

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.5 , July 2012 – www.ijais.org

35

Comparative Analysis of Error Correcting Codes for
Noisy Channel

Sukhjeet Kaur

Lovely Professional University
G.T. Road, Phagwara, Punjab (INDIA) -144411

ABSTRACT
In the communication system there are errors during the

transmission of the information. There are error correcting

codes to detect as well as correct errors. These error correcting

codes have vast field of application. Communication

performance is improved by enabling the transmitted signal to

better withstand the effects of channel impairments such as

noise, interference and fading which occur during

transmission. In this paper Hamming and Reed Solomon

codes are discussed under same noisy conditions and there

comparison is done with data transmitted without using codes

and Bit Error Rate performance is shown. This comparative

analysis is represented in Graphical user interface (GUI).

Keywords

BSC, AWGN, Hamming code, Reed Solomon code, BER,

SNR.

1. INTRODUCTION
A communication system is used to send and receive the

information from a source to a user. The channel coding

provides a reliable communication system by introducing

redundancy bits to the actual information. The channel

encoder adds redundant bits to the source encoded

information bits to generate code words. To transmit the

channel encoded digital information over a band pass channel

digital information modulation is performed. A

communication channel is used to transmit modulated

information from a transmitter to a receiver. A channel can be

modeled physically by calculating the effects which modify

the transmitted signal. This paper uses binary symmetric

channel and AWGN channel. In a receiver section the inverse

process takes place. The received information is demodulated

to produce the channel encoded information that is effected by

channel impairments. A channel decoder removes the

redundancy using the same technique used in channel

encoder. Source decoder expands the channel decoder output

that produces the original transmitted information. The goal of

a communication system is to transmit the information

without any loss. The channel impairments create errors in the

message being transmitted, which is measured in terms of

BER. Channel coding is a method in which the reliability of

the channel increases by reducing the information rate. This

can be accomplished by adding redundancy to the information

being transmitted. This process leads to a longer coded

symbols vector than the actual information. The receiver can

be able to detect and correct the corrupted bits in the channel

using these redundant bits [1]. The two classes of error

correcting codes linear block codes and convolutional codes.

Block codes process the information on a block by block

basis, treating each block of information bits independently

from others. Block coding is a memoryless operation that

codewords are independent from each other. In convolutional

encoder the output depends not only on the current input

information but also on the previous inputs or outputs, either

on a block by block or a bit by bit basis [2]. The detection and

correction capability depends on the minimum distance of the

code words.

2. HAMMING CODE
Hamming code is a linear error correcting code named after

its inventor, Richard Hamming. When the Hamming distance

between the transmitted and received bit patterns is less than

or equal to one Hamming codes can detect up to two

contiguous bit errors and correct single bit errors. Thus

reliable communication is possible. For each integer m>=2,

there is a code with m parity bits and (2^m)-m-1 data bits. The

number of bit position in which two codewords differ is called

Hamming distance. Its significance is that if two codewords

are a Hamming distance d apart, it will require d single-bit

errors to convert one into the other. The error detecting and

error correcting properties of a code depend on its Hamming

distance. Hamming code is based on the principle of adding

„m‟ redundancy bits to „k‟ data bits such that

2 1m k m   .These redundancy bits are to be

interspersed at bit positions 2k where k = 0, 1, 2, 3…. with the

original data bits. Suppose we take seven bit data to be

transmitted then the actual data which is transmitted is eleven

bit. PPXPXXXPXXX, where the P refers to the Hamming bits

that are to be calculated and interspersed at bit positions 1, 2,

4, & 8 and X refers to the data bits. The Hamming bit at bit

position 1 is selected such that there is even parity at bit

positions 1, 3, 5, 7, 9, & 11. The Hamming bit at bit position 2

is selected such that there is even parity at bit positions 2, 3, 6,

7, 10, & 11.The Hamming bit at bit position 4 is selected such

that there is even parity at bit positions 4, 5, 6, & 7. The

Hamming bit at bit position 8 is selected such that there is

even parity at bit positions 8, 9, 10, & 11. Now the result is a

codeword. Now for the detection of error in the codeword

and we have to check the parity bits for parity at first position

XOR of 1,2,4,8 is done for parity 2 XOR of 2,3,6,7,10 and 11

is done ,for parity at position 4 XOR of 4,5,6 and 7 is done

for parity at position 8 XOR of 8 ,9 ,10and 11 is done. Then

result is written as p1 p2 p4 p8, then decimal form of the

respective bits is taken and the resulted bit position is in error

and is changed if 0 then to1 and if 1 changed to 0.Then data

bits are taken and parity bits are removed at the receiver side.

The redundancy bits can be appended at the end of data bits

[3].Block codes are referred to as (n, k) codes. A block of k

information bits are coded to become a block of bits. The

binary (n, k) Hamming codes have the following parameters:

Code length: 2 1mn  

Number of information bits 2 1mk m  

Number of parity bits n k m 

Error correcting capability 1t 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.5 , July 2012 – www.ijais.org

36

The block codes are specified by (2 1m  , 2 1m m ).

Most block codes are systematic in that the information bits

remain unchanged with parity bits attached either to the front

or to the back of the information sequence. Other method of

encoding and decoding with G and H matrix. G is the

generator matrix and H is the parity check matrix. If the

generator matrix G of a linear blocks (n, k,
mind) code c can

be brought to a systematic form,
sysG by elementary row

operations and/or column permutations.
sysG is composed of

two sub-matrices. The k-by-k identity matrix, denoted by kI

and a k-by-(n-k) parity sub-matrix P, such that

(|)sys kG I P 
 (1)

where

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

n k

n k

k k k n k

p p p

P p p p

p p p

 

 

    

   
 

     
    






 (2)

Since
TGH =0, is in the systematic form,

sysH of the

parity-check matrix is (|)T

sys n kH P I 

now to achieve

the codeword C information is multiplied with the generator

matrix. Now all we have to do is multiply the information

vector d with matrix G to get a codeword c.

 c=dG (3)

The main concept in decoding is to determine which of the

2k
valid codewords was transmitted given that one of the 2

n

has been received. Decoding of block codes is pretty easy. We

compute something called a syndrome of an incoming

codeword.

Ts H c 

 (4)

We do that by multiplying the incoming vector by the

transposed parity matrix H. Data is multiplied with matrix G

on the encoder side and by H on the decoder side. The size of

the syndrome will be equal to (n-k) bit. All zero syndrome

means no error has occurred. If there is some value of

syndrome then syndrome must be zero. Multiply the received

code vector with the TH matrix, to see if we get all zeros since

we know that this is a valid codeword. Now compute the

ordinal number from this sequence. This tells us that which bit

is in error. A syndrome table can be pre-created in the decoder

so that a quick mapping to the bit location where the error has

occurred can be made. This is done by changing a valid code

vector one bit at a time and looking at the computed

syndrome. An advantage of Hamming codes is that encoding

and decoding are easy to implement. They would be effective

as a simple and efficient code over a channel where it is

known that errors are burst free and tend to be widely

dispersed. Disadvantages of Hamming codes are that they are

very ineffective for low SNR, where the received signal level

is very low. These types of conditions will tend to cause more

frequent errors. Hamming codes do very poorly against the

bursts of errors [4].

3. REED SOLOMON CODES
In 1960, Irving Reed and Gustave Solomon described a

construction of error correcting codes, which are called Reed

Solomon codes, based on polynomials over finite fields.

Almost 50 years after their invention, Reed Solomon codes

remain ubiquitous today in diverse applications ranging from

magnetic recording to UPS bar codes to satellite

communications Reed-Solomon codes have been largely

employed as channel codes due to their excellent error

detection and correction properties. A Reed Solomon code is a

block code and the message to be transmitted is divided up

into separate blocks of data. Each block then has parity

protection information added to it to form a self-contained

code word. It is also used as a systematic code which means

that the encoding process does not alter the message symbols

and the protection symbols are added as a separate part of the

block. A Reed Solomon code is linear code and it is cyclic. It

belongs to the family of Bose-Chaudhuri-Hocquenghem

(BCH) codes but is distinguished by having multi-bit

symbols. This makes the code particularly good at dealing

with bursts of errors because, although a symbol may have all

its bits in error, this counts as only one symbol error in terms

of the correction capacity of the code. Choosing different

parameters for a code provides different levels of protection

and affects the complexity of implementation. Thus a Reed-

Solomon code can be described as an (n, k) code where n is

the block length in symbols and k is the number of

information symbols in the message.

2 1mn   

 (5)

where m is the number of bits in a symbol.

RS codes can be designed to have any redundancy. However,

the complexity of a high speed implementation increases with

redundancy. Thus, the most attractive RS codes have high

code rates. The Reed Solomon codes are particularly useful

for burst error correction. They are effective for channels that

have memory. Also, they can be used efficiently on channels

where the set of input symbols is large. The RS encoding and

decoding require a considerable amount of computation and

arithmetical operations over a finite number system with

certain properties that is algebraic systems, which in this case

is called fields. RS‟s initial definition focuses on the

evaluation of polynomials over the elements in a finite field

(Galois field GF).

 3.1 Reed Solomon Encoding
The most conventional form of Reed Solomon codes in the

terms of the parameters n,k,t and any positive integer m>2.

Where n-k=2t is the number of parity symbols, and t is the

symbol error correcting capability of the code. The generating

polynomial for RS code

   2 2 1 2

0 1 2 2 1...... t t

tg X g g X g X g X X

      (6)

The degree of the generator polynomial is equal to the number

of parity symbols. RS codes are a subset of Bose Chaudhuri

Hocquenghem (BCH) codes. Since the generator polynomial

is of degree 2t, there must be precisely 2t successive powers

of α that are roots of the polynomial. Message polynomial

m(x) can be shifted into the rightmost k stages of a codeword

register and then appending a parity polynomial p(X), by

placing it in the leftmost n-k stages. Therefore following steps

are followed for encoding:

Step1: Multiply m(X) by n kX  thereby manipulating the

message polynomial algebraically so that it is right-shifted n-k

positions.

Step2: Divide n kX 
m(X) by the generator polynomial g(X),

which is written in the following form:

n kX 

  () () ()m X q X g X p X  (7)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.5 , July 2012 – www.ijais.org

37

Where ()q X and ()p X are quotient and remainder

polynomials, respectively. The remainder is the parity.

Equation (7) can also be expressed as

()p X =
n kX 

()m X modulo ()g X (8)

Step3: The resulting codeword polynomial, ()U X can be

written as

()U X  ()p X +
n kX 

()m X (9)

Demonstrating the steps implied by equation (8) and (9) by

encoding the following three symbol message: 010 110

111with the (7, 3) RS code. Generator polynomial is

3 1 0 2 3 3 4()g X X X X X        (10)

Message symbol in polynomial form:
1 3 5 2X X    (11)

Message polynomial is multiplied by 4n kX X  , result is

1 4 3 5 5 6X X X    (12)

Divide equation (12) with equation (10)

Remainder in polynomial form is
0 2 4 2 6 3()p X X X X       (13)

Codeword is written as

0 2 4 2 6 3 1 4 3 5 5 6()U X X X X X X             (14)

Output codeword can be written as

6

0

() n

n

n

U X U X


 (15)

0 2 4 2 6 3 1 4 3 5 5 6()U X X X X X X X            

2 3 4 5 6(100) (001) (011) (101) (010) (110) (111)X X X X X X      
 (16)

The roots of a generator polynomial g(X) must also be the

roots of the codeword generated by g(X), because a valid

codeword is of the following form:

()U X  ()m X ()g X (17)

Therefore, an arbitrary codeword, when evaluated at any root

of g(X), must yield zero. In other words, this means checking

that

2 3() () ()........... () 0n kU U U U       
 (18)

This demonstrates the expected results that a codeword

evaluated at any root of g(X) must yield zero.

2 3 4() () () () 0U U U U      

(19)

3.2 Reed Solomon Decoding

RS code resulted in a codeword polynomial. Now we assume

that during transmission this codeword is corrupted. This

number of errors corresponds to the maximum error

correcting capability of the code. Now we will be discussing

the decoding by taking example of RS (7, 3), which can

correct up to 2 symbols. For this seven-symbol codeword

example, the error pattern ()e X can be described in

polynomial form as follows:

6

0

() n n

n

e X e X


 
 (20)

2 2 3 5 4 5 6() 0 0 0 0 0e X X X X X X       
 (21)

In this one parity symbol is corrupted with a 1 bit error and

one data symbol is corrupted with a 3 bit error.

The received corrupted codeword polynomial ()r X is then

represented by the sum of the transmitted codeword

polynomial and the error-pattern polynomial as follows:

 () () ()r X U X e X  (22)

Adding equation (16) and equation (21), we get

0 4 2 0 3 6 4 3 5 5 6()r X X X X X X X             (23)

In this example, there will be two error locations and two

error values. The error at a particular location tells that the bit

must be “flipped” from 1 to 0 or vice versa. Now the error

locations are calculated, also determine the correct symbol

values at those locations. Since there are four unknowns in

this example, four equations are required for their solution.

3.2.1 Syndrome Computation

The syndrome is the result of a parity check performed on r to

determine whether r is a valid member of the codeword set. If

in fact r is a member, the syndrome S has value 0. Any

nonzero value of S indicates the presence of errors. Thus, for

this (7, 3) RS code, there are four symbols in every syndrome

vector, their values can be computed from the received

polynomial, r(X). Note how the computation is facilitated by

the structure of the code, given by equation (17).

From this

structure it can be seen that every valid codeword polynomial

U(X) is a multiple of the generator polynomial g(X).

Therefore, the roots of g(X) must also be the roots of U(X).

Since from equation (22), r(X) evaluated at each of the roots

of g(X) should yield zero only when it is a valid codeword.

Any errors will result in one or more of the computations

yielding a nonzero result. The computation of a syndrome

symbol can be described as follows:

() ()i

i

i X
S r X r





 

1,2,.....i n k 

 (24)

where r(X) contains the postulated two symbol errors. If r(X)

were a valid codeword, it would cause each syndrome symbol

iS to equal 0.

3

1 ()S r    (25)

2 5

2 ()S r    (26)

3 6

3 ()S r    (27)

4

4 () 0S r   (28)

The results confirm that the received codeword contains an

error (which we inserted), since S≠0.

Now a secondary check on the syndrome values is performed.

For the (7, 3) RS code example under consideration, the error

pattern is known, since it was chosen earlier. An important

property of codes when describing the standard array is that

each element of a cosset (row) in the standard array has the

same syndrome .This property is also true for the R-S code by

evaluating the error polynomial e(X) at the roots of g(X) to

demonstrate that it must yield the same syndrome values as

when r(X) is evaluated at the roots of g(X). In other words, it

must yield the same values obtained in syndrome.

() ()i

i

i X
S r X r





 

1,2,.....i n k 

 (29)

() () () 0 ()i i i i

iS r U e e       
 (30)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.5 , July 2012 – www.ijais.org

38

[() ()] () ()i

i i

i X
S U X e X U e


 


   

 (31)

From equation (25)
2 3 5 4()e X X X  

 (32)

Therefore,

1 3

1 ()S e   

2 5

2 ()S e   

3 6

3 ()S e   

4 4

4 () 0S e    

These results confirm that the syndrome values are the same,

whether obtained by evaluating e(X) at the roots of g(X), or

r(X) at the roots of g(X).

3.2.2 Error Location
Suppose there are ν errors in the codeword at location

1 2, ,.....j j jvX X X . Then, the error polynomial e(X) can

be written as follows:
1 2

1 2()j j jv

j j jve X e X e X e X   
 (33)

The indices 1, 2 … ν refer to the first, second… νth errors,

and the index j refers to the error location. To correct the

corrupted codeword, each error value
jle and its location

jlX , where 1,2.......l v must be determined. We

define an error locator number as jl

l  .Next, we obtain

the n - k = 2t syndrome symbols by substituting
i into the

received polynomial for i = 1, 2 … 2t:

1 1 1 2 2()j j jv vS r e e e      

2 2 2 2

2 1 1 2 2()j j jv vS r e e e       


2 2 2 2

2 1 1 2 2()t t t t

t j j jv vS r e e e      
 (34)

There are 2t unknowns (t error values and t locations), and 2t

simultaneous equations. However, these 2t simultaneous

equations cannot be solved in the usual way because they are

nonlinear (as some of the unknowns have exponents). Any

technique that solves this system of equations is known as a

Reed-Solomon decoding algorithm.

Once a nonzero syndrome vector (one or more of its symbols

are nonzero) has been computed, that signifies that an error

has been received. Next, it is necessary to learn the location of

the error or errors. An error-locator polynomial, σ(X), can be

defined as follows:

1 2() (1)(1)........(1)v

vX X X X      

2

1 21 v

vX X X      
 (35)

The roots of σ(X) are
1 21 ,11 v   . The

reciprocal of the roots of σ(X) are the error-location numbers

of the error pattern e(X). Then, using autoregressive modeling

techniques, we form a matrix from the syndromes, where the

first t syndromes are used to predict the next syndrome. That

is,

1 2 3 1 1

1

2 3 4 1 2

1 1 2 3 2 2 2 1

2

1 2 2 2 2 1 2

1

t

t t t

t

t t t

t t t t t t

t t t t t t

S S S S S S

S S S S S S

S S S S S S

S S S S S S









 



 

    

   

 
        

        
     
       
    

       
 










(36)

We apply the autoregressive model of Equation (36) by using

the largest dimensioned matrix that has a nonzero

determinant. For the (7, 3) double symbol error correcting RS

code, the matrix size is 2 × 2, and the model is written as

follows:

1 2 2 3

2 3 3 4

S S S

S S S





     
     

     
3 5 6

2

5 6
1 0

  

 

    
    

      

(37)

To solve for the coefficients σ1 and σ2 and of the error-

locator polynomial, σ(X), we first take the inverse of the

matrix. The inverse of a matrix [A] is found as follows:

 []
det[]

cofactor
Inv A

A


3 5 1 0

5 6 0 5
Inv

   

   

    
   

        (38)

 Now safety check for this is done. If the inversion was

performed correctly, the multiplication of the original matrix

by the inverted matrix should yield an identity matrix.

Continuing from Equation (37), the error locations are found

by solving for the coefficients of the error-locator polynomial,

σ(X).

1 0 06
2

0 5 6
1 0

   

   

      
      

         

 (39)

From equation (35) and equation (39)

0 6 0 2()X X X      (40)

Error locations are found by solving for the coefficients of the

error-locator polynomial, σ(X).The roots of σ(X) are the

reciprocals of the error locations. Once these roots are located,

the error locations will be known. In general, the roots of σ(X)

may be one or more of the elements of the field. We

determine these roots by exhaustive testing of the σ(X)

polynomial with each of the field elements, as shown below.

Any element X that yields σ(X) = 0 is a root, and allows us to

locate an error.

The error locations are at the inverse of the roots of the

polynomial. Therefore 3() 0   indicates that one root

exits at 31/ l  . Thus, 3 41/l    . Similarly,

4() 0   indicates that another root exits at

4

'1/ l  . Thus 4 3

' 1/l    , where l and l′ refer

to the first, second … νth error. Therefore, in this example,

there are two-symbol errors, so that the error polynomial is of

the following form:

1 2

1 2() j j

j je X e X e X 
 (41)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.5 , July 2012 – www.ijais.org

39

The two errors were found at locations 3 and 4 . Note that

the indexing of the error-location numbers is completely

arbitrary. Thus, for this example, we can designate the
jl

l  values as 1  3 and 2  4 .

3.2.3 Error Values

An error had been denoted jle
, where the index j refers to the

error location and the index l identifies the
thl error. Since

each error value is coupled to a particular location, the

notation can be simplified by denoting 1je
, simply as 1

e

Preparing to determine the error value 1
e

 and 2e
associated

with locations 1 and 2 . Any of the four syndrome

equations can be used. Let us use syndrome 1 and 2.

1 1 1 2 2

2 2 2

2 1 1 2 2

()

()

S r e e

S r e e

  

  

  

  
 (42)

We can write these equations in matrix form as follows:

1 2 1 1

2 2
2 21 2

e S

e S

 

 

     
     

     

2

1

5
2

e

e





  
   
     (43)

Similarly, by above method 1e and 2e are found,
2

1e 

and
5

2e  .

3.2.4 Correcting the Received Polynomial with

Estimates of the Error Polynomial
From equation (43) and equation (41) and error values, the

estimated error polynomial is formed, to yield the following:

1 2

1 2

2 3 5 4

() j je X e X e X

X X 



 

 
 (44)

The demonstrated algorithm repairs the received polynomial,

yielding an estimate of the transmitted codeword, and

ultimately delivers a decoded message. It is given as

() () ()U X r X e X
 

 
 (45)

2 3 4 5 6() (000) (000) (000) (001) (111) (000) (000)e X X X X X X X


      
2 3 4 5 6r(X) = (100) + (001)X + (011)X + (100)X + (101)X + (110)X + (111)X
2 3 4 5 6Û(X) = (100) + (001)X + (011)X + (101)X + (010)X + (110)X + (111)X

0 2 4 2 6 3 1 4 3 5 5 6= X+ X + X + X + X + X      

(46)

Since the message symbols constitute the rightmost k = 3

symbols, the decoded message is 010 110 111which is exactly

the test message that was chosen earlier for this example [5]

[6].

4. RESULT
Layout design contains several buttons. For data selection

BROWSE button. Two Pop-up-menu buttons one for

selecting error probability for BSC and other for selecting

SNR value for AWGN channel. HAM ENC, LB ENC and RS

ENC are buttons for encoding. HAM BSC D,LB BSC D and

RS BSC D are buttons for decoding when data passed from

BSC. HAM AGN D, LB AGN D and RS AGN D are buttons

for decoding when data passed from AWGN channel.BER

BSC button will plot BER vs. error probability for BSC.BER

AWGN button will plot BER vs. SNR for AWGN

channel.Fig1. shows the layout design.

Data passed without using codes shown in Fig2.Steps

followed when data passed without using error correcting

codes:

Step1: Data is taken from the BROWSE button. Then DATA

button selected.

Step2: To pass data from BSC error probability is selected

from popupmenu1 and then selected BSC button.BER of the

resulted output on the axis and data is seen at BER DT BSC

button.

Fig 1: Layout design

Step3: Similarly for AWGN channel SNR value selected from

popupmenu2 then AWGN button selected output is shown on

third axis.

Step4: BER of data and output of AWGN channel is seen by

clicking BER DT AGN Button.

Fig.3 shows data passed through BSC using codes. Fig.4

shows data passed through AWGN using codes. Layout

design steps followed when data passed with using error

correcting codes:

Step1: Data is selected from BROWSE button, then on DATA

button. Then HAM ENC for Hamming (11, 7), LB ENC for

Hamming (7, 4) and RS ENC for RS (7, 3) button selected for

the encoding required.

.

Step2: Then to choose BSC to add noise to the encoded data,

value from popupmenu1 is selected and then HAM BSC for

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.5 , July 2012 – www.ijais.org

40

Hamming (11, 7), LB BSC for Hamming (7, 4) and RS BSC

for RS (7, 3) encoding button is selected. For adding AWGN

noise to the data SNR value selected from popupmenu2,HAM

AW… selected to add noise to the Hamming(11,7), LB

AWGN for Hamming(7,4)and RS AWGN for RS (7,3).

Step3: For decoding of encoded data passed from BSC for

Hamming (11, 7) HAM AG… is selected, for Hamming (7, 4)

LB AGN D is selected and for RS (7, 3) RS AGN D is

selected. For decoding of encoded data passed from AWGN

for Hamming (11, 7) HAM BS… is selected, for Hamming (7,

4) LB BSC D is selected and for RS (7, 3) RS BSC D is

selected.

Step4: To see the BER for data decoded and data sent push

buttons are there.

Step5: BER BSC selected to plot BER versus error probability

for BSC.

Step6: BER AW selected to plot BER versus SNR for

AWGN.

Fig 2: Data passed without using codes

Fig 3: Data passed through BSC using codes

Fig 4: Data passed through AWGN using codes

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.5 , July 2012 – www.ijais.org

41

Fig 5: BER versus SNR in AWGN

5. CONCLUSION
The communication system is to communicate from one place

to another in any way at any time whether using internet,

mobile, television broadcasting, military services and in many

more ways, if receiver receives corrupted data then it is of no

use to the receiver. Data security is integral part of it. The

solution is error detection and correction. Results shows that

RS codes are better than Hamming code. BER is less in RS (7,

3) as compared to Hamming (11, 4) and Hamming (7, 4).

Fig 6: BER versus error probability in BSC

In the present study we investigated the performance of Reed

Solomon codes as a flexible single code. In future the

comparison will be shown by taking more error correcting

codes and more noises can be added to it. The BER

performance improves as the code rate decreases. The BER

performance also improves for large block lengths and RS

codes shows a poor BER performance for lower SNR. As the

SNR value increases the curve becomes steeper [7]. Further

BCH codes can be added for the comparison. Length of

message can vary in Hamming and RS codes for better results

of error correction.

6. REFERENCES
[1] Muzhir AL-ANI and Qeethara AL-SHAYEA

“Unidirectional Error Correcting Codes for Memory

Systems: A Comparative Study”, January 2010.

[2] Robert H.Morelos-Zaragoza “The art of error correcting

codes”, Second Edition, John Block Codes”, January

2000.

[3] U. K. Kumar and B. S. Umashankar “Improved

Hamming Code for Error Detection and Correction”,

Member IEEE.

[4] Investigation of Hamming, Reed-Solomon, and Turbo

Forward Error Correcting Codes by Gregory Mitchell

Sensors and Electron Devices Directorate, ARL, July

2009.

[5] Bernard Sklar “Digital Communications: Fundamentals

And Applications”, Second edition.

[6] Hamood Shehab and Widad Ismail “Hardware

Implementation for Error Correction Using Software

Defined Radio Platform”, EuroJournals Publishing,

Inc.2009.

[7] Sanjeev Kumar and Ragini Gupta “Bit Error Rate

Analysis of Reed-Solomon Code for Efficient

Communication System “, International Journal of

Computer Applications (0975 – 8887) Volume 30–

No.12, September 2011

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
AWGN

SNR

B
E

R

BER data without ED

BER data with HAM(11,7) ED

BER data with HAM(7,4) ED

BER data with RS(7,3) ED

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

error probability

B
E

R

BSC

BER data without ED

BER data with HAM(11,7) ED

BER data with HAM(7,4) ED

BER data with RS(7,3) ED

