cost, RCR, no. of reused code units,

assessment and assimilation, software understanding,

unfamiliarity, amt. of design modified, amt. of code

modified, integration required, effort modifier.

i) Update on the earlier

version.

ii) Tries to determine how

easily understood is the

reused software. Treatment

of RCR is a improvement

over COCOMO.

i) The effort

modifier is less

accurate than

RCWR.

ii) Maintenance

Benefit and

Maintenance cost

are not included.

9. Balda and

Gustafson

Avg. normal code unit cost, avg. reused code unit cost, no.

of reused code units, avg. modified code unit cost, no. of

modified code units, avg. new reusable code unit cost.

i) Calculates the effort to

develop new software.

ii) separate α term for modify

i) α’s and β are

empirical constants.

ii) cost are not

included.

10. Defense

Information

Systems

Agency

Avg. normal code unit cost, avg. reused code unit cost, no.

of reused code units, avg. modified code unit cost, no. of

modified code units, COTS, avg. new reusable code unit

cost, no. of reusable code units.

i) Same as Model 9 but β

term is omitted.

ii) COTS is included in

i) Maintenance

Benefit and

Maintenance cost

are not included.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

32

 Development cost.

11. Malan

and Wentzel

Normal cost, reused cost, consumer’s upgrade

development cost, consumer’s upgrade integration cost,

profit increase, new reusable software cost, producer’s

upgrade development cost, startup costs and overhead.

i) Most sophisticated model

of reuse.

ii) All the costs are

discounted individually.

iii) All costs and benefits are

included.

i) Assumes that

every upgrade is

appropriate for each

system and so must

be included in each

system.

12. Frazier Normal Cost, reused cost, no. of systems, COTS,

overhead, additional reusability cost.

i) A straightforward and

simple model.

ii) COTS and overhead are

included in the Development

cost.

i) Maintenance

Benefit and

Maintenance cost

are not included.

13. Bowes

(Model B)

Normal Cost, reused cost, no. of systems, overhead, new

reusable cost, and additional reusability cost.

i) MB is included.

ii) Compares the total system

costs with and without reuse.

iii) Overhead contribution

can for different for each

system.

i) Maintenance cost

is not included.

14.

Henderson-

Sellers

No. of modified classes, normal cost, avg. location cost per

component, avg. modification cost per component, no. of

reused components, no. of systems, no. of components,

additional reusability cost.

Model is good for object-

oriented systems.

ii) Cost to modify is

calculated and used for each

single component.

i) Maintenance

Benefit and

Maintenance cost

are not included.

15. Kang and

Levy

No. of components, avg. normal cost, avg. reused cost, no.

of reuses, additional reusability cost.

i) First Model to consider

components (modules) and

sum over them.

i) Maintenance

Benefit and

Maintenance cost

are not included.

ii) Assumes that

producer is a

consumer

components, so

only cost of

additional

reusability is

counted.

16. Mayobre No. of components, avg. normal cost, avg. location cost,

avg. modification cost, no. of reuses, COTS, library

overhead, RCWR, maintenance cost.

i) Finds cost as a summation

and also considers

components.

ii) Overhead, COTS and

Maintenance cost are

included.

i) Maintenance

benefit is not

included.

ii) There is some

ambiguity in MC(it

can be a cost to

producer without

benefiting the

consumer that

reuses it)

17. NATO No. of components, avg. reused cost, no. of reuses, library

overhead, new reusable software cost.

i) All benefits and costs are

per component.

ii) First Model to include

DCF analysis.

iii) Cost parameters are

adjusted by the cost of

overcoming risks.

i) Maintenance

Benefit and

Maintenance cost

are not included.

ii) Inclusion of

COTS is

ambiguous.

18. Bowes No. of components, avg. normal cost, avg. reused cost,

producer’s incentive, no. of reuses, avg. new reusable

i) It considers that many

components can be reused.

i) Maintenance

benefit is not

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

33

software cost, library overhead.

ii) Maintenance cost is

included.

included.

ii) Maintenance

cost is actually

library overhead.

19. Margono

and Rhoads

Avg. normal unit cost, no. of components, RCR, no. of

reused code units, no. of component reuses, RCWR, no. of

reusable code units.

i) Sums entirely over all the

components.

i) Maintenance

Benefit and

Maintenance cost

are not included.

20. Bott Avg. normal component cost, RCR, no. of reuses,

maintenance cost, startup costs and overhead, RCWR, no.

of components.

i) Maintenance benefit is

included and calculated with

the help of maintenance

constant.

ii) No. of components is also

included.

i) Maintenance cost

is not included.

ii) There is a

problem with

averaging.

21. Lim Development Benefit, Maintenance Benefit, avoided cost,

profit increase, Development Cost, COTS, Maintenance

Cost, startup cost and overhead.

i) Maintenance Benefit and

Maintenance cost are

included.

ii) All costs are discounted

per year.

i) There is no

specification on

how to calculate

these parameters.

22. Reifer Development Benefit, Maintenance Benefit, profit

increase, Development Cost, COTS, Maintenance Cost,

startup cost and overhead.

i) Similar to Lim’s Model.

ii) Maintenance Benefit and

Maintenance cost are

included.

i) There is no

specification on

how to calculate

these parameters.

23. Bollinger

and Pfleeger

No. of development activities, activity cost with reuse,

activity cost without reuse, the reuse investment.

i) This model concentrates on

reuse process rather than

products.

ii) It tries to enumerate the

number of activities.

i) Maintenance

Benefit and

Maintenance cost

are not included.

ii) Enumeration of

activities is

somewhat

ambiguous.

Table 1: Comparison of Various Software Reusability Models

8. FUTURE RESEARCH WORK

The study carried out in the paper will help the software

architectures and designers to decide whether to go for reuse

or built the new. This study will help in working with

complex software systems that need reusable components in

certain places in the software system. The reusability concept

is not exploited in the many areas of software development

like in testing and maintenance so future research direction

should how to use reusable component in software testing.

9. ACKNOWLEDGEMENT

The authors would like to thanks Sohar University and

University of Queensland for the research support and

environment. Authors would like to thank faculty members

and students, especially Prof Lance Bode for his continuous

support for the research. We would also like to thank our

family members.

10. REFERENCES

[1]. DK Saini “Sense the Future” Campus 1 (11), 2011.

[3] G.W. arnold and M..C.Floyd,“Reengineering the New

Product Introduction Process,"AT&T Technical Journal,

Vol. 71, November/December 1992.

[4] B. Balfour, S. Adams, and D.M. Wade, "Developing

Software for Large-Scale Reuse," ACM SIGPLAN

Notices, Vol. 28, No. 10, October 1993.

[5] DK Saini “Testing polymorphism in object oriented

systems for improving software quality” ACM SIGSOFT

Software Engineering Notes 34 (2), 1-5, 2009.

[6] B. Barnes and T.Bollinger,"Making Reuse Cost-

Effective," IEEE Software, Vol. 8, No. 1, January 1991.

[7] R. P. Beck, S. R. Desai, and D.R. Ryan, "Architectures

for Large-Scale Reuse," AT&T Technical Journal, Vol.

71, November/December 1992.

[8] D. Balda and D. A. Gustafson, "Cost Estimation Models

for Reuse and Prototype SW Development Life-Cycles,"

Software Engineering Notes, Vol. 15, No. 3, July 1990.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

34

[9] T.J. Biggerstaff, "Design Recovery for Maintenance and

Reuse," Computer, Vol. 22, July 1989.

[10] B. Boehm, "Software Risk Management: Principles and

Practice," IEEE Software, Vol. 8. No. 1, January 1991.

[11] T. B. Bollinger and S. L. Pfleeger, "Economics of Reuse:

Issues and Alternatives," Information and Software

Technology, Vol. 32, No. 10, December 1990.

[12] Y.-T.Chen, I. Bayraktar, and M. M. Tanik, "Techniques

of Software Reuse in Design and Specification," Control

and Dynamic Systems; Advances in Theory, Vol. 61,

No. 2, 1994.

[13].DK Saini, LA Hadimani, N Gupta “Software Testing

Approach for Detection and Correction of Design

Defects in Object Oriented Software” Journal of

Computing 3 (4), Page No.44-50, 2011.

[14] D. J. Chen and D.T. K. Chen, "An Experimental Study of

Using Reusable Software Design Frameworks to

Achieve Software Reuse," Journal of Object-Oriented

Programming, Vol. 7, No. 2, May 1994.

[15] R.T.Due, "The Economics of Reuse," Information

Systems Management, Vol. 12, No. 1, Winter 1995.

[16] K. Franchi and R. A. Fleck, Jr., "Ergonomic

Improvements in the Office Environment," Business

Horizons, Vol. 37, No. 2, March 1994.

[17] J. E. Gaffney and T. A. Durek, "Software Reuse-Key to

Enhance Productivity: Some Quantitative Models,"

Information and Software Technology, Vol 31, No. 5,

June 1989.

[18] P. A. V. Hall, "Overview of Reverse Engineering and

Reuse Research," Information and Software Technology,

Vol. 34, No. 4, April 1992.

[19] E.Henry and B. Faller, "Large-Scale Industrial Reuse to

Reduce Cost and Cycle Time," IEEE Software, Vol. 12,

No. 5, September 1995.

[20] N. A. M. Maiden, "Saving Reuse from the Noose: Reuse

of Analogous Specifications through Human

Involvement in Reuse Process," Information and

Software Technology, Vol. 33, December 1991.

[21] J. S. Poulin, J. M. Caruso, and D. R. Hancock, "The

Business Case for Software Reuse," IBM Systems

Journal, Vol. 32, No. 4, 1993.

 [22] G.Stark, R. C. Durst, and C. W. Vowell, "Using Metrics

in Management Decision Making," Computer,

September 1994, pp. 42-48.

[23] V. Seppanen, "Acquisition, Organization and Reuse of

Software Design Knowledge," Software Engineering

Journal, Vol. 7, No. 4, July 1992.

[24] WEILI, “An Empirical Study of Software Reuse in

Reconstructive Maintenance,” Software Maintenance:

Research and Practice, VOL. 9, 69–83 (1997).

[25] J. van Gurp and J. Bosch,” Design, implementation and

evolution of object oriented frameworks: concepts and

guidelines,” SOFTWARE—PRACTICE AND

EXPERIENCE, Softw. Pract. Exper. 277-300, 2001.

[26] V. Khusidman, D. M. Bridgeland: “A Classification

Framework for Software Reuse,” in Journal of Object

Technology, vol. 5, no. 6, July -, pp. 43-61,2006.

[27] P. Lahire, L. Quintian: “New Perspective to Improve

Reusability in Object-Oriented Languages,” in Journal of

Object Technology, vol. 5, no. 1, January–, pages 117–

138, 2006.

[28] R..E.fairle, “The influence of COCOMO on software

engineering education and training”,- The Journal of

Systems and Software. New York: Vol. 80, Issue. 8; pg.

1201,2007.

[29]. H Saini, DK Saini “Malicious Object dynamics in the

presence of Anti Malicious Software” European Journal

of Scientific Research ISSN, 491-499, 2005.

[30]. DK Saini, JH Yousif, WM Omar “Enhanced inquiry

method for malicious object identification” ACM

SIGSOFT Software Engineering Notes 34 (3), 1-5, 2009.

[31]. LS Prakash, DK Saini, NS Kutti “ Integrating EduLearn

learning content management system (LCMS) with

cooperating learning object repositories (LORs) in a peer

to peer (P2P) architectural framework” ACM SIGSOFT

Software Engineering Notes 34 (3), 1-7, 2009.

[32].Bimal Kumar Mishra and Dinesh Kumar Saini

“Mathematical Models on Computer viruses” Elsevier

International Journal of Applied Mathematics and

Computation, Volume 187, Issue 2, 15 April 2007, Pages

929-936.

[33].Bimal Kumar Mishra and Dinesh Kumar Saini “SEIRS

epidemic model of transmission of malicious objects in

computer network” Elsevier International Journal of

Applied Mathematics and Computation, Volume 188,

Issue 2, 15 May 2007, Pages 1476-1482.

[34].Dinesh Kumar Saini and Hemraj Saini "VAIN: A

Stochastic Model for Dynamics of Malicious Objects",

the ICFAI Journal of Systems Management, Vol.6, No1,

pp. 14- 28, February 2008.

[35].Hemraj Saini and Dinesh Kumar Saini "Malicious Object

dynamics in the presence of Anti Malicious Software”

European Journal of Scientific Research ISSN 1450-

216X Vol.18 No.3 (2007), pp.491-499 © Euro Journals

Publishing, Inc. 2007

http://www.eurojournals.com/ejsr.htm

[36].Dinesh Kumar Saini and Hemraj Saini “Proactive Cyber

Defense and Reconfigurable Framework for Cyber

Security” International Review on computer and

Software (IRCOS) Vol.2. No.2. March 2007, pages 89-

98.

http://proquest.umi.com/pqdweb?RQT=318&pmid=9011&TS=1207123939&clientId=45596&VInst=PROD&VName=PQD&VType=PQD
http://proquest.umi.com/pqdweb?RQT=318&pmid=9011&TS=1207123939&clientId=45596&VInst=PROD&VName=PQD&VType=PQD
http://proquest.umi.com/pqdweb?RQT=572&VType=PQD&VName=PQD&VInst=PROD&pmid=9011&pcid=35924891&SrchMode=3

