

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, February 2012 – www.ijais.org

36

 Performance Evaluation in Distributed System using
Dynamic Load Balancing

Rutuja Jadhav
PG Student

KKWIEER, Nasik

Snehal Kamlapur
Associate professor

KKWIEER, NASIK

I Priyadarshini
PG Student

KKWIEER, Nasik

ABSTRACT

Distributed computing system (DCS) is the collection of

heterogeneous and geographically dispersed computing nodes.

Nodes co-operatively work to complete the task in the DCS.

But because of the dynamic nature of DCS, nodes may fail

randomly thus performance is an important factor to be

considered. In order to achieve improved performance

resource management plays an important role. In this paper

dynamic load balancing is focused to achieve better

performance results even in case of node failure using

regenerative theory.

General Terms

Distributed Computing Systems

Keywords

Distributed Computing System, Reliability, Load balancing

1. INTRODUCTION

1.1 Motivation
Distributed-computing system (DCS) is a collection of

heterogeneous and geographically dispersed computing

elements (CEs) that allows nodes to cooperatively execute

applications in a parallel fashion. Dynamic nature of DCS

affects the performance of DCS, as any node in the DCS can

fail at any random time. As there are heterogenous nodes in

the DCS, their service times vary. Because of which some

nodes in the DCS may be overloaded, some may be

underloaded or some of them may be even idle. Thus to avoid

this type of situation resource management plays important

role and helps in achieving better performance.

1.2 Existing Systems
In order to achieve better performance and to avoid above

problems, various solutions exist. Some solutions are based on

optimal task assignment, some use load balancing and some

use load sharing approach.

1.3 Concept
The aim of the paper is to use dynamic decentralized

algorithm in order to improve performance in the distributed

computing systems. In DCS nodes can fail at any random

time, thus assuming backup nodes to all computing nodes and

using decentralized dynamic load balancing we will try to

improve performance.

2. LITERATURE SURVEY
To date different methods were proposed based on Task

assignment, load balancing and load sharing.

2.1 Based on Resource Management

Whenever tasks enter into a DCS, following methods [1] are

available in order to assign those tasks to the processor

2.1.1 Task Assignment Approach
In this approach each process submitted is viewed as a

collection of related tasks and these tasks are scheduled to

suitable nodes so as to improve performance. In this it is

assumed that process is already split into tasks, speed of each

processor is known, computation by tasks is known, speed of

processor is known, processing cost of each task on every

node is known, interprocess communication between tasks is

known also resource requirements of the tasks and available

resource at each node is known. Based on above all

information an optimal assignment of tasks is found. But

reassignment of the tasks is generally not possible in this

approach.

2.1.2 Load Balancing Approach
 It is also known as load leveling approach. In this approach

all processes submitted by the users are distributed among the

nodes of the system so as to equalize the workload among the

nodes by transparently transferring workload from heavily

loaded nodes to lightly loaded nodes. It can be classified as

static versus dynamic algorithms. Static algorithms use only

information about the average behavior of the system ignoring

the current state of the system. Dynamic algorithms react to

the system state that changes dynamically. Static algorithms

are further classified as Deterministic versus Probabilistic.

Deterministic algorithms use the information about the

properties of the nodes and characteristics of the processes to

be scheduled to deterministically allocate processes to nodes.

Probabilistic algorithms uses information regarding static

attributes of the system such as the number of nodes,

processing capability of each node, network topology and so

on to formulate simple placement rules. Dynamic algorithms

can be centralized or distributed. In Centralized algorithms the

responsibility of scheduling physically resides on a single

node called centralized server node. In distributed algorithms

the work involved in making process assignment decision is

physically distributed among the various nodes of the system.

Distributed algorithms may be further classified as

Cooperative and Non-Cooperative. In Non-Cooperative

algorithms individual entities act as autonomous entities and

make scheduling decisions independently of the actions of

other entities. In Cooperative algorithms distributed entities

cooperate with each other to make scheduling decisions.

Following issues are to be considered while designing load

balancing algorithms

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, February 2012 – www.ijais.org

37

Load Estimation Policy: To estimate workload of a particular

node of the system. CPU utilization of the node is the measure

used.

Process Transfer policy: Threshold policy is used to decide

whether a node is lightly loaded or heavily loaded. It can be

static where each node has a predefined threshold value

depending on its processing capability. Whereas in dynamic

the threshold value of a node is calculated

Location policies: In order to select destination node

following policies are used: 1] Threshold: In this a destination

node is selected randomly.2] Shortest: In this distinct nodes

are chosen at random and each is polled to determine its load

and then the process is transferred to the node having

minimum load value. 3] Bidding: in this each node plays 2

roles manager and contractor. Manager represents a node

having a process in need of a location to execute. Contractor

represents a node that is able to accept remote processes. To

select a node, manager broadcasts a request for bids message

to all nodes then controller returns a bid to manager which

contains prices based on processing capability, memory size,

resource availability and so on .The manager chooses the best

bid. And 4] Pairing : In this 2 nodes that differ greatly in load

are temporarily paired with each other and load balancing is

carried out by transferring process from overloaded node to

under loaded node.

State Information Exchange policies: 1] Periodic broadcast:

each node broadcasts its state information only when the state

of the node changes because of arrival or departure of a

process. 2] On demand Exchange: A node broadcasts a state

information request message when its state switches from

normal to under loaded or overloaded region. Then the other

node sends current state.3] Exchange by Polling: A node

searches a suitable partner by randomly polling other nodes

one by one.

Priority Assignment Policies: 1] Selfish: Local processes are

given higher priority than remote processes. 2] Altruistic:

Remote processes are given higher priority than local

processes.3] Intermediate priority of processes depends on the

number of local processes and number of remote processes at

the concerned node.

Migration Limiting Policies: Classified as Controlled and

Uncontrolled. In Uncontrolled a process may be migrated any

number of times while in Controlled a migration count is used

to fix a limit on the number of times a process may migrate.

2.1.3 Load Sharing Approach
It assumes that instead of balancing load on all nodes it is

necessary and sufficient to prevent the nodes from being idle

or having more than 2 processes. So called load sharing.

In this paper we will focus on Load balancing as the process

scheduling technique in order to improve the performance.

Load balancing as discussed in above section can be Static or

Dynamic. Let us see the comparison of static v/s dynamic

load balancing algorithms

Following table gives the comparison between two:

TABLE I Comparative study of stataic and dynamic lb

Sr.

No.

Parameters Static LB Dynamic LB

1 Workload

Assignment

Compile

Time

Run Time

2

P

E

R

F

O

R

M

A

N

C

E

Response

Time

Less More

Reliability Less More

Resource

Utilization

Less More

Overhead Less More

Processor

Thrashing

No Substantial

Stability More Less

Predictability

More

Less

Adaptability

Less

More

Thus observing above comparison we can say that even

though dynamic load balancing is complicated but can

produce better performance results. Thus in the following

paper we will focus on dynamic load balancing to achieve

better performance.But as discussed in above sections

Dynamic load balancing can be Centarlized or Decentralized.

Our focus will be on Decentralized, but again it is classified as

Cooperative or Non- Cooperative. Our focus will be on

Cooperative.

2.2 Deterministic communication delays

 H.lee et al. [2] assumes one execution predictor, by which the

execution time of the nodes will be known and thus allocate

tasks to the nodes with less execution time. J. Palmer et al.

[13] Model based on hyperdistribution is constructed and

anayzed, which is used to evaluate and optimize multiple

server systems subject to breakdowns and repairs.

2.3 Exploiting a priori information on the

network configuration

S. srinivasan et al. [3] considers initial network configuration,

processor speed, type of interconnection between nodes and

other number of parameters that define relationship between

them. V. Ravi et al. [12] Task allocation algorithm for

heterogenous distributed computer systems is discussed

considering hardware configuration is fixed inoder to

compensate for delays

2.4 Heuristics algorithms such as genetic

algorithms and simulated annealing

Simulated annealing (SA) is a generic probabilistic

metaheuristic for the global optimization problem of locating

a good approximation to the global optimum of a given

function in a large search space. D. vidyarthi et al. [4] used to

find the assignment of modules to processors such that a

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, February 2012 – www.ijais.org

38

measure of performance is optimized, the requirements of

each module are met and the capacities of the resources are

not violated. D. Vidyarthi et al. [11] Genetic algorithms has

emerged as an suceessful tool for optimization.Allocation

algorithm based on GA is discussed in order to consider the

identification of an appropriate allocation by applying genetic

operators crossover and mutation on candidate solutions.

2.5 Using Static load balancing

 Dai et al. [5] Load balancing takes place at the instant of

arrival of any job rather than waiting for transfer instant. Also

it computes the job finish time at the arrival instant rather than

waiting for estimating instant.

2.6 Using dynamic load balancing

 pezoa et al. [6] considers a probabilistic framework to

characterize service reliability by solving dynamic load

balancing problem. It uses the concept of stochastic

regeneration for achieving reliability.

As discussed earlier we will focus on Load balancing

approach. We will be focusing on dynamic load balancing

approach as it has many advantages over Static load balancing

as seen above.

3. SYSTEM ARCHITECTURE AND

WORKFLOW

Consider a set of n nodes in the DCS. Each node will

broadcast its queue information. Thus all nodes will have load

on all nodes and also the overall system load. Each node then

will check whether it is overloaded or underloaded by

comparing its load with the systems load. Overloaded nodes

will then perform load balancing by identifying the recipient

or under loaded nodes to which extra task transfer will take

place. In case of any regeneration event or node failure, load

balancing will be performed at that instant. Thus achieving

better performance.

Assumptions followed by pezoa are also followed in the

proposed method and are as follows:-

1] All random variables such as service time ST of task at any

node, transfer time TT of QI packet, failure time FT of any

random variable, transfer time TFN of failure notice and

transfer time of group of tasks TTG are exponentially

distributed. We will assume any other random distribution and

compare the performance.

2] All random variables are mutually independent

3] Mean transfer time of group of tasks follows first order

approximation.

4] There are no external tasks arriving in the DCS after t = 0.

5] Each node is equipped with back up nodes.

Load Balancing Issues discussed in section I are resolved in

the proposed system as follows :-

1] Load Estimation Policy: CPU queue length will be

considered as the workload of the node.

2] Process Transfer Policy: It is dynamic. The nodes will be

computing its extra workload with reference to average load

in the system.

3] Location Policy: Overloaded nodes will identify randomly

set of under loaded nodes.

4] State information Exchange Policy: It will use periodic

broadcast and will broadcast its state information whenever

there is any change.Node state describes 1) number of tasks

queued at each node, 2) whether a particular node is

functioning or down and 3) number of tasks in transit to

particular node.

5] Priority Assignment policy: It may use Intermediate

priority of processes which depends on the number of local

processes and number of remote processes at the concerned

node.

6] Migration Limiting Policy: In this case Controlled policy

will be used and up to some threshold value migration may

take place.

Following figure shows the overall workflow of the system

figure I: workfolw of the system

4. DETAILED DESIGN

4.1 System Model
Reallocation Policy:

1] LB will be performed by all the nodes independently and

will identify whether it is overloaded or under loaded. Excess

load will be computed using following equation:

Tasks are enqueued in the
queue of all nodes

Nodes broadcast their

Queue information

Nodes check whether

they are imbalanced

Identification of

underloaded nodes

Task Transfer

Occurance of

Regenaration

eveEvent Node Failure

Failure Notice

Notice

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, February 2012 – www.ijais.org

39

     ,bj

lwl

j

bjb

ex

j tMtQtL

j 






where
       blj

n

jllbjbj tQtQtM ,1 is the

estimate of the workload in the system as perceived by

the
j

th node at time jb Wtt ,
 is the collection of nodes

that are functioning as perceived by the
j

th node at time

btt 
.

 2] Each overloaded node will then calculate the tasks to

reallocate. For each overloaded node
j

, let jU
 be the

collection of candidate task-receiver nodes as all those nodes

that, at time bt
, are perceived by the sender node as

functioning and under loaded with respect to their own

perceived fair shares of the total workload; namely,

  }.0:{ jb

ex

kjj WKtLKU 
where

vj
and Let

 b

ex

kj tL
is the excess load at the kth functioning node as

perceived by the jth node and is defined as

      lwflbjkbkjb

ex

kj tMtQtL   /
.

3] Each overloaded node will then partition its excess task

among the available under loaded nodes. jth node partitions its

excess load among all the candidate task receiver nodes. For

the kth candidate task-receiver node, the partition jkp
 is

defined as
   b

ex

ljb

ex

kjjk tLujltLp  
whenever.

jUK
For convenience, the partition

0jip
 for

all jUi
.

4] In the event of any node failure, back up node will

broadcast the Failure Notice and redistribute unserved taks to

under loaded nodes.

5] At any regeneration event, LB algorithm will be executed.

Regeneration time, is the minimum of the following five

random variables: the time to the first task service by any

node, the time to the first occurrence of failure at any node,

the time to the first arrival of a QI packet at any node, the time

to the first arrival of an FN packet at any node, or the time to

the first arrival of a group of tasks at any node.

4.2 Mathematical Model
a) Let N = { N1, N2,…Nn } be the set of nodes in the

DCS, wherein nodes can be Functioning nodes, Non-

Functioning nodes, Back up nodes, Unbalanced nodes,

or Balanced nodes.

b) Let T = {T1, T2 ...Tm} be the set of tasks that can be

assigned to any nodes in the DCS.

c) And let F = { F1, F2,......Fk } be the set of various

functions performed in the DCS like Broadcasting no.

of tasks at each node, Checking for imbalance,

Identifying set of recipient nodes, Load balancing to

transfer load, Redirecting Load of Failed or non-functioning

node etc.

Activity 1:

Task Assignment

 Set T Set N

Activity 2:

- After broadcasting queue information all nodes will

check whether they are overloaded or under loaded.

- Let set O indicate overloaded nodes and set U

indicate under loaded nodes.

Set N Set O

Activity 3:

Set of overloaded nodes perform load balancing and find out

recipient nodes in order to transfer load.

 Set O Set U

N1

N2

.

.

Nn

N5

T1

T2

.

.

Tm

N5

N1

N2

.

.

Nn

O1

.

Oi

U1

.

Uj

O

1

O

2

.

Oi

U

1

U

2

.

Uj

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, February 2012 – www.ijais.org

40

5. EXPERIMENTAL SETUP
Proposed system will be demonstrated in 2 ways:-

1] NS-2 Simulation: In this demonstration wireless nodes will

be considered.

2] On Distributed Environment:

Configuration of real time systems will be:

 Nodes may have configuration:-

Intel P IV 3.0 GHz HT Processor

RAM 512 MB, 80 GB SATA HDD

And /or

Intel Core 2 Duo

E7400, 2.8 GHz HT Processor, RAM 2GB

250 GB SATA HDD

6. TEST CASES
Table III Test cases

Test

id

Test

description

Expected

input

Actual output

1.

Tasks n > 2

Number of

tasks are

assigned to set

of n nodes

where n > 2.

Proper load

balancing among

all n nodes and

improved

performance.

2. Arrival of

External tasks

At some

random

amount of time

some tasks

enters DCS

Considering it as

one of the

regeneration event

Load balancing

should be

performed again.

3 Node failure At some

random time

one of the

functioning

node should go

down.

Back up node

should redistribute

all incomplete

tasks to other

nodes.

4 Threshold for

migration

Migration of

jobs should not

cross threshold

value

Migration of job

will be stopped if it

has crossed

threshold value

5. EXPECTED RESULT DISCUSSION
As per the proposed system it is expected that the overall

performance of the system should improve. No nodes should

be overloaded for maximum time and no nodes should be idle

in the system. Overall Response time of the system should be

minimized. All the tasks allocated in the system should be

completed before all the nodes in the system fails.

7. CONCLUSION
The proposed method assumes n nodes and each node is

associated with back up node. Back up nodes will not serve

the tasks but will transfer the unserved tasks to other

underloaded nodes. At the balancing instant overloaded nodes

are transfering extra load to the underloaded nodes,

performing load balancing of the system. Even in case of node

failure back up nodes take care of the unserved tasks.Thus we

conclude that even in case of node failure or regeneration

event above proposed method will help in improving the

performance.

8. REFERENCES
[1] P. K. Sinha, “Distributed Operating Systems – Concepts

and Design, IEEE Computer Society Press.

[2] H. Lee, S. Chin, J. Lee, D. Lee, K. Chung, S. Jung, and

H. Yu, “A Resource Manager for Optimal Resource

Selection and Fault Tolerance Service in Grids,” Proc.

IEEE Int’l Symp. Cluster Computing and the Grid

(ISCCG), 2004.

[3] S. Srinivasan and N. Jha, “Safety and Reliability Driven

Task Allocation in Distributed Systems,” IEEE Trans.

Parallel and Distributed Systems, vol. 10, no. 3, pp. 238-

251, Mar. 1999.

[4] D. Vidyarthi and A. Tripathi, “Maximizing Reliability of

a Distributed Computing System with Task Allocation

Using Simple Genetic Algorithm,” J. Systems

Architecture, vol. 47, pp. 549-554, 2001.

[5] Y.-S. Dai and G. Levitin, “Optimal Resource Allocation

for Maximizing Performance and Reliability in Tree-

Structured Grid Services,” IEEE Trans. Reliability, vol.

56, no. 3, pp. 444-453, Sept.2007.

[6] Jorge Pezoa, Sagar Dhakaal, Majeed Hayat,

“Maximising service reliability in distributed computing

systems with random node failures : Theory and

implementation”,IEEE transaction on parallel and

distributed systems, vol. 21,no. 10 october 2010

[7] S. Dhakal, B. Paskaleva, M. Hayat, E. Schamiloglu, and

C. Abdallah, “Dynamical Discrete-Time Load Balancing

in Distributed Systems in the Presence of Time Delays,”

Proc. IEEE Conf.Decision and Control (CDC), 2003.

[8] Z. Lan, V. Taylor, and G. Bryan, “Dynamic Load

Balancing forAdaptive Mesh Refinement Application,”

Proc. Int’l Conf. ParallelProcessing (ICPP), 2001.

[9] V. Ravi, B. Murty, and J. Reddy, “Nonequilibrium

Simulated- Annealing Algorithm Applied to Reliability

Optimization ofComplex Systems,” IEEE Trans.

Reliability,vol. 46, no. 2, pp. 233-239, June 1997.

[10] G. Koole, P. Sparaggis, and D. Towsley, “Minimizing

Response Times and Queue Lengths in Systems of

Parallel Queues,” J. Applied Probability, vol. 36, pp.

1185-1193, 1999.

[11] D. Vidyarthi and A. Tripathi, “Maximizing Reliability of

a Distributed Computing System with Task Allocation

Using Simple Genetic Algorithm,” J. Systems

Architecture, vol. 47,pp. 549-554, 2001.

[12] V. Ravi, B. Murty, and J. Reddy, “Nonequilibrium

Simulated-Annealing Algorithm Applied to Reliability

Optimization of Complex Systems,” IEEE Trans.

Reliability, vol. 46, no. 2, pp. 233-239, June 1997.

[13] J. Palmer and I. Mitrani, “Empirical and Analytical

Evaluation of Systems with Multiple Unreliable

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, February 2012 – www.ijais.org

41

Servers,” Proc. Int’l Conf. Dependable Systems and

Networks, pp. 517-525, 2006.

[14] R. Shah, B. Veeravalli, and M. Misra, “On the Design of

Adaptiveand Decentralized Load Balancing Algorithms

with Load Estimation for Computational Grid

Environments,” IEEE Trans. Parallel and Distributed

Systems, vol. 18, no. 12, pp. 1675-1686, Dec. 2007.

[15] L. Tassiulas and A. Ephremides, “Stability Properties of

Constrained Queuing Systems and Scheduling Policies for

Maximum Throughput in Multihop Radio Networks,”

IEEE Trans. Automatic Control, vol. 37, no. 12, pp.

1936-1948, Dec. 1992.

[16] M. Neely, E. Modiano, and C. Rohrs, “Dynamic Power

Allocation and Routing for Time Varying Wireless

Networks,” Proc. IEEE INFOCOM, 2003.

[17] G. Koole, P. Sparaggis, and D. Towsley, “Minimizing

ResponseTimes and Queue Lengths in Systems of

Parallel Queues,”J. Applied Probability, vol. 36, pp.

1185-1193, 1999.

[18] L. Golubchik, J. Lui, and R. Muntz, “Chained

Declustering: Load Balancing and Robustness to Skew

and Failures,” Proc. WorkshopResearch Issues on Data

Eng., pp. 88-95, 1992.

[19] A. Brandt and M. Brandt, “On a Two-Queue Priority

System withImpatience and Its Application to a Call

Center,” Methodology and Computing in Applied

Probability, vol. 1, pp. 191-210, 1999.

[20] M. Hayat, S. Dhakal, C. Abdallah, J. Birdwell, and J.

Chiasson, “Advances in Time Delay Systems” Dynamic

Time Delay Models for Load Balancing. Part II:

Stochastic Analysis of the Effect of Delay Uncertainty,

pp. 355-368, Springer-Verlag, 2004.

[21] S. Dhakal, M. Hayat, J. Pezoa, C. Yang, and D. Bader,

“Dynamic Load Balancing in Distributed Systems in the

Presence of Delays: A Regeneration-Theory Approach,”

IEEE Trans. Parallel and Distributed Systems, vol. 18,

no. 4, pp. 485-497, Apr. 2007.

[22] S. Dhakal, M. Hayat, J. Pezoa, C. Abdallah, J. Birdwell,

and J. Chiasson, “Load Balancing in the Presence of

Random Node Failure and Recovery,” Proc. IEEE Int’l

Parallel and Distributed Processing Symp. (IPDPS),

2006.

