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ABSTRACT 
In the communication system there are errors during the 

transmission of the information. There are error correcting 

codes to detect as well as correct errors. These error correcting 

codes have vast field of application. Communication 

performance is improved by enabling the transmitted signal to 

better withstand the effects of channel impairments such as 

noise, interference and fading which occur during 

transmission. In this paper Hamming and Reed Solomon 

codes are discussed under same noisy conditions and there 

comparison is done with data transmitted without using codes 

and Bit Error Rate performance is shown. This comparative 

analysis is represented in Graphical user interface (GUI). 
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1. INTRODUCTION 
A communication system is used to send and receive the 

information from a source to a user. The channel coding 

provides a reliable communication system by introducing 

redundancy bits to the actual information. The channel 

encoder adds redundant bits to the source encoded 

information bits to generate code words. To transmit the 

channel encoded digital information over a band pass channel 

digital information modulation is performed. A 

communication channel is used to transmit modulated 

information from a transmitter to a receiver. A channel can be 

modeled physically by calculating the effects which modify 

the transmitted signal. This paper uses binary symmetric 

channel and AWGN channel. In a receiver section the inverse 

process takes place. The received information is demodulated 

to produce the channel encoded information that is effected by 

channel impairments. A channel decoder removes the 

redundancy using the same technique used in channel 

encoder. Source decoder expands the channel decoder output 

that produces the original transmitted information. The goal of 

a communication system is to transmit the information 

without any loss. The channel impairments create errors in the 

message being transmitted, which is measured in terms of 

BER. Channel coding is a method in which the reliability of 

the channel increases by reducing the information rate. This 

can be accomplished by adding redundancy to the information 

being transmitted. This process leads to a longer coded 

symbols vector than the actual information. The receiver can 

be able to detect and correct the corrupted bits in the channel 

using these redundant bits [1]. The two classes of error 

correcting codes linear block codes and convolutional codes. 

Block codes process the information on a block by block 

basis, treating each block of information bits independently 

from others. Block coding is a memoryless operation that 

codewords are independent from each other. In convolutional 

encoder the output depends not only on the current input  

information but also on the previous inputs or outputs, either 

on a block by block or a bit by bit basis [2]. The detection and  

correction capability depends on the minimum distance of the 

code words. 

 

2. HAMMING CODE 
Hamming code is a linear error correcting code named after 

its inventor, Richard Hamming. When the Hamming distance 

between the transmitted and received bit patterns is less than 

or equal to one Hamming codes can detect up to two 

contiguous bit errors and correct single bit errors. Thus 

reliable communication is possible. For each integer m>=2, 

there is a code with m parity bits and (2^m)-m-1 data bits. The 

number of bit position in which two codewords differ is called 

Hamming distance. Its significance is that if two codewords 

are a Hamming distance d apart, it will require d single-bit 

errors to convert one into the other. The error detecting and 

error correcting properties of a code depend on its Hamming 

distance. Hamming code is based on the principle of adding 

„m‟ redundancy bits to „k‟ data bits such that

2 1m k m   .These redundancy bits are to be 

interspersed at bit positions 2k where k = 0, 1, 2, 3…. with the 

original data bits. Suppose we take seven bit data to be 

transmitted then the actual data which is transmitted is eleven 

bit. PPXPXXXPXXX, where the P refers to the Hamming bits 

that are to be calculated and interspersed at bit positions 1, 2, 

4, & 8 and X refers to the data bits. The Hamming bit at bit 

position 1 is selected such that there is even parity at bit 

positions 1, 3, 5, 7, 9, & 11. The Hamming bit at bit position 2 

is selected such that there is even parity at bit positions 2, 3, 6, 

7, 10, & 11.The Hamming bit at bit position 4 is selected such 

that there is even parity at bit positions 4, 5, 6, & 7. The 

Hamming bit at bit position 8 is selected such that there is 

even parity at bit positions 8, 9, 10, & 11. Now the result is a 

codeword.  Now for the detection of error in the codeword 

and we have to check the parity bits for parity at first position 

XOR of 1,2,4,8 is done for parity 2 XOR of 2,3,6,7,10 and 11 

is done ,for parity at  position 4 XOR of 4,5,6 and 7 is done 

for parity at  position  8 XOR of 8 ,9 ,10and 11 is done. Then 

result is written as p1 p2 p4 p8, then decimal form of the 

respective bits is taken and the resulted bit position is in error 

and is changed if 0 then to1 and if 1 changed to 0.Then data 

bits are taken and parity bits are removed at the receiver side. 

The redundancy bits can be appended at the end of data bits 

[3].Block codes are referred to as (n, k) codes. A block of k 

information bits are coded to become a block of bits. The 

binary (n, k) Hamming codes have the following parameters: 

Code length: 2 1mn    

Number of information bits 2 1mk m    

Number of parity bits n k m   

Error correcting capability 1t   



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 3– No.5 , July 2012 – www.ijais.org 

 

36 

The block codes are specified by ( 2 1m  , 2 1m m   ). 

Most block codes are systematic in that the information bits 

remain unchanged with parity bits attached either to the front 

or to the back of the information sequence. Other method of 

encoding and decoding with G and H matrix. G is the 

generator matrix and H is the parity check matrix. If the 

generator matrix G of a linear blocks (n, k,
mind ) code c can 

be brought to a systematic form,
sysG  by elementary row 

operations and/or column permutations. 
sysG  is composed of 

two sub-matrices. The k-by-k identity matrix, denoted by kI  

and a k-by-(n-k) parity sub-matrix P, such that 

( | )sys kG I P 
               (1)                                    

 

where 

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

n k

n k

k k k n k

p p p

P p p p

p p p

 

 

    

   
 

     
    






                          (2)                                                                                       

 

Since 
TGH =0, is in the systematic form,

sysH  of the 

parity-check matrix is ( | )T

sys n kH P I 
 
now to achieve 

the codeword C information is multiplied with the generator 

matrix. Now all we have to do is multiply the information 

vector d with matrix G to get a codeword c. 

                                    c=dG                                          (3)                                                                                                                                                

The main concept in decoding is to determine which of the 

2k
valid codewords was transmitted given that one of the 2

n

 

has been received. Decoding of block codes is pretty easy. We 

compute something called a syndrome of an incoming 

codeword. 

                           
Ts H c 

                                       (4)                                                                                                        
 

We do that by multiplying the incoming vector by the 

transposed parity matrix H. Data is multiplied with matrix G 

on the encoder side and by H on the decoder side. The size of 

the syndrome will be equal to (n-k) bit. All zero syndrome 

means no error has occurred. If there is some value of 

syndrome then syndrome must be zero. Multiply the received 

code vector with the TH  matrix, to see if we get all zeros since 

we know that this is a valid codeword. Now compute the 

ordinal number from this sequence. This tells us that which bit 

is in error. A syndrome table can be pre-created in the decoder 

so that a quick mapping to the bit location where the error has 

occurred can be made. This is done by changing a valid code 

vector one bit at a time and looking at the computed 

syndrome. An advantage of Hamming codes is that encoding 

and decoding are easy to implement. They would be effective 

as a simple and efficient code over a channel where it is 

known that errors are burst free and tend to be widely 

dispersed. Disadvantages of Hamming codes are that they are 

very ineffective for low SNR, where the received signal level 

is very low. These types of conditions will tend to cause more 

frequent errors. Hamming codes do very poorly against the 

bursts of errors [4]. 

3. REED SOLOMON CODES 
In 1960, Irving Reed and Gustave Solomon described a 

construction of error correcting codes, which are called Reed 

Solomon codes, based on polynomials over finite fields. 

Almost 50 years after their invention, Reed Solomon codes 

remain ubiquitous today in diverse applications ranging from 

magnetic recording to UPS bar codes to satellite 

communications Reed-Solomon codes have been largely 

employed as channel codes due to their excellent error 

detection and correction properties. A Reed Solomon code is a 

block code and the message to be transmitted is divided up 

into separate blocks of data. Each block then has parity 

protection information added to it to form a self-contained 

code word. It is also used as a systematic code which means 

that the encoding process does not alter the message symbols 

and the protection symbols are added as a separate part of the 

block. A Reed Solomon code is linear code and it is cyclic. It 

belongs to the family of Bose-Chaudhuri-Hocquenghem 

(BCH) codes but is distinguished by having multi-bit 

symbols. This makes the code particularly good at dealing 

with bursts of errors because, although a symbol may have all 

its bits in error, this counts as only one symbol error in terms 

of the correction capacity of the code. Choosing different 

parameters for a code provides different levels of protection 

and affects the complexity of implementation. Thus a Reed-

Solomon code can be described as an (n, k) code where n is 

the block length in symbols and k is the number of 

information symbols in the message. 

                         
2 1mn   

                                         (5)                                                                                                         
 

where m is the number of bits in a symbol. 

RS codes can be designed to have any redundancy. However, 

the complexity of a high speed implementation increases with 

redundancy. Thus, the most attractive RS codes have high 

code rates. The Reed Solomon codes are particularly useful 

for burst error correction. They are effective for channels that 

have memory. Also, they can be used efficiently on channels 

where the set of input symbols is large. The RS encoding and 

decoding require a considerable amount of computation and 

arithmetical operations over a finite number system with 

certain properties that is algebraic systems, which in this case 

is called fields. RS‟s initial definition focuses on the 

evaluation of polynomials over the elements in a finite field 

(Galois field GF). 

 

 3.1 Reed Solomon Encoding 
The most conventional form of Reed Solomon codes in the 

terms of the parameters n,k,t and any positive integer m>2. 

Where n-k=2t is the number of parity symbols, and t is the 

symbol error correcting capability of the code. The generating 

polynomial for RS code 

     2 2 1 2

0 1 2 2 1...... t t

tg X g g X g X g X X

                         (6)                                                                  

The degree of the generator polynomial is equal to the number 

of parity symbols. RS codes are a subset of Bose Chaudhuri 

Hocquenghem (BCH) codes. Since the generator polynomial 

is of degree 2t, there must be precisely 2t successive powers 

of α that are roots of the polynomial. Message polynomial 

m(x) can be shifted into the rightmost k stages of a codeword 

register and then appending a parity polynomial p(X), by 

placing it in the leftmost n-k stages. Therefore following steps 

are followed for encoding: 

Step1: Multiply m(X) by n kX   thereby manipulating the 

message polynomial algebraically so that it is right-shifted n-k 

positions. 

 

Step2: Divide n kX 
m(X) by the generator polynomial g(X), 

which is written in the following form: 

   
n kX 

  ( ) ( ) ( )m X q X g X p X                              (7)                   
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Where ( )q X  and ( )p X are quotient and remainder 

polynomials, respectively. The remainder is the parity. 

Equation (7) can also be expressed as 

( )p X =
n kX 

( )m X modulo ( )g X                           (8)   

Step3: The resulting codeword polynomial, ( )U X can be 

written as 

( )U X  ( )p X +
n kX 

( )m X                                   (9) 

Demonstrating the steps implied by equation (8) and (9) by 

encoding the following three symbol message: 010 110 

111with the (7, 3) RS code. Generator polynomial is 

 
3 1 0 2 3 3 4( )g X X X X X                            (10)                     

Message symbol in polynomial form: 
1 3 5 2X X                                                         (11) 

Message polynomial is multiplied by 4n kX X  , result is 

  
1 4 3 5 5 6X X X                                                (12)                                  

Divide equation (12) with equation (10) 

Remainder in polynomial form is 
0 2 4 2 6 3( )p X X X X                          (13)                             

Codeword is written as 

  
0 2 4 2 6 3 1 4 3 5 5 6( )U X X X X X X                       (14)                                                                                  

Output codeword can be written as 

          

6

0

( ) n

n

n

U X U X


                                        (15)                                                   

  
0 2 4 2 6 3 1 4 3 5 5 6( )U X X X X X X X              

2 3 4 5 6(100) (001) (011) (101) (010) (110) (111)X X X X X X      
                                                                                       (16) 

The roots of a generator polynomial g(X) must also be the 

roots of the codeword generated by g(X), because a valid 

codeword is of the following form: 

 
( )U X  ( )m X ( )g X                                               (17)                                 

Therefore, an arbitrary codeword, when evaluated at any root 

of g(X), must yield zero. In other words, this means checking 

that 

2 3( ) ( ) ( )........... ( ) 0n kU U U U       
                       (18)                                

 

This demonstrates the expected results that a codeword 

evaluated at any root of g(X) must yield zero. 

   

2 3 4( ) ( ) ( ) ( ) 0U U U U      
                 

(19) 

                                      

3.2 Reed Solomon Decoding 

RS code resulted in a codeword polynomial. Now we assume 

that during transmission this codeword is corrupted. This 

number of errors corresponds to the maximum error 

correcting capability of the code. Now we will be discussing 

the decoding by taking example of RS (7, 3), which can 

correct up to 2 symbols. For this seven-symbol codeword 

example, the error pattern ( )e X  can be described in 

polynomial form as follows:  

   

6

0

( ) n n

n

e X e X


 
                                                  (20)                                                  

2 2 3 5 4 5 6( ) 0 0 0 0 0e X X X X X X       
                    (21) 

In this one parity symbol is corrupted with a 1 bit error and 

one data symbol is corrupted with a 3 bit error.
 

The received corrupted codeword polynomial ( )r X is then 

represented by the sum of the transmitted codeword 

polynomial and the error-pattern polynomial as follows:

 ( ) ( ) ( )r X U X e X                                                 (22)                               

Adding equation (16) and equation (21), we get 

        
0 4 2 0 3 6 4 3 5 5 6( )r X X X X X X X                (23)                         

In this example, there will be two error locations and two 

error values. The error at a particular location tells that the bit 

must be “flipped” from 1 to 0 or vice versa. Now the error 

locations are calculated, also determine the correct symbol 

values at those locations. Since there are four unknowns in 

this example, four equations are required for their solution. 

3.2.1 Syndrome Computation 

The syndrome is the result of a parity check performed on r to 

determine whether r is a valid member of the codeword set. If 

in fact r is a member, the syndrome S has value 0. Any 

nonzero value of S indicates the presence of errors. Thus, for 

this (7, 3) RS code, there are four symbols in every syndrome 

vector, their values can be computed from the received 

polynomial, r(X). Note how the computation is facilitated by 

the structure of the code, given by equation (17).
 
From this 

structure it can be seen that every valid codeword polynomial 

U(X) is a multiple of the generator polynomial g(X). 

Therefore, the roots of g(X) must also be the roots of U(X). 

Since from equation (22), r(X) evaluated at each of the roots 

of g(X) should yield zero only when it is a valid codeword. 

Any errors will result in one or more of the computations 

yielding a nonzero result. The computation of a syndrome 

symbol can be described as follows: 

   
( ) ( )i

i

i X
S r X r





 

  
1,2,.....i n k 

                         (24)                           
 

where r(X) contains the postulated two symbol errors. If r(X) 

were a valid codeword, it would cause each syndrome symbol 

iS  to equal 0. 

3

1 ( )S r                                                                 (25)                    

2 5

2 ( )S r                                                              (26)                       

3 6

3 ( )S r                                                               (27)                       

4

4 ( ) 0S r                                                            (28)                     

The results confirm that the received codeword contains an 

error (which we inserted), since S≠0. 

Now a secondary check on the syndrome values is performed. 

For the (7, 3) RS code example under consideration, the error 

pattern is known, since it was chosen earlier. An important 

property of codes when describing the standard array is that 

each element of a cosset (row) in the standard array has the 

same syndrome .This property is also true for the R-S code by 

evaluating the error polynomial e(X) at the roots of g(X) to 

demonstrate that it must yield the same syndrome values as 

when r(X) is evaluated at the roots of g(X). In other words, it 

must yield the same values obtained in syndrome. 

( ) ( )i

i

i X
S r X r





 

      
1,2,.....i n k 

                          (29)
 

( ) ( ) ( ) 0 ( )i i i i

iS r U e e       
                           (30)                                             
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[ ( ) ( )] ( ) ( )i

i i

i X
S U X e X U e


 


   

                       (31)                                   

From equation (25) 
2 3 5 4( )e X X X  

                                              (32)                                          

Therefore, 

                                 

1 3

1 ( )S e   
                                                                                      

                                 

2 5

2 ( )S e   
                                                                                     

                                

3 6

3 ( )S e   
                              

                                

4 4

4 ( ) 0S e      

These results confirm that the syndrome values are the same, 

whether obtained by evaluating e(X) at the roots of g(X), or 

r(X) at the roots of g(X). 

 

3.2.2 Error Location 
Suppose there are ν errors in the codeword at location

1 2, ,.....j j jvX X X . Then, the error polynomial e(X) can 

be written as follows:
1 2

1 2( ) ...........j j jv

j j jve X e X e X e X   
      (33)                                                    

 

The indices 1, 2 … ν refer to the first, second… νth errors, 

and the index j refers to the error location. To correct the 

corrupted codeword, each error value 
jle  and its location 

jlX   , where 1,2.......l v  must be determined. We 

define an error locator number as jl

l   .Next, we obtain 

the n - k = 2t syndrome symbols by substituting 
i  into the 

received polynomial for i = 1, 2 … 2t: 

1 1 1 2 2( ) ........j j jv vS r e e e        

2 2 2 2

2 1 1 2 2( ) .......j j jv vS r e e e         

                                                                                                                                                      
2 2 2 2

2 1 1 2 2( ) ......t t t t

t j j jv vS r e e e      
                   (34)                                                                          

 

There are 2t unknowns (t error values and t locations), and 2t 

simultaneous equations. However, these 2t simultaneous 

equations cannot be solved in the usual way because they are 

nonlinear (as some of the unknowns have exponents). Any 

technique that solves this system of equations is known as a 

Reed-Solomon decoding algorithm. 

Once a nonzero syndrome vector (one or more of its symbols 

are nonzero) has been computed, that signifies that an error 

has been received. Next, it is necessary to learn the location of 

the error or errors. An error-locator polynomial, σ(X), can be 

defined as follows: 

1 2( ) (1 )(1 )........(1 )v

vX X X X        

2

1 21 ........ v

vX X X      
                        (35)                                                                        

 

The roots of σ(X) are
1 21 ,1 .......1 v   . The 

reciprocal of the roots of σ(X) are the error-location numbers 

of the error pattern e(X). Then, using autoregressive modeling 

techniques, we form a matrix from the syndromes, where the 

first t syndromes are used to predict the next syndrome. That 

is,  

1 2 3 1 1

1

2 3 4 1 2

1 1 2 3 2 2 2 1

2

1 2 2 2 2 1 2

1

t

t t t

t

t t t

t t t t t t

t t t t t t

S S S S S S

S S S S S S

S S S S S S

S S S S S S









 



 

    

   

 
        

        
     
       
    

       
 










          

(36)                                                              

We apply the autoregressive model of Equation (36) by using 

the largest dimensioned matrix that has a nonzero 

determinant. For the (7, 3) double symbol error correcting RS 

code, the matrix size is 2 × 2, and the model is written as 

follows: 

1 2 2 3

2 3 3 4

S S S

S S S





     
     

                                                                                                                        
3 5 6

2

5 6
1 0

  

 

    
    

                                                         

(37) 

To solve for the coefficients σ1 and σ2 and of the error-

locator polynomial, σ(X), we first take the inverse of the 

matrix. The inverse of a matrix [A] is found as follows: 

  [ ]
det[ ]

cofactor
Inv A

A


    

  

3 5 1 0

5 6 0 5
Inv

   

   

    
   

                                            (38)                          

 Now safety check for this is done. If the inversion was 

performed correctly, the multiplication of the original matrix 

by the inverted matrix should yield an identity matrix. 

Continuing from Equation (37), the error locations are found 

by solving for the coefficients of the error-locator polynomial, 

σ(X). 

 

1 0 06
2

0 5 6
1 0

   

   

      
      

         

                            (39)        

From equation (35) and equation (39) 

   
0 6 0 2( )X X X                                       (40)                  

Error locations are found by solving for the coefficients of the 

error-locator polynomial, σ(X).The roots of σ(X) are the 

reciprocals of the error locations. Once these roots are located, 

the error locations will be known. In general, the roots of σ(X) 

may be one or more of the elements of the field. We 

determine these roots by exhaustive testing of the σ(X) 

polynomial with each of the field elements, as shown below. 

Any element X that yields σ(X) = 0 is a root, and allows us to 

locate an error. 

The error locations are at the inverse of the roots of the 

polynomial. Therefore 3( ) 0   indicates that one root 

exits at 31/ l  . Thus, 3 41/l    . Similarly,

4( ) 0    indicates that another root exits at

4

'1/ l  . Thus 4 3

' 1/l    , where l and l′ refer 

to the first,   second … νth error. Therefore, in this example, 

there are two-symbol errors, so that the error polynomial is of 

the following form: 

  

1 2

1 2( ) j j

j je X e X e X 
                                        (41)                                                    
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The two errors were found at locations 3 and 4 . Note that 

the indexing of the error-location numbers is completely 

arbitrary. Thus, for this example, we can designate the
jl

l   values as 1  3  and 2  4 . 

 

3.2.3 Error Values 

An error had been denoted jle
, where the index j refers to the 

error location and the index l identifies the 
thl error. Since 

each error value is coupled to a particular location, the 

notation can be simplified by denoting 1je
, simply as 1

e

Preparing to determine the error value 1
e

 and 2e
associated 

with locations 1   and 2 . Any of the four syndrome 

equations can be used. Let us use syndrome 1 and 2. 

   

1 1 1 2 2

2 2 2

2 1 1 2 2

( )

( )

S r e e

S r e e

  

  

  

  
                                    (42)      

 

We can write these equations in matrix form as follows: 

   

1 2 1 1

2 2
2 21 2

e S

e S

 

 

     
     

        

     

2

1

5
2

e

e





  
   
                                                                 (43)           

Similarly, by above method 1e and 2e are found, 
2

1e 

and
5

2e  . 

 

3.2.4 Correcting the Received Polynomial with 

Estimates of the Error Polynomial 
From equation (43) and equation (41) and error values, the 

estimated error polynomial is formed, to yield the following: 

  

1 2

1 2

2 3 5 4

( ) j je X e X e X

X X 



 

 
                                          (44)       

 

The demonstrated algorithm repairs the received polynomial, 

yielding an estimate of the transmitted codeword, and 

ultimately delivers a decoded message. It is given as 

  

( ) ( ) ( )U X r X e X
 

 
   (45)                                                                    

2 3 4 5 6( ) (000) (000) (000) (001) (111) (000) (000)e X X X X X X X


      
2 3 4 5 6r(X) = (100) + (001)X + (011)X  + (100)X  + (101)X  + (110)X  + (111)X
2 3 4 5 6Û(X ) = (100) + (001)X + (011)X  + (101)X  + (010)X  + (110)X  + (111)X

0 2 4 2 6 3 1 4 3 5 5 6= X+ X + X + X  + X + X          

(46)                                                            

Since the message symbols constitute the rightmost k = 3 

symbols, the decoded message is 010 110 111which is exactly 

the test message that was chosen earlier for this example [5] 

[6]. 

 

 

4. RESULT  
Layout design contains several buttons. For data selection 

BROWSE button. Two Pop-up-menu buttons one for 

selecting error probability for BSC and other for selecting 

SNR value for AWGN channel. HAM ENC, LB ENC and RS 

ENC are buttons for encoding. HAM BSC D,LB BSC D and 

RS BSC D are buttons for decoding when data passed from 

BSC. HAM AGN D, LB AGN D and RS AGN D are buttons 

for decoding when data passed from AWGN channel.BER 

BSC button will plot BER vs. error probability for BSC.BER 

AWGN button will plot BER vs. SNR for AWGN 

channel.Fig1. shows the layout design. 

Data passed without using codes shown in Fig2.Steps 

followed when data passed without using error correcting 

codes: 

Step1: Data is taken from the BROWSE button. Then DATA 

button selected. 

 

Step2: To pass data from BSC error probability is selected 

from popupmenu1 and then selected BSC button.BER of the 

resulted output on the axis and data is seen at BER DT BSC 

button. 

 

 
Fig 1: Layout design 

 

Step3: Similarly for AWGN channel SNR value selected from 

popupmenu2 then AWGN button selected output is shown on 

third axis. 

 

Step4: BER of data and output of AWGN channel is seen by 

clicking BER DT AGN Button. 

 

Fig.3 shows data passed through BSC using codes. Fig.4 

shows data passed through AWGN using codes. Layout 

design steps followed when data passed with using error 

correcting codes:  

Step1: Data is selected from BROWSE button, then on DATA 

button. Then HAM ENC for Hamming (11, 7), LB ENC for 

Hamming (7, 4) and RS ENC for RS (7, 3) button selected for 

the encoding required. 

. 

Step2: Then to choose BSC to add noise to the encoded data, 

value from popupmenu1 is selected and then HAM BSC for 
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Hamming (11, 7), LB BSC for Hamming (7, 4) and RS BSC 

for RS (7, 3) encoding button is selected. For adding AWGN  

noise to the data SNR value selected from popupmenu2,HAM 

AW… selected to add noise to the  Hamming(11,7), LB 

AWGN for Hamming(7,4)and RS AWGN for RS (7,3). 

 

Step3: For decoding of encoded data passed from BSC for 

Hamming (11, 7) HAM AG… is selected, for Hamming (7, 4) 

LB AGN D is selected and for RS (7, 3) RS AGN D is 

selected. For decoding of encoded data passed from AWGN 

for Hamming (11, 7) HAM BS… is selected, for Hamming (7, 

4) LB BSC D is selected and for RS (7, 3) RS BSC D is 

selected. 

 

Step4: To see the BER for data decoded and data sent push 

buttons are there. 

 

Step5: BER BSC selected to plot BER versus error probability 

for BSC. 

 

Step6: BER AW selected to plot BER versus SNR for 

AWGN. 

 

Fig 2: Data passed without using codes 
 

 

 
Fig 3: Data passed through BSC using codes 

 
Fig 4: Data passed through AWGN using codes 
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Fig 5: BER versus SNR in AWGN 

 

5. CONCLUSION  
The communication system is to communicate from one place 

to another in any way at any time whether using internet, 

mobile, television broadcasting, military services and in many 

more ways, if receiver receives corrupted data then it is of no 

use to the receiver. Data security is integral part of it. The 

solution is error detection and correction. Results shows that 

RS codes are better than Hamming code. BER is less in RS (7, 

3) as compared to Hamming (11, 4) and Hamming (7, 4). 

 
Fig 6: BER versus error probability in BSC 

 

In the present study we investigated the performance of Reed 

Solomon codes as a flexible single code. In future the 

comparison will be shown by taking more error correcting 

codes and more noises can be added to it. The BER 

performance improves as the code rate decreases. The BER 

performance also improves for large block lengths and RS 

codes shows a poor BER performance for lower SNR. As the 

SNR value increases the curve becomes steeper [7]. Further 

BCH codes can be added for the comparison. Length of 

message can vary in Hamming and RS codes for better results 

of error correction. 
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