

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.4, May 2012 – www.ijais.org

22

 Automatic Test Case Generation using Sequence
Diagram

Vikas Panthi

Department of Computer Science & Engg.,
National Institute of Technology, Rourkela

Durga Prasad Mohapatra
Department of Computer Science & Engg.,
National Institute of Technology, Rourkela

ABSTRACT

Software Testing plays a important role in Software

development because it can minimize the development cost.

We Propose a Technique for Test Sequence Generation using

UML Model Sequence Diagram.UML models give a lot of

information that should not be ignored in testing. In This

paper main features extract from Sequence Diagram after that

we can write the Java Source code for that Features According

to ModelJunit Library. ModelJUnit is a extended library of

JUnit Library. By using that Source code we can Generate

Test Case Automatic and Test Coverage. This paper describes

a systematic Test Case Generation Technique performed on

model based testing (MBT) approaches By Using Sequence

Diagram.

Keywords

Test Case Sequence, Model Based Testing, ModelJunit,

EFSM, Sequence Graph.

1. INTRODUCTION
Testing is an important stage of software development and

maintenance. It provides a method to establish confidence in

the reliability of software. it is a challenging task for analysis

of unified modelling language (UML) models since the

information about a system is distributed across several model

views. UML models are intended to help to reduce the

complexity of a problem, with the increase in product sizes

and complexities. Still, the UML models themselves become

large and complex involving thousands of interactions across

hundreds of objects. it is cumbersome for generating test

models like control flow graph from source code. This is

especially true of large programs. The UML sequence

diagrams are used for modelling discrete behaviour of an

object through sequence graph. Such states and transitions are

critical to decide the specific operation invocations that would

be made based on the conditions arising during a scenario

execution. For unit level testing, we can derive tests from

UML state machine diagrams, which embody the behavioural

description of each component [4].

The information about a system is distributed across several

model views of a system, captured through a large number of

diagrams. UML models are intended to help reduce the

complexity of a problem, with the increase in product sizes

and complexities. Still, the UML models themselves become

large and complex involving thousands of interactions across

hundreds of objects. Many present day software products are

state based. In such systems, the system behaviour is

determined by its state [1]. In other words, a system can

respond differently to the same event in different states.

Therefore, unless a system is made to assume all its possible

states and tested, it would not be possible to uncover state-

based bugs. Adequate system testing of such software requires

satisfactory coverage of system states and transitions.

Generation of test specifications to meet these coverage

criteria can be accomplished by using the state model of a

system. It is a major problem to meet the requirement

specification for the systematic production of high-quality

software. However, it is a non-trivial task to manually

construct the state model of a system. Therefore, with

continually increasing system sizes, the issue of automatic

design of system test cases is assuming prime importance. A

properly generated test suite may not only locate the errors in

a software system, but also help in reducing the high cost

associated with software testing [4].

2. UML SEQUENCE DIAGRAMS
A Sequence diagram illustrates the objects that participate in a

use case and the messages that pass between them over time

for one use case. A Sequence diagram is a dynamic model that

supports a dynamic view of the evolving systems. It shows the

explicit sequence of messages that are passed between objects

in a defined interaction [14].
 The Sequence Diagram elements are separated into two

types:

Header Elements – It is in the header section of the

diagram.

Body Elements – It is in the body Section of Diagram.

The header portion of the sequence diagram represents the

components or objects of the system being modelled and are

laid out horizontally at the top of the diagram [11].

 Fig 1. Basic Elements of Sequence diagram

UML 2.0 Sequence Diagrams: Sequence diagrams are essential

UML artifacts for modeling the behavioral aspects of a system. The

diagrams are particularly well-suited for object-oriented software,

where they represent the flow of control during object interactions. A

sequence diagram shows a set of interacting objects and the sequence

of messages exchanged among them. The diagram may also contain

additional information about the flow of control during the

interaction, such as conditions (e.g. “if condition c then send

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.4, May 2012 – www.ijais.org

23

message m else send message n”) and iteration (e.g. “send message

m multiple times”) or state-dependent behavior [9].

Fig 2. Sequence diagram and its various notations [12]

3. TEST CASE GENERATION USING

SEQUENCE DIAGRAM
In This section, we describe our proposed method to

automatically generate test Cases from UML Sequence

diagram. We first provide some basic definitions of relevant

test coverage criteria. After that we will defined our proposed

approach to the generation of test cases.

3.1 Some basic Definitions
Some of the basic terms will be used to in our methodology

are defined as follows.

3.1.1 Definition 1:
 Test case: A test case is the triplet [I, S, O], where I is the

initial state of the system at which the test data is input, S is

the test data input to the system and O is the expected output

of the system [from our paper]. The output produced by the

execution of the software with a particular test case provides a

specification of the actual software behavior.

3.1.2 Definition 2:
 Levels of testing: In object-oriented system, testing is

generally done at three different levels of abstraction: class

level, cluster level and system level. Class level testing test

the code for each operation supported by a class as well as all

possible method interactions within the class. Class-level

testing also requires testing all methods in each of the states

that a corresponding object may assume. At cluster-level

testing, the interactions among cooperating classes are tested.

System-level testing is carried out on all the clusters making

up a complete system.

3.1.3 Definition 3:
 Sequence Diagram : A sequence diagram is a tuple (L, O, E,

M, <, Ro,l, Ro,e, Ro,m) where L is a set of lifelines, O is a set

of Occurrence Specifications, E is a set of Execution

Specifications and M is a set of messages, < is a total ordering

on O, Ro,l is a relation- ship between O and L indicating

lifelines covered by Occurrence Specifications, Ro,e is a

relationship between O and E indicating initial and terminal

Occurrence Specifications of every Execution Specification,

Ro,m is a relationship between O and M indicating end points

of every message.

3.1.4 Definition 4:
Sequence graph: A Sequence can be viewed as a graph called

a Sequence graph G= (N, T), where N is the set of nodes

(vertices) of G and T is the set of edges or massage. In G,

nodes of edges. In G, nodes represent object and edges

represent [5] massage between object. Since every node of a

Sequence graph represents a Object, we shall use the terms

„node‟ and „Object‟ interchangeably when no confusion

arises. Without any loss of generality.

3.1.5 Definition 5:
Directed graph or graph: The number of predecessors of a

node is its in-degree, and the number of successors of the

node is its out-degree. A path from a node x1 to a node xk in a

graph G = (V, E) is a sequence of nodes (x1, x2..., xk) such that

(xi, xi+1) ϵ E for every i, 1≤ i ≤ k-1.

3.1.6 Definition 6:
Extended Finite State Machine (EFSM): An Extended Finite

State Machine (EFSM) is defined as a 7 tuples

M= (I, O, S, D, F, U, T)

Where I= set of input symbols.

O= set of output symbols.

S= Set of symbolic states.

D= an n-dimensional linear space D1×D2 × Dn.

F= set of enabling functions fi: D→ {0, 1}.

U= is a set of update functions Ui: Di→Dj

T= Transition relation T: S×F×I→ S×U×O

3.1.7 Definition 7:
Subpath: A subpath P from vertices ni to nk is a sequence of

nodes ni, ni+1, . . . , nk, where for each adjacent pair of nodes

(ni+j , ni+j+1) there is an edge in G for 0 <i< k - i.

3.1.8 Definition 8:
Transition path: We consider any sequence of transitions

from the initial state to a final state in a sequence graph to be a

transition path.

3.1.9 Definition 9:
Boundary: A boundary is defined by a set of data points. A

boundary consists of several segments and each segment of

the boundary is called a border. Each border is determined by

a simple predicate in the path condition [9]. In Figure 6,

consider the condition max_limit_money > withdraw_Money.

Here the variable max_limit_money represents the maximum

limit of withdraw money, in one transaction. The domain of

the variable max_limit_money is the set of all integers. For

values of max_limit_money less than equal to 40000

(max_limit_money <= 40000), the condition turns out to be

false. A boundary crossing occurs for some input where the

conditional predicate changes its boolean value from true to

false or vice versa.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.4, May 2012 – www.ijais.org

24

3.2 Some basic coverage Criteria
In this section, we discuss some of the relevant coverage

criteria which are used in our approach.

3.2.1 Object Coverage

 It covers every object in sequence diagram for basic test

generation. Object coverage is a test adequacy criterion that

requires tests to check programs‟ output variables [16]. All

variables still defined when executing in test scope (even

those which are not visible, such as private fields of objects)

are considered by object coverage.

3.2.2 Message Sequence Path criterion:

For each sequence diagram, there must be at least one test

case T such that when the software is executed using T, the

software that implements the message sequence path of the

sequence diagram must be executed. The message sequence

path coverage criterion is used to generate tests from the

sequence diagrams. For each sequence diagram in the

specification, a test case is generated for each normal and for

each alternative message sequence [22].

3.2.3 Full predicate coverage:

Full predicate coverage requires that each clause in the

predicate is tested independently by a test suite. In other

words, a test suite is said to achieve full predicate coverage if

each clause in each predicate on every transition is made to

independently affect the outcome of the predicate. Given a

test set TS and sequence graph G, TS must cause each clause

in every predicate on each message in G to take on the values

TRUE and FALSE in turn. But all the other clauses in the

predicate have values, such that the value of the predicate will

be the same as the clause being tested [4]. This ensures that

each clause in a condition is separately tested.

3.2.4 Boundary-testing criterion:

The boundary-testing criterion is satisfied for inequality

borders. If each selected inequality border B is tested by two

points (ON-OFF) of test input domain such that, if for one of

the point the outcome of a selected predicate r is true, then for

the other point the outcome of r is false. Also the points

should satisfy the initial path associated with B and the

considered points should be as close as possible to each other.

We should test carefully because domain boundaries are

particularly fault prone [11]. Boundary-testing criterion is a

criterion for ensuring that a boundary is tested adequately.

Instead of generating several test data values that achieve

transition path coverage, we only test the border determined

by a simple predicate. It helps to reduce the number of test

cases significantly; at the same time, the generated test cases

achieve very high test Coverage [4].

3.3 ATGSD–Our proposed approach to

Generate Test Cases
In this section we, discuss our proposed approach to generate

test cases from UML Sequence diagram. We have named our

approach, Automatically Test Sequences Generation from

Sequence Diagram (ATGSD).

Our approach for generating test cases is schematically shown

in figure 3. The first step is constructing the Sequence

diagram. The next step is to convert the Sequence diagram

into Sequence graph. Then, the graph is traversed to select the

predicate functions. In fourth step, we transform the predicate

into source code. Then, we construct the Extended Finite State

Machine (EFSM) from the code. Finally, we generate the test

data corresponding to the transformed predicate functions and

store the generated test data for future use. The test case

generation steps are discussed below in more detail.

3.3.1 Construction of Sequence Diagram
First, we construct the Sequence diagram. Sequence Diagram

offers a system-level view that describes the complete

function of a system or application because a Sequence

diagram captures each possible massage and predicate of the

system. Therefore, the use of Sequence Diagram helps reduce

the possibility of software “hangs” and other unexpected

behavior because you are forced to consider every alternative

to which the software needs to respond.

Fig 3 : Test Case Generation Process

You can design a system so that it scales to handle multiple

Object reactions and transitions based on any combination of

events. Sequence diagram are similar to graphical dataflow

programs in that they are self-documenting and promote the

easy transfer of knowledge between developers. A new

member of a design team can look at a sequence diagram and

quickly grasp the elements of a system.

3.3.2 Conversion of sequence diagram into

sequence graph
Then, we convert the sequence diagram into sequence graph.

a sequence graph G = (N, T), where N is the set of nodes

(vertices) of G and T is the set of edges or massages. In G,

nodes represent object and edges represent transitions or

massages between object. Without any loss of generality, we

assume that there is a unique node that corresponds to the

initial object and that one or more nodes represent the final

states.

3.3.3 Model parser/ Scanner
The purpose of the model parser is to keep the path traversal

details of the sequence diagram.

3.3.4 Selection of Predicate

Then, we perform a traversal on the sequence graph for

selection of predicate. For traversal, we can use any traversal

technique like depth first search (DFS) or breadth first search

(BFS) to ensure that every transition is considered for

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.4, May 2012 – www.ijais.org

25

predicate selection. In this work, we have used a DFS

traversal, as with DFS, it becomes easy to keep track of the

initial path in DFS. This also helps in achieving the transition

path coverage.

3.3.5 Transformation of Predicate into source

code
Consider an initial set of data B0. Here, B0 consists of all the

variables that affect a predicate r in the path P of a state chart

diagram. As mentioned in our approach, we compute two

points named ON and OFF for a given border satisfying the

boundary-testing criterion. We transform the relational

expressions of the predicates to a function F called predicate

function. If the predicate r is of the form (Exp1 op Exp2),

where Exp1 and Exp2 are arithmetic expressions and op is a

relational operator; then F = (Exp1- Exp2) or (Exp2- Exp1)

depending on whichever is positive for the data B0. Next, we

successively modify the input data B0 such that the function F

decreases and finally turns negative. When F turns negative, it

corresponds to the alternation of the outcome of the predicate.

Hence, as a result of the predicate transformation, the point at

which the outcome of a predicate r changes, corresponds to

the problem of minimization of the function F, which is

achieved through repeated modification of the input data

values. We have transformed these predicate into source code

[4].

3.3.6 Test case generator
The test case generator produces new test cases that would

cover the target branches/conditions in the code from the

structure file and determines what conditions/branches should

be targeted for new test case generation.

3.3.7 Test case analyzer
Test case analyzer evaluates by running each test case in the

program and maintains a track of condition and branch

coverage. If the test case satisfies the coverage criteria it

generates a report otherwise the analysis result is used by test

case generator for further test case generation.

3.3.8 Test Case Result
The report generator prints the result which includes the

generated test cases, condition and branch coverage and

percentage of path coverage.

3.3.9 Construction of EFSM from the source code
 In this step, the Extended Finite State Machine (EFSM) is

constructed from the source code automatically. EFSM, is

very popular for modelling state-based systems like computer

communications, telecommunications, and industrial control

systems. An EFSM consists of states(including an initial state

and an exit state) and transitions between states. A transition

is triggered when an event occurs and a condition associated

with the transition is satisfied. When a transition is triggered,

an action(s) may be performed. The action may manipulate

variables, read input or produce output.

3.3.10 Matching Result & Storage of test cases
 For finding the minimum of a predicate function F, the basic

search procedure we use is the alternating variable method ,.

This method is based on minimizing F with respect to each

input variable in turn. An initial set of inputs can be randomly

generated by initializing the data variables. Two data values

Bin (inside boundary) and Bout (outside boundary) are

generated using the search procedure mentioned. These two

points are on different sides of the boundary. For finding these

two data points, a series of moves is made in the same

direction determined by the search procedure mentioned

above and the value of F is computed after each move. The

size of the step is doubled after each successful move. This

makes the search for the test data quick. A successful move is

one where the value computed by the predicate function F is

reduced. When the minimization function becomes negative

(or zero), the required data values Bin and Bout are noted.

These points are refined further to generate a data value,

which corresponds to a minimum value of the minimization

function along the last processed direction. This refinement is

done by reducing the size of the step and comparing the value

of F with the previous value. Also, the distance between the

data points is minimized by reducing the step size. Now, we

generate the test data for each conditional predicate in the

state chart diagram. Then, the generated test data are stored in

a file. Now, we present our ATGSD algorithm to generate test

cases, for Bank ATM System, in pseudo code form.

Pseudo code of ATGSD algorithm for Bank ATM

System

Input: Sequence Graph, Pin, Your_Balance(Current balace of

customer), Withdraw_Money(customer wants withdraw

money), Card_read (Boolean(true, false)),

CustomerWantsAnotherPrint(Boolean (true, false)), Print ()}

Output: TSi(Test Sequence), SC (State Coverage),

TC (Transition Coverage), ACC (Action Coverage), TPC

(Transition Pair Coverage), EFSM Graph

Begin
State enum {Idle, Reading_Card, CardReadSuccessfully,

Reading_Pin, PinReadSuccessfully, Choosing_Transaction,

SendingToBank, HandlingInvalidPin,

Performing_Transaction, WithdrawMoney, LessMoneyExit,

PrintingReciept, AskForAnotherPrint, Exit}

If (state=Idle) then

Print (TSi, Current State, Final State)

State← Reading_Card

End if

If (state= Reading_Card AND card_read = false) then

Print (TSi, Current State, Final State)

Print (“Card Not Readable Please Check”)

State ← Exit

End if

If (state= Reading_Card AND card_read = true) then

Print (TSi, Current State, Final State)

State ← Choosing_Transaction

End if

If (state= Choosing_Transaction AND card_read=true) then

Print (TSi, Current State, Final State)

State ← SendingToBank

End if

If (state= SendingToBank AND pin !=1234) then

Print (TSi, Current State, Final State)

state← HandlingInvalidPin

End if

End if

If (state= SendingToBank AND pin !=1234) then

Print (TSi, Current State, Final State)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.4, May 2012 – www.ijais.org

26

Print(“You are given invalid Pin No.”);

State ← Exit

End if

If (state= SendingToBank AND pin =1234) then

Print (TSi, Current State, Final State)

State ← Performing_Transaction

End if

If (state= HandlingInvalidPin AND pin =1234)) then

Print (TSi, Current State, Final State)

State ← Performing_Transaction

End if

If (state =Performing_Transaction AND pin =1234 AND

card_read=true AND Your_Balance >=withdraw_Money

AND withdraw_Money <= max_limit_money) then

If((withdraw_Money %100)= null)

Print(“Withdraw Money”)

Print(“After Withdraw Your Balance in Account”)

State ← withdraw_Money

Print (TSi, Current State, Final State)

Else

Print(“please give withdraw money multiple of 100”)

Print (TSi, Current State, Final State)

state ←Exit

End if

End if

If (state= Performing_Transaction AND pin =1234 AND

card_read=true AND Your_Balance >=withdraw_Money

AND withdraw_Money > max_limit_money) then

Print("Your maximum limit in one transaction is over");

Print (TSi, Current State, Final State)

state=Exit;

If (state = withdraw_Money AND Print=true) then

If(Print = true)

Print (TSi, Current State, Final State)

state←PrintReciept

End if

End if

If (state= Performing_Transaction AND pin =1234 AND

card_read=true AND Your_Balance < withdraw_Money

AND withdraw_Money <= max_limit_money) then

Print(“You have insufficient balance for withdraw Money”);

Print (TSi, Current State, Final State)

state← Exit

If (state= PrintingReciept AND AskForAnotherPrint =true)

then

Print (TSi, Current State, Final State)

Print (“Dispense Return Money”)

state← Exit

End if

If (state= PrintingReciept AND AskForAnotherPrint =false)

then

Print(“”please take Transaction Reciept)

Print (TSi, Current State, Final State)

state← Exit

End if

End

Working of ATGSD for with Bank ATM System
In this Section, we are explaining the working of our ATGSD

algorithm using Bank ATM example.

The Bank ATM is a Money dispenser Machine in which we

can withdraw Money from machine. The sequence diagram of

a Bank ATM object for various events of interest is shown in

figure 4.

The objects first enter into idle state, after those objects insert

the ATM card. After that machine will enter into

ReadingCard State which read the card and store the

information about customer for one transaction. If there is

some problems for reading it will enter in Exit State. If

machine haven‟t any problem for reading the card then it will

enter into next state Transaction State. After that all the

information of customer send to bank in SendToBank State

because by the using this state all the personal information

about customer will be secure. After that customer insert his

Pin and Object will go to Performing Transaction State. If Pin

is not match with original Pin then object enters to Exit State

due to invalid Pin number. After that if Pin is match to

original Pin. Then will machine display Amount Window for

Customer in this state customer will have condition for

withdrawing money.

1) WihtdrawMoney = 100 × n

Means customer can withdraw money multiple of 100.
2) WithdrawMoney <= 40000

3) WithdrawMoney <=Your_Balance

If any condition will false then object can‟t withdraw money

and go to Exit State.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.4, May 2012 – www.ijais.org

27

ExitPrintRecieptW ithdrawMoneyPerformin_TransactionHandling Invalid PinSendingToBankChoosing _TransactionReading_CardIdle

1: InsertCard1: InsertCard

2: CardNotReadable2: CardNotReadable

3: CardRead Successfully3: CardRead Successfully

4: Specific Enter4: Specific Enter

5: DisApproved5: DisApproved

6: Invalid Pin6: Invalid Pin

7: Performing Transaction7: Performing Transaction

8: Checking For Transaction8: Checking For Transaction

9: Print9: Print

10: Ask For Another Print10: Ask For Another Print

9: Exit DueTo Less Money9: Exit DueTo Less Money

11: Exit After Print11: Exit After Print

12: Exit After Reprint12: Exit After Reprint

Fig 4: Sequence Diagram of Bank ATM System

3.4 AN IMPLEMENTATION OF OUR

APPROACH
In this section we discuss the results obtained by

implementing the proposed approach. The complete approach

is implemented using JAVA and Net Beans IDE version 7.0.1.

Implementation is done by taking Bank ATM System as the

case study. We have implemented our method for generating

test cases automatically from UML Sequence diagram in a

prototype tool, named ModelJUnit. We used Rational Rose to

produce the UML design artefact. The architecture of the

ModelJunit is shown in Figure 6.ModelJUnit is an open

source Library, released under the GNU GPL license [13].

ModelJUnit allows us to write simple Sequence diagram as

Java classes, then generate tests from those models and

measure various model coverage metrics as well as Extended

finite state machine (EFSM). Model-based testing allows us to

automatically generate test suites from a model of a system

under test. ModelJUnit is a Java library that extends JUnit to

support model-based testing. ModelJUnit allows us to create

simple FSM or EFSM models as Java classes, then generate

tests from those models and measure various model coverage

metrics. Here, the models are extended finite statecharts that

are written in a familiar and expressive language: JAVA [1].

 Fig 5. Architecture of ModelJunit

Fig 6: Sequence Graph for Bank ATM Sequence Diagram

 Fig 7 : Screenshot of source code

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.4, May 2012 – www.ijais.org

28

The Starting Node and destination Node as well as the prefix

path conditions are displayed along with the test data. In our

prototype implementation, we have restricted the conditional

expressions in sequence diagrams to have only integer and

Boolean variables as these occur commonly. But, other

numeric data types can easily be considered. Further, for the

prototype.

Fig 8 : Screenshot of generated EFSM from source code

implementation we have assumed that the necessary

constraints are available in notes. The GUI provides a friendly

and efficient user interface to user to generate testing code and

connect user defined model with ModelJUnit.

Fig 9: Screenshot of generated test data with test coverage

The GUI gives the flexibility to view the sequence diagram.

Figure 6 shows the UTG display of the JAVA source file of

example mentioned. Figure 8 shows the generated EFSM

from the source code. And the set of test cases generated

corresponding to our ATGSD algorithm with the test coverage

achieved are shown in Figure 8 . In Figure 7, the initial node,

the last node and the test data corresponding to each predicate

are also shown. The transition path that is considered while

generating the test data in each case is also displayed along

with the test data as shown in Figure 9. The percentage of test

coverage which are achieved by implementing the case study

of Bank ATM object is shown in the Table I.

TABLE I

Table 5.1: TABLE Showing Test Coverage Achieved (NO:

No. of Object, NMP: No. of Message Path Coverage, OC:

% of Object Coverage, MPC: % of Message Path

Coverage, MPC1: % of Message Pair Coverage, AC: % of

Action Coverage)

3.5 RELATED WORK
Lorenzoli et al. [17] model a system based on a captured trace

including method invocations, parameter values, and global

state. Similar to our approach, they use Finite State Machines

(FSM) and Daikon-invariants to create the EFSM. These

EFSM are used for test case selection and test suite

optimization with the goal of increasing the coverage of the

model. The approach presented in this paper uses similar

means to generate the EFSM, but with different algorithms

more suitable for MBT, and we also generate model source

code from these models, whereas Lorenzoli et al. generate no

tests nor code.

A method is introduced by Kansomkeat and Rivepiboon [18]

for generating test sequences using UML state chart diagrams.

They transformed the state chart diagram into a flattened

structure of states called testing flow graph (TFG). From the

TFG, they listed the possible event sequences which they

considered as test sequences. The testing criterion they used to

guide the generation of test sequences is the coverage of the

states and transitions of TFG

Also Abdurazik and Offutt [8] proposed test criteria based on

collaboration diagrams for static checking and dynamic

testing. They adapted traditional data flow coverage criteria in

the context of UML collaboration diagrams. It does not

generate several test data that achieve transition path

coverage, but our approach tests the border determined by a

simple predicate, which reduces the number of test cases

significantly. Also, our approach achieves transition path

coverage. Again our work achieves full predicate coverage as

we generate test data for each conditional clause. Again a

method is introduced by Korel [20] by using function

minimization method in the context of unit testing of

procedural programs. He generated test data based on actual

execution of the program under test using the function

minimization method and dynamic data flow analysis. Test

data are developed for the program using actual values of

input variables. If during a program execution an undesirable

execution flow is observed (e.g. the „actual‟ path does not

correspond to the selected control path), then the function

minimisation search algorithm is used to automatically locate

the values of input variables for which the selected path is

traversed. In addition, dynamic data flow analysis is used to

determine those input variables responsible for undesirable

program behaviour, leading to significant speedup of the

search process.

An elementary set of coverage criteria in software testing is

defined by Weiglhofer et al. [21]. Here, test purposes have

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.4, May 2012 – www.ijais.org

29

been presented as a solution to avoid the state space explosion

when selecting test cases from formal models. Although such

techniques work very well with regard to the speed of the test

derivation, they leave the tester with one important task that

influences the quality of the overall testing process. Then,

they showed how existing tools can be used to efficiently

derive test cases and suggest how to use the

coverage information to minimize test suites while generating

them. It would be straightforward to define further coverage

criteria based on logical expressions, such as, multiple

condition coverage, or other modified condition/decision

coverage variants.

3.6 CONCLUSION AND FUTURE

WORK
We have defined a methodology to generate test cases from

UML sequence diagrams. First, we have constructed the

sequence diagram for a given Case Study. Then the sequence

diagram is traversed, conditional predicates are selected and

these conditional predicates are transformed to source code.

Then, the test cases are generated and stored by using function

minimization technique.

From the sequence diagram, we perform a DFS to select the

associated predicates. After selecting the predicates, we guess

an initial dataset. We have generated test predicate conditions

from UML sequence diagram, which are used to generate test

cases.

Our technique achieves many important coverage like object

coverage, message path coverage, message path pair

coverage, action coverage. It also achieves full predicate

coverage as we generate test data for each conditional clause.

It can handle transitions with guards and achieves transition

path coverage. Here the number of test cases is minimized and

they achieve transition path coverage by testing the

boundaries determined by simple predicates. Moreover, our

planning to include other diagrams of UML to generate test

cases. In future, we will look into how the test cases can be

optimized and how other UML diagrams can be combined

and used to generate test cases and achieve higher coverage.

4. REFERENCES
[1] Priestley, Mark. 2005. Practical Object-Oriented Design

with UML. Tata McGraw-Hill, 2nd edition, 2005.

[2] Samuel, P., Mall, R., and Bothra, A. K. 2008. Automatic

test case generation using Unified Modeling

Language(UML) state diagrams. IET Software, 2(2),

2008, pp.79 – 93.

[3] Sharma, M. and Mall, R. 2009. Automatic generation of

test specifications for coverage of system state

transitions. Information and Software Technology, (51),

2009, pp.418 – 432.

[4] Ranjita Swain, Vikas Panthi, Prafulla Kumar Behera,

Durga Prasad Mahapatra 2012. Test Case Generation

Based on State Machine Diagram. International Journal

of Computer Information Systems, Vol.4, No 2, 2012 pp.

99- 124 .

[5] Offutt, J., Liu, S., A. Abdurazik and P. Ammann.

2003.Generating test data from state-based

specifications. software testing, verification and

reliability Softw. Test. Verif. Reliab. 2003; pp.25–53.

[6] Blanco, R., Fanjul, J. G. and Tuya, J. 2010. Test case

generation for transition-pair coverage using Scatter

Search. International Journal of Software Engineering

and Its Applications Vol. 4, No. 4, October 2010.

[7] OMG. Unified Modelling Language Specification, version

2.0, Object Management Group, www.omg.org, August

2005.

[8] Abdurazik, A. and Offutt, J. 2000. Using UML

collaboration diagrams for static checking and test

generation, Proceedings of 3rd Int. Conf. UML, Lecture

Notes in Computer Science, 2000, pp.383 – 395.

[9] F. Fraikin and T. Leonhardt. SeDiTeC – Testing Based on

Sequence Diagrams. In ASE‟2002.

[10] Michel, R. Blaha and James R. Rumbaugh. 2005. Object-

Oriented Modeling and Design with UML. Pearson, 2nd

edition, 2005.

[11] http://www.sequencediagrameditor.com/uml/sequence-

diagram.htm

[12] Philip Samuel, Rajib Mall, A Novel Test Case Design

Technique Using Dynamic Slicing of UML Sequence

Diagramse-Informatica Software Engineering Journal,

Volume 2, Issue 1, 2008.

[13] http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit.

[14] Dennis, Wixom, Roth. System Analysis & Design third

edition wiley india.

[15] Offutt, J. and Abdurazik, A. 1999. Generating tests from

UML specifications. In Proceedings of 2nd International

Conference. UML, Lecture Notes in Computer Science,

1999, pp. 416 – 429.

[16] Koster, K. and Kao, D. C. 2007. State coverage: A

structural test adequacy criterion for behavior checking.

In ESEC/FSE, 2007.

 [17] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè.

Automatic generation of software behavioral models. In

Proc. 30th Int‟l. Conf. on Softw. Eng. (ICSE‟08), pp.

501–510, Leipzig, Germany, May 2008.

 [18] Kansomkeat, S. and Rivepiboon, W. 2003. Automated-

generating test case using UML statechart diagrams. In

Proc. SAICSIT 2003, ACM, 2003, pp.296 – 300.

 [19] Abdurazik, A. and Offutt, J. 2000. Using UML

collaboration diagrams for static checking and test

generation, Proceedings of 3rd Int. Conf. UML, Lecture

Notes in Computer Science, 2000, pp.383 – 395.

[20] Korel, B. 1990. Automated software test data generation.

IEEE Trans. Software Engineering,, 16(8), 1990, pp. 870

– 879.

[21] Weighhofer, M., Fraser, G. and Wotawa, F. 2009. Using

coverage to automate and improve test purpose based

testing. Information and Software Technology, 51, 2009,

pp .1601-1617

