

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.3, September 2012 – www.ijais.org

38

Economic Effect of Cloning on Software Maintenance

Amanpreet Kaur Goraya

Hoshiarpur, Punjab
India

Ajitpal Singh Chela
Mahilpur, Hoshiarpur,

Punjab, India

ABSTRACT

Software maintenance accounts for the majority of the total

life cycle costs of successful software systems. Half of the

maintenance effort is not spent on bug fixing or adaptation to

changes of the technical environment, but on evolving and

new functionality. The demand of software’s has increased

with the development of technology and communication

systems. With this the maintenance effects which is a vital

factor. The software’s are not identical if we contrast them

with past, present and future, due to development of new

programming languages and their principles. To improve the

quality of any software, maintenance is must. Cloning in

source code files makes it difficult to modify. Several models

are designed to overcome this problem. This paper presents

the extension of analytical cost model to evaluate the cloning.

As the size and the complexity of software increase, it also

becomes essential to develop high-quality software, cost-

effectively within a specified period. This paper presents a

study on the cloned code, the large open source systems are

used, various other new parameters are added to calculate

clone.

Keywords

Source Code, Clone, modifications, maintenance and

fragment

1. INTRODUCTION
A code clone is a pair (or set) of code fragments in source

files of a software product. It is pointed out that code clone

makes software maintenance difficult. The code clone

problems sometimes become serious one, especially for the

large scale software. Maintenance thus preserves and

increases the value that software provides to its users.

Reducing the number of changes that performed during

maintenance threatens to reduce this value. An important goal

of software engineering is thus to facilitate the construction of

systems that are easy-and thus more economic- to maintain.

The developer cannot even find out code clones by hand [20].

Successful software depends on the total cost of life cycle and

software maintenance plays a main role in it. Duplicated code

creates a problem in software development. Maintenance of

software system is defined as changes of a software product

after delivery to correct faults, to improve performance. The

maintenance is the most luxurious phase of software life

cycle. For example: SRS (Software Requirement

Specifications) are read and changed often (for requirement

elicitation, software design and test case specification) [2].

Now days programmers are busier they just develop the logic

once and they reuse it after some modifications. Cost of

medium and large software projects is calculated by the cost

of developing the software plus the cost of hardware and

supplies. The programmer delivers the largest amount of

cloned data to the user in a system. It generates the large sized

software but with less effort of programmer. Mainly cloning

occurs in programming languages and in development work.

There are some root causes of cloning that exist in

programming [21].

 Systems are modularized based on principles such as

information hiding, minimizing coupling and

maximizing cohesion.

 Programmers often reuse the copied code/ text as a

template and then customize the template in the pasted

content.

Clone Pair

Clone Class

 Figure 1 Cloning

Disadvantages of cloning are following:

 Several unwanted duplicates of code increase

maintenance cost.

 Incompatible changes to cloned code can create error and

lead to incorrect program performance.

 Maintenance is the most costly part of the software

lifecycle.

2. LITERATURE SURVEY
Juergens and Deissenboeck [2] represents that duplication in

source code has been recognized as a problem for software

maintenance by both the research community and practioner

as it increases program size and thus the effort for size related

activities such as inspection that clone detection, a technique

widely applied to source code, is promising to assess one

important quality aspect in an automated way, namely

redundancy that stems from copy &paste operations. Clone

Tracker [19], developers can specify clone groups they wish

to track, and the tool will automatically generate a clone

model that is robust to changes to the source code, and can be

shared with other collaborators of the project.

Rahman et al. [16] suggests that the analyses relationship

between cloning and defect proneness. We find that, first; the

great majority of bugs are not significantly associated with

clones. Second, clones may be less defect prone than non-

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.3, September 2012 – www.ijais.org

39

cloned code. Finally, we find little evidence that clones with

more copies are actually more error prone. He used four open

source code projects- apache httpd, Nautilus, Evolution,

Gimp. He also said that buggy code refers to a set of source

code lines which were modified to fix a bug. ConQAT's [8]

architecture conform assessment capabilities. The

combination and implementation in an analysis framework is

in our opinion a valuable contribution to the community. The

graphical editor simplifies the creation of architecture

descriptions and the interpretation of assessment results. The

combination with the flexible ConQAT framework allows the

assessment regarding different types of dependency with low

configuration efforts.

Juergens and Deissenboeck [1] presents changes to code, such

as a bug fix, often need to be performed to its duplicates as

well, thereby increasing modification effort. If duplicates are

missed when cloned code is modified, inconsistencies can be

introduced into the system that can lead to faults, or existing

faults can fail to be removed from the system. As long as we

do not know the costs cloning causes, clone control is prone to

be neglected- even though cloning could be the root cause and

open bugs and change requests the symptoms. Roy and Cordy

[7] presented the detailed survey of the state of the art in clone

detection research. First, we describe the clone terms

commonly used in the literature along with their

corresponding mappings to the commonly used clone types.

Second, it provides a review of the existing clone taxonomies,

detection approaches and experimental evaluations of clone

detection tools. Applications of clone detection research to

other domains of software engineering and in the same time

how other domain can assist clone detection research have

also been pointed out. Finally, this paper concludes by

pointing out several open problems related to clone detection

research.

The paper [14] deals with the identification of duplicated parts

in models. Like Triangle (gain) multiply with a constant.

Circle (add), sum up their inputs. Squares have different

meaning depending on their icon. It represents the techniques

which are used to improve scalability by an adapted

subsystem detection, to improve relevance of detected by

clones by providing use case specific ranking and finally tool

support to ease inspection of the instances of the detected

clones.[15] Represents inconsistent clones constitute a major

source of faults, which means that cloning can be a substantial

problem during development and maintenance unless special

care is taken to find and track existing clones and their

evolution. Rahman et al. [16] analysed relationship between

cloning and defect proneness. We find that, first the great

majority of bugs are not significantly associated with clones.

Second we find that clones may be less defect prone than non-

cloned code. Finally, we find little evidence that clones with

more copies are actually more error prone. Buggy code refers

to a source code lines which were modified to fix a bug.

3. PRELIMIARIES
In a post-development phase, it is difficult to say which

fragment is original and which one is copied and therefore,

fragments of code which are exactly the same as or parallel to

each other are called code clones. The term clone denotes

similar code regions that contain redundant implementation of

one or more concepts. A clone group is a set of clones. Clones

in a single group are referred to as siblings. Source statements

(SS) are the number of all source code statements, not taking

commented or blank lines and code formatting into account.

Redundancy Free Source Statements (RFSS) are the number

of source statements, if cloned source statements are only

counted once.

4. CLONE DETECTION TOOL
The Continuous Quality Assessment Toolkit ConQAT

provides the tool-support required to enact continuous quality

control in practice. Through its flexible architecture, ConQAT

can be customized to address the quality requirements that are

truly relevant for a software project. Flexible architecture

means that length of the Clone varies according to the user.

Either the length of clone fragment is less than 5 or more than

50. Small clones can be easily found out. There by, it helps to

successfully counter quality decay of software systems.

Modern programming languages offer various abstraction

mechanisms to facilitate reuse of code fragments; copy-paste

is still a widely used reuse strategy. CONQAT detects code

fragments that differ up to utter or relative edit distance as

clones. ConQAT was designed to provide support for the core

activities in continuous quality control [22].

Monitoring To control quality, the current state of a system’s

quality needs to be assessed and monitored over time. To

make quality control feasible, the wealth of assessment data

generated during quality analysis needs to be aggregated and

visualized in a comprehensive, yet concise manner. ConQAT

supports this with a highly flexible composition mechanism

and a rich set of building blocks that allows the rapid

development of quality dashboards that integrate diverse

quality analysis methods and tools.

In-Depth Analysis ConQAT provides a set of interactive

tools that support the in-depth inspection of identified quality

defects and help to prevent the introduction of further

deficiencies. For this, ConQAT provides an advanced clone

detection tool that can be integrated with different

development environments.

Tailoring No two software projects are equal and today’s

software project is different from tomorrow. To support the

adaption to changing quality requirements, ConQAT serves as

a development platform that allows the efficient and effective

development of innovative analyses as well as the project-

specific tailoring of existing ones.

Code is behaviorally equal but not representational similar.

[5] This often leads to numerous duplicated code fragments so

called clones—in large software systems. Cloning is

problematic for software quality for several reasons:

 Cloning unnecessarily increases program size and thus

effort for size-related activities such as inspections or

tests.

 Changes, including bug fixes, to one clone typically need

to be made to the other clones as well, again increasing

required effort.

 If changes to duplicated source code fragments are

performed inconsistently, this can introduce bugs.

4.1 Background
We begin with a basic prologue to clone detection

terminology. [11]

Definition 1: Code Fragment. A code fragment (CF) is any

sequence of code lines (with or without comments). It can be

of any granularity, e.g., function definition, begin- end block,

or sequence of statements. A CF is identified by its file name

and begin-end line numbers in the original code base and is

denoted as a triple (CF.FileName, CF.BeginLine,

CF.EndLine).

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.3, September 2012 – www.ijais.org

40

(A)

Figure 2 Cloning in two different files A and B

Definition 2: Code Clone. A code fragment CF2 is a clone of

another code fragment CF1 if they are similar by some given

definition of similarity, that is, f(CF1) = f(CF2) where f is the

similarity function (see clone types below). Two fragments

that are similar to each other form a clone pair (CF1; CF2),

and when many fragments are similar, they form a clone class

or clone group.

Definition 3: Clone Types. There are two most important

type of similarity between code fragments. Fragments can be

similar based on the similarity of their program text, or they

can be similar based on their functionality (independent of

their text). The first type of clone is often the result of copying

a code fragment and pasting into another location. The overall

processing phases of cloning are Code Base, Preprocessed

Code, Transformed Code, Clone on Transformed code, Clone

Pairs, Filtered Clone Pairs and Filtered Clone Classes which

are the major phases. Preprocessing, Transformation, Match

Detection, Formatting, Filtering, Aggregation are the

operations which perform on the source code. In the

subsequent we endow with the types of clones based on both

the textual (Types 1 to 3) and functional (Type 4) similarities:

Type-1: Identical code fragments except for variations in

whitespace, layout and comments.

Type-2: Syntactically identical fragments except for

variations in identifiers, literals, types, whitespace, layout and

comments.

Type-3: Copied fragments with further modifications such as

changed, added or removed statements, in addition to

variations in identifiers, literals, types, whitespace, layout and

comments.

Type-4: Two or more code fragments that perform the same

computation but are implemented by different syntactic

variants.

5. CAUSES FOR CLONING

Clones are typically created by copy & paste. Many different

causes can trigger the decision to copy, paste (and possibly

modify) an artifact fragment. There are two types (i) Inherent

cause (ii) Maintenance Environment

 (B)

5.1 Inherent Cause
Creating software is a difficult, intellectually challenging task.

Inherent causes for cloning are those that originate in the

inherent complexity of software engineering even ideal

processes and tools cannot eliminate them completely. One

inherent reason is that creating reusable abstraction is hard. It

requires a detailed understanding of the commonalities and

differences among their instances. When implementing a new

feature that is similar to an existing one, their commonalities

and differences are not always clear. A second reason is that

understanding the effect of a change is hard for large

software. An exploratory prototypical implementation of the

change is one way to gain understanding of its impact.

5.2 Maintenance Environment
The maintenance environment comprises the processes,

languages and tools employed to maintain the software

system. Maintainers can decide to clone code to work around

a problem. First, to reuse code, an organization needs a reuse

process that governs its evolution and quality assurance.

Missing or unsuitable reuse processes hinder maintainers in

sharing code. In response, they reuse code through

duplication. Second, short-sighted project management

practices can trigger cloning. Third, to make code reusable in

a new context, it sometimes needs to be adapted. Poor quality

assurance techniques can make the consequences of the

necessary changes difficult to validate.

6. CASE STUDY
We have to evaluating the cost of Open Source Systems Code

(OSS). The three essential steps are mandatory:

 Acquire the Open Source System (OSS) on the internet.

 Calculate approximately the software lines of code

(SLOC) in the OSS.

o SLOC counters are language sentient and

approximate lines of code by opening up every

predictable source file and modularized each line as

source, comments/ blank lines, depends on language

specific recognition pattern.

 Use the analytical model [1] to evaluate cost by various

new parameters.

There are few ways available to save maintenance like-

abolish dead code and cloned code, try to avoid the bugs and

reduce them, major area of consideration is their test

activities, and reducing complexity leads to improve

maintainability. Few types of code are also there –

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.3, September 2012 – www.ijais.org

41

1. New Code (which is manually written)

2. Reuse Code (Same as it is)

3. Adapted Code (with changes)

4. COTS (Commercial, Leased, Licensed Source Code)

5. Automatically Translated Code (Already existed code for

which translation helped by automated tools)

Table 1 CloneLOC is reported in softwares

Software C# PHP JAVA

OS1 28,064 5,560 30,403

OS2 2,335 15,413 9,992

OS3 1,396 40,058 31,584

OS4 924 2,407 15,403

Figure 3 Amount of CloneLOC in software’s of

different languages.

Table 1 and Figure 3 show the amount of CloneLOC in

software of different languages. The average amount of

CloneLOC is in Java but in case of OS3 the PHP has

maximum amount of CloneLoc.

Clone Code involves both reuse and adapted types of code.

The parameters developed in this paper CloneLOC,

CloneUnilts, CloneCount etc. with reuse taken into account

overhead, detailed cost model, Quality Assurance, Software

Maintenance process based on analytical cost model. In this

clone study six open source systems are analyzed, two in Java,

two in PHP and two in C#. The clone analysis in based on

type-2 of cloning and the minimum fragment size is set to ten.

The small size fragments can be easily detected without use of

any tool.

In each OSS conqat run configuration (.cqr) file and .cqb

(conqat block) file are required. .cqb displays the flow control

of software. In this the input is given by source code and final

output goes into the html presentation.

The connectivity of each node displays the previous node

from where the input comes. The output of one node is input

for next node. The graphical representation, different colors

make it clear for the user to evaluate the amount of clone. It

represents the value of several parameters.

Several new software metrics are developed for different

concepts but for cloning SLOC is used. Source Line of Code

(SLOC) is software metric used to calculate the size of a

program. The two types of Source Line of Code (SLOC) are

available, Physical and Logical SLOC. In this research work

Physical SLOC is used because it is a count of text lines of

program source code including comment lines, blank lines.

Cloning has no limited area; it is widely used in source code

either in the form of functions, identifiers, literals, comments

etc.

Table 2 represents the result of evaluation of cloning. Every

programming language has its own paradigms and principals

to reuse the data. Reusability of data increase the fetching and

execution speed of software. It creates problem when there are

modifications in data. The difference between cloned and

non-cloned data is: Cloned text can be read faster, whereas

similar has read before. Another difference is reading a non-

cloned text is much easier than cloned text.

7. FUTURE WORK
The origin of word cloning is usually related to the biology.

On one side cloning is very difficult to identify in any sort of

data where as on other side it is easier to fetch out the similar

data which acts behaviorally and representational same. There

is need to develop an application which will help to find out

the cloned data like in various applications find and replace

privileges are available. It makes system easier for the user

because he can find the cloning from any software and then

by using any cost evaluation model like COCOMO. They

evaluate the actual cost of software. Now programmers do not

make them mad.

8. CONCLUSION
The negative impact of cloning on program correctness has

been stated qualitatively many times, its quantitative impact—

and thus its significance—in practice remained unclear.

Furthermore while cloning in source code had been studied

intensely, little was known about its extent and consequences

in other software. A lack of awareness of cloning is a threat to

program correctness. While the analyzed systems varied in

their share of unintentional differences—and thus the amount

of cloning awareness among their developers—the negative

impact of unintentionally inconsistent change was uniform:

about every second unintentionally inconsistent change had a

direct impact on program correctness. These results thus give

strong indication that awareness of cloning is crucial during

software maintenance. Clone control is required to achieve

and maintain awareness of cloning to alleviate the negative

impact of existing clones.

Cloning is not limited to source code and neither its negative

impact. An analytical cost model quantifies the economic

effect of cloning on maintenance efforts and field faults. It can

be used as a basis for assessment and trade-off decisions. The

model produces a result relative to a system without cloning

and thus requires substantially less parameters—and

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000

OS1 OS2 OS3 OS4

C#

PHP

Java

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.3, September 2012 – www.ijais.org

42

Table 2 Evaluation Results

Software Language LOC
Clone

LOC
Units Clone Units RFSS

Unit

Coverage

Clone

Count

Common Collection

Code Analysis
Java 109,415 30,403 41,582 16,949 30,673 0.408 1,608

JRefCodeAnalysis Java 117,359 9,992 50,499 5,740 46,913 0.114 625

Nunit C# 41,001 2,335 11,916 696 11,534 0.058 44

PDFSharp C# 207,089 28,064 63,128 12,874 55,024 0.204 1,382

CakePHP PHP 191,154 15,413 72,089 9,112 65,216 0.216 1,008

Pyrocms PHP 137,463 40,058 53,434 25,043 30,103 0.469 7,891

Clairion Java 116,077 31,584 66,379 23,019 48,937 0.347 5,004

GLPK Java 19,148 15,403 9,895 9,469 1,399 0.957 576

C#ID3Lib C# 12,667 1,396 3,470 600 3,116 0.173 41

RPGMaker C# 17,817 924 9,366 554 9,050 0.059 42

PHPFusion PHP 2,874 2,407 2,364 1,998 405 0.845 1,063

PHPList PHP 49,126 5,560 23,146 2,520 21,444 0.109 348

instantiation effort—than general purpose cost models

that produce absolute results. First, it completes our

understanding of the impact of cloning: instead of

focusing on isolated aspects or activities, it quantifies its

impact on all maintenance activities and thus on

maintenance efforts and faults as a whole. Second, it

makes our observations, speculation and assumptions

explicit. This explicitness offers an objective basis for

scientific discourse about the consequences of cloning.

ConQAT provides support and flexibility for all phases

of clone detection: from preprocessing, detection and

post processing, to result presentation and interactive

inspection in state of the art IDEs. ConQAT implements

several novel detection algorithms: the first algorithm to

detect clones in dataflow models; an index-based

approach for type-2 clone detection that is both

incremental and scalable. Clone detection is limited to

copy & paste—independently developed program

fragments with similar behavior are out of reach of

existing clone detection approaches. During clone

control, clone detection can be applied to find regions in

artifacts that have been created through copy, paste &

modify. It cannot be, however expected to detect

behavioral similarities that have been implemented

independently. Clone management tools, thus, cannot be

expected to work on simions. Instead of facilitating their

consistent evolution during maintenance, clone control

thus needs to focus on the avoidance of simions.

9. REFERENCES
[1] Juergens, E. and Deissenboeck F. 2010, ―How

Much is a Clone?‖ 4th International Workshop on

Software Quality and Maintainability. Spain.

[2] Elmar Juergens, Florian Deissenboeck, Can Clone

Detection Support Quality Assessments of

Requirements Specifications?, International

Conference on Software Engineering (ICSE),

May2010

[3] Pham N. H.; Nguyen, H. A.; Nguyen, T. T.; Al-

Kofahi, J.M and Nguyen, T.N., 2009. ―Complete

and Accurate Clone Detection in Graph-based

Models‖. Proceeding of 31st International

Conference on Software Engineering, Vancouver,

Canada, pp.276-286.

[4] Juergens, E., Deissenboeck, F., and Hummel, B.,

2009 ―CloneDetective – A Workbench for Clone

Detection Research‖, Proceedings of 31st

International Conference on Software Engineering,

Vancouver, Canada, pp. 603-606.

[5] Juergens, E.; Deissenboeck, F. and Hummel, B.,

2010 ―Code Similarities Beyond Copy & Paste‖,

Proceedings of 14th European Conference on

Software Maintenance and Reengineering, Madrid,

pp. 78-87.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.3, September 2012 – www.ijais.org

43

[6] Deissenboeck, F.; Heinemann, L.;

Herrmannsdoerfer, M.; Lochmann, K.; and Wagner,

S. 2011. ―The Quamoco Tool Chain for Quality

Modeling and Assessment‖, Proceeding of 33rd

International Conference of Software Engineering,

Honolulu, USA. pp. 1007-1009.

[7] Roy C.K. and Cordy, J.R., 2007 ―A Survey on

Software Clone Detection Research‖, Technical

Report 2007-541, Queen’s University at Kingston

Ontario, Canada, 115pp.

[8] Deissenboeck, F.; Heinemann, L.; Hummel, B.;

Juergens, E.; 2010. ―Flexible Architecture

Conformance Assessment with ConQAT‖,

Proceedings of IEEE 32nd International Conference

of Software Engineering, Cape Town, Vol. 2, pp.

247-250.

[9] Duala-Ekoko, E. and Robillard, M.P., 2008

―CloneTracker: Tool Support for Code Clone

Management‖ Proceeding of 30th International

Conference on Software Engineering, Leipzig, pp.

843-846.

[10] Deissenboeck, F.; Wagner, S.; Pizka, M.; Teuchert,

S. and Girard, J.F., 2007 ―An Activity-Based

Quality Model for Maintainability‖, Proceedings of

International Conference on Software Maintenance,

Paris, pp. 184-193.

[11] Roy C.K., Cordy J.R. and Koschke, R., 2009.

―Comparison and Evaluation of Code Clone

Detection Techniques and Tools: A Qualitative

Approach‖, Journal, Science of Computer

Programming, Vol. 74, No.7, pp. 470-495.

[12] Michael Pfahler, Improving clone detection for

models, Master Thesis, Nov 2009

[13] Holger, S.; Martin J. and Horst, L.; 2009 ―Tool

Support for User-Defined Quality Assessment

Models‖, Proceedings of METRKON.

www.docstoc.com/docs/79810751/Tool-Support-

for-User-Defined-quality-Assessment-Models.

[14] Deissenboeck, F.; Hummel, B.; Juergens, E.;

Pfahler, M. and Schaetz, B., 2010. ―Model Clone

Detection in Practice‖, Proceeding of 4th

International Workshop on Software Clones

(IWSC), New York, U.S.A., pp. 37-44.

[15] Juergens, E.; Deissenboeck, F.; Hummel, B. and

Wagner, S., 2009 ―Do Code Clone Matters?‖

Proceedings of 31st International Conference on

Software Engineering, Vancouver, B.C., pp. 485-

495.

[16] Rahman, F.; Bird, C. and Devanbu, P., 2010

―Clones: What is that Smell?‖ Proceedings of 7th

IEEE working conference on Mining Software

Repositories., Cape Town, pp. 72-81

[17] Higo, Y.; Ueda Y.; Kamiya, T.; Kusumoto, S.; and

Inoue, S., 2002 ―On Software Maintenance Process

Improvement Based on Code Clone Analysis‖,

Proceedings of 4th International Conference on

Product Focused Software Process Improvement,

London.

[18] Ueda, Y.; Kamiya, T.; Kusumoto, S.; Inoue, K.,

2002 ―Gemini: Maintenance Support Environment

Based on Code Clone Analysis‖, Proceedings.

Eighth IEEE Symposium on software metrics, pp.

67-76.

[19] Duala-Ekoko, E. and Robillard, M.P., 2008

―CloneTracker: Tool Support for Code Clone

Management‖ Proceeding of 30th International

Conference on Software Engineering, Leipzig, pp.

843-846.

[20] Code Clone Related Tools Software Engineering

Laboratory, Department of Computer Science,

Graduate School of Information Science and

Technology, Osaka University, March, 2005

[21] Rainer Koschke, Survey of Research on Software

Clones, Dagstuhl Seminar Proceedings, 2007

[22] Deissenboeck, F. and Feilkas, M. 2010 ConQAT

Book, TUM, Technische Universität München.

[23] Hummel, B.; Juergens, E. and Steidl, D., 2011.

―Index-Based Model Clone Detection‖, Proceeding

of 5th International Workshop on Software Clones,

Honolulu, USA, pp. 21-27.

[24] Juergens, E.; Deissenboeck, F.; Feilkas, M.;

Hummel, B.; Schaetz, B.; Wagner, S.; Domann, C.

and Streit, J., 2010 ―Can Clone Detection Support

Quality Assessments of Requirements

Specifications?‖, 32nd International Conference on

Software Engineering, Cape Town, Vol. 2, pp. 79-

88.

[25] Koschke R., 2008 ―Survey of Research on Software

Clones‖, Duplication, Redundancy and Similarity in

Software, Dagstuhl Seminar Proceedings, pp. 24.

[26] Koschke R.; Falke, R. and Frenzel, P., 2006. ―Clone

Detection Using Abstract Syntax Suffix Trees‖,

Proceedings of 13th Working Conference on

Reverse Engineering, Benevento, Italy, pp. 253-262.

