
 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.4, May 2012 – www.ijais.org 

 

30 

Integration of Bacteria Foraging Optimization and 

Case Base Reasoning for Ground Water Possibility 

Detection 

Chandni Kapoor                                 Harpreet Bajaj                                          Navdeep Kaur 
M.Tech Student (CSE)                          Assistant Professor                                            Assistant professor 
D.A.V.I.E.T, Jalandhar                               D.A.V.I.E.T, Jalandhar                                        K.C.E.T, Amritsar 

 

       

ABSTRACT  
Bacterial Foraging Optimization (BFO) is a population-based 

numerical optimization algorithm. This technique is proposed 

by K.M. Passino in 2002 to handle complex problems of the 

real world. Case-based reasoning is a unique  platform of 

concepts and techniques that touch upon some of the basic  

issues concerning to knowledge representation, reasoning and 

learning from experience. In this work, we have integrated 

Bacteria Foraging Optimization with Case Based Reasoning to 

detect ground water possibility in a given area. An algorithm 

has been proposed in this work. A problem case whose ground 

water possibility is to be determined is input to the system, BFO 

retrieves the best matching case from the Case Base and the 

ground water possibility of that Case is proposed as a solution 

to the problem case. 

Keywords  

Bacterial Foraging Optimization, Chemotactic, Case base 

reasoning,  Case Retrieval,  Ground water possibility. 

 

1. INTRODUCTION 
Bacterial Foraging Optimization (BFO) is a novel optimization 

algorithm based on the social foraging behavior of E. coli 

bacteria. The motile bacteria such as E. coli and Salmonella 

propel themselves by rotating their flagella. To move forward, 

the flagella counterclockwise rotate and the organism “swims” 

(or “runs”).While a clockwise rotation of the flagellum causes 

the bacterium randomly “tumble” itself in a new direction and 

then swims again [1]. An alternation between “swim” and 

“tumble” enables the bacterium search for  nutrients in random 

directions. Swimming is more frequent as the bacterium 

approaches a nutrient gradient. Tumbling, hence direction 

changes, is more frequent as the bacterium moves away from 

some food to search for more. Basically, bacterial chemotaxis is 

a complex combination of swimming and tumbling that keeps 

bacteria in places of higher concentration of nutrients. Bacterial 

chemotaxis can also be considered as the optimization process 

of the exploitation of known resources, and costly exploration 

for new, potentially more valuable resources [2]. 

 

2. CLASSICAL BFO ALGORITHM 
The original Bacterial Foraging Optimization system consists of 

three principal mechanisms, namely, chemotaxis, reproduction, 

and elimination-dispersal.Chemotactic consists of Swim and 

Tumble. Each of these processes is described as follows.  

 

2.1 Chemo taxis 
In the original BFO, a unit walk with random direction 

represents a “tumble” and a unit walk with the same direction in 

the last step indicates a “run.” Suppose ),,( lkji  represents 

the bacterium at jth chemotactic, kth reproductive, and lth 

elimination-dispersal step. C(i) is the chemotactic step size 

during each run or tumble (i.e., run-length unit). Then in each 

computational chemotactic step, the movement of the ith 

bacterium can be represented as 

'

)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii




 

…(1) 

where Δ(i) is the direction vector of the jth chemotactic step. 

When the bacterial movement is run, Δ(i) is the same with the 

last chemotactic step; otherwise, Δ(i) is a random vector whose 

elements lie in [−1, 1]. With the activity of run or tumble taken 

at each step of the chemotaxis process, a step fitness, denoted as       

J (i, j, k, l), will be evaluated [8]. 

2.2 Reproduction 
The health status of each bacterium is calculated as the sum of 

the step fitness during its life, that is,  

Nc

j
lkjiJ

1
),,,(  , 

where Nc  is the maximum step in a chemotaxis process. All 

bacteria are sorted in reverse order according to health status. In 

the reproduction step, only the first half of population survives 

and a surviving bacterium splits into two identical ones, which 

are then placed in the same locations. Thus, the population of 

bacteria keeps constant  [7]. 

2.3 Elimination and Dispersal 
The chemotaxis provides a basis for local search, and the 

reproduction  process speeds up the convergence which has 

been simulated by the classical BFO. While to a large extent, 

only chemotaxis and reproduction are not enough for global 

optima searching. Since bacteria may get stuck around the 

initial positions or local optima, it is possible for the diversity of 

BFO to change either gradually or suddenly to eliminate the 

accidents of being trapped into the local optima. In BFO, the 

dispersion event happens after a certain  number of 

reproduction processes. Then some bacteria  are chosen, 

according to a preset probability Ped, to be killed and moved to 

another position within the environment [9], [8]. 

 

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.4, May 2012 – www.ijais.org 

 

31 

The original BFO algorithm is briefly outlined step by step as 

follows. 

 

Step 1. Initialize parameters n, S, Nc, Ns, Nre, Ned, Ped, 

            C(i) (i = 1, 2, . . . , S), θi, where  

n = dimension of the search space, 

S = the number of bacteria in the colony, 

Nc = chemotactic steps, 

Ns = swim steps, 

Nre = reproductive steps, 

              Ned = elimination and dispersal steps, 

Ped = probability of elimination, 

C(i)=  the run-length unit (i.e., the size of the  

          step taken in each run or tumble). 

Step 2. Elimination-dispersal loop: l = l +1. 

Step 3. Reproduction loop: k = k +1. 

Step 4. Chemotaxis loop: j = j +1. 

Substep 4.1 For i = 1, 2. . . S, take a chemotactic step for 

                   bacterium i as follows: 

Substep 4.2 Compute fitness function, J (i, j, k, l). 

Substep 4.3 Let J last = J (i, j, k, l) to save this value since we  

                  may find better value via a run.  

Substep 4.4 Tumble. Generate a random vector Δ(i) ∈  Rn \  

                      with each element Δm (i), m = 1, 2. . . n, a random  

                   number on [−1, 1]. 

Substep 4.5 Move. Let 

)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii




 

... (2) 

                    This results in a step of size C(i) in the direction  

 of the tumble for bacterium i. 

Substep 4.6 Compute J (i, j +1, k, l) with θi (j+1, k, l). 

Substep 4.7 Swimming. 

      (i) Let m = 0 (counter for swim length). 

      (ii) While m < Ns (if has not climbed down too 

            long), the following hold.   

 Let m = m + 1. 

   If J(i, j +1, k, l) < Jlast, let Jlast = J(i, j +1,k,l) 

  then  another step of size C(i) in this same 

                      direction will be taken as eq. (2) and use the 

                      new generated. θi(j +1, k, l) to compute the  

                      new  J (i, j +1, k, l). 

   Else let m = Ns. 

Substep 4.8 Go to next bacterium (i +1). If i≠S, go to (Substep 

4.2)  to process the next bacterium. 

Step 5. If j < Nc , go to Step (3). In this case, continue  

             chemotaxis since the life of the bacteria is not over. 

Step 6.  Reproduction. 

Substep 6.1 For the given k and l, and for each i = 1, 2, . . . , 

              S, let 

 

     







1

1

),,,(
Nc

j

i

health lkjiJJ

                       …       (3) 

                       be the health of the bacteria. Sort bacteria in 

order of ascending values of Jhealth. 

Substep 6.2 The Sr bacteria with the highest Jhealth value die 

and 

                      the other Sr bacteria with the best values split and  

                   the copies that are made are placed at the same 

                   location as their parent.               . 

Step 7.    If k < Nre, go to Step 2. In this case the number of 

              specified reproduction steps is not reached and start 

           the next generation in the chemotactic loop. 

Step 8. Elimination-dispersal: for i = 1, 2, . . . , S, with 

            probability ped, eliminate and disperse each  

            bacterium, which results in keeping the number of  

            bacteria in the population constant. To do this, if a  

            bacterium is eliminated, simply disperse one to a 

             random location on the optimization domain. If l <Ned, 

            then go to Step 2. otherwise end. 

3. CASE BASE REASONING 

CBR involves reasoning from prior examples: retaining a 

memory of previous problems and their solutions and solving 

new problems by reference to that knowledge. Generally, a 

case-based reasoned  will be presented with a problem, either 

by a user or by a program or system. The case-based reasoned 

then searches its memory of past cases (called the case base) 

and attempts to find a case that has the same problem 

specification as the case under analysis. If the reasoner  cannot 

find an identical case in its case base, it will attempt to find a 

case or multiple cases that most closely match the current case 

under analysis [3]. 

In a CBR system, the problem solving life cycle consists of the 

following four parts . 

(a) Retrieve: Determine most similar previously 

experienced cases (e.g. problem-solution-outcome 

triples) stored in the case base, whose problem is 

examined to be similar. 

(b)  Reuse: Solve the new problem by re-using 

information and knowledge in the retrieved cases by 

copying or integrating the solutions. 

(c) Revise: Evaluate the applicability of the proposed 

solution in the real-world or adapting the solutions 

retrieved in an attempt to solve the new problem. 

(d) Retaining: Update case base with new learned case  

for future problem solving [4].  
 

3.1 Case Retrieval Method 
The case searching and matching is a key step in case retrieving 

and it directly influences the re trieval efficiency and accuracy. 

In fact, the case retrieval in essence is to find the most similar 

case in the case base to target case. 

K-Nearest Neighbor (KNN) is widely used for its advantages of 

clear physical concept and simple calculation for case searching 

[3]. A sum of similarities is calculated according to the 

similarity between each feature in problem case and the cases in 

case base. 

 

     Sim(P, C) =∑ f(Pa,Ca) * wa  

 

where    







OtherwiseCPf

CPifCPf

aa

aaaa

,0),(

,1),(

         

Where, Sim (P,C)  represents the similarity degree of problem 

case(P) and case(C) stored in case base, a= attribute of case, n = 

number of attributes, Pa =  problem case, Ca=cases stored in 

case base and wa = weight of attribute  a, the more important 

attributes should assigned larger weights then less important 

ones. The larger the weighted sum is, the more similar the two 

cases will be. 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.4, May 2012 – www.ijais.org 

 

32 

4. PROPOSED WORK 
In our research, we have integrated Bacteria Foraging 

Optimization with Case Based Reasoning to detect the ground 

water possibility in a given area. The Bacteria Foraging 

optimization has been used for Case Retrieval from the given 

CBR system. A problem case is entered to the system whose 

ground water possibility is to be detected in terms of Low, 

High, and Moderate. Bacteria Foraging Optimization algorithm 

retrieves the most similar case from Case Base and decision of 

that most similar case (retrieved from case base) is proposed as 

a solution to problem case. 

4.1 Integration of BFO with CBR 
In a CBR system, the key factors that influence the retrieving of 

similar cases from case base include knowledge representation; 

attribute description and similarity measures definition [3]. In 

this CBR system, geographical parameters and their 

corresponding solutions, i.e. the possibility of ground water 

(High, Moderate, and Low) are stored as cases in the case base 

(knowledge representation). The cases are collected from the 

expert knowledge. The case is represented by the ordered pair 

C= {F, D}, where F is the geographical parameter of case C and 

F = {Geology, Landform, Soil Type, Lineament, Slope, Land 

Type}, D is the decision attribute, i.e. the possibility of ground 

water in the given region (attribute description). 

In the proposed System, the value of geographical parameters 

(F) of Case(C) is considered to be the position of bacteria in 

multidimensional search space and all the bacteria are 

categorized in D categories depending upon their current 

position( F’s values). The problem case whose solution ( D’s 

value) is to be found is considered to be food that bacteria is 

searching for. Thus, in proposed work, there is only one food 

source and each bacteria is trying to approach it. At the end of 

the algorithm, the food will belong to bacteria (with category D) 

which is closest to food.  
 

5. PROPOSED ALGORITHM 
The proposed algorithm for integration BFO with CBR is 

discussed in Fig 1. The parameters used in algorithm are as 

follows: 

n = dimensions of search space (number of  attributes of a 

       case in Case Base)  

S =   no of bacteria in colony 

Nc = Chemotactic steps 

Nre = reproductive steps 

Sr = fraction of bacteria to be eliminated in a       

         reproduction step   

Initially, S bacteria are assigned random positions (S cases from 

Case Base). Then during chemotaxis and reproduction (step 2 to 

5) steps of proposed algorithm, Nre*Nc*S cases are taken from 

the case base. Thus, 

             S + Nre*NC*S = total size of Case Base 

 

This formula ensures that each case from case base is 

considered exactly once.  

5.1 Chemotactic 
In each chemotactic step, bacterium tumbles to a new position, 

),1( kji   

),1( kji  = Case from Case Base that has not  

                       yet been considered 

Where, ),1( kji   is the position of ith bacterium at jth 

chemotactic and kth reproductive step and bacterium moves to 

this new position. Any bacterium can only tumble to predefined 

positions (total cases in case base). Among all these positions, 

bacterium can tumble to any random position that has not been 

considered.   

 

5.2. Fitness Function 
The fitness function J (i, j, k) (in step 3.2 of proposed 

algorithm) of i
th 

bacterium at j
th 

chemotactic and k
th 

reproductive step is given by: 

J (i, j, k) = Sim(F,
i (j,k)) = 



n

a

a

i

aa wkjFf
1

*)),(,(   

 

Where 










otherwisekjFf

kjFifkjFf

i

aa

i

aa

i

aa

,0)),(,(

),(,1)),(,(




  

Where F is the position of food and 
i  (j, k) is the position of 

current bacteria. If the position of bacteria and food along ath 

dimension is same, then similarity value ( )),(,( kjFf i

aa  ) 

is taken to be 1,otherwise is taken to be zero. Each dimension is 

assigned different weightage (wa) because each dimension 

(attribute of a case) has different importance in bringing the 

bacteria near to food.  

Total weight used in step 6 of proposed algorithm is 

given by: 

total weight = 




n

a

aw
1  

Once the current fitness J (i, j+1, k) has been found 

(step 3.5) for ith bacteria, this is compared with its previous 

fitness, J (i, j, k). If the current fitness (J (i, j+1, k)) of i th 

bacteria is less than its previous fitness (J (i, j, k)), then the 

bacteria has moved farther from food in this chemotaxis step. 

So the bacteria is moved back to its previous position 

( ),( kji  ) with current fitness updated back to previous 

fitness (J (i, j, k)) (step 3.6). 

 

5.3 Reproduction 
In the proposed work, the health status of each bacterium is its 

current fitness value. All the bacteria are sorted in descending 

order of their health status (as in step 4).  In the reproduction 

step, first half (Sr=0.5 in our research) of the fittest bacteria 

survive and the other half (least fit bacteria) are removed. Each 

of fitter (surviving) bacteria is split into two identical ones and 

are placed in same location as their parent. 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.4, May 2012 – www.ijais.org 

 

33 

                    

                Algorithm CBR Using BFO 
 

1.  Place the bacteria at random position and the food at its 

     defined  position in search space. 

2.  (Reproduction step k+1)  For k = k + 1 

3.  (Chemotaxis step j+1) For j = j + 1 

        3.1  For i = 1,2,…S, take chemotaxis step for  bacteria i 

              as follows: 

        3.2 Compute the fitness function of the Previous ( jth ) 

             Chemotaxis step: 

                          J (i ,j, k) =Sim (F, 
i  (j, k))  

              where F is the position of food and 
i  (j, k)  is the 

             position of ith bacteria  

        3.3   (Tumble) Tumble to random new position, 

                       ),1( kji  . 

        3.4 (Move) Move the bacteria to new 

               position ),1( kji   

        3.5  Compute J (i ,j+1,k) using ),1( kji   ( as in step 

             3.2).  

        3.6  If J (i, j+1, k) <  J (i, j, k) then: 

                (i) (Move Back) Move bacteria back to its previous 

                   position: 

                         
),1( kji 

= 
),( kji

 

                (ii) Upadate Fitness function 

                     J (i, j+1, k) = J (i ,j, k) 

             end if 

        3.7 Go to next bacteria i +1 (for of step 3.1 ends) 

        3.8 Store the current fitness of  ith bacteria in Jc (i). 

              (chemotaxis loop of step 3 ends). 

4.    (Reproduction step) for given k and for each  i = 1,2..S, 

      Let 

                      
)(iJJ c

i

health   
                 be the health of bacteria. Sort the bacteria in  

        descending  order of healthJ .  

5.  The bacteria with Sr lowest healthJ  values die and other 

     bacteria with Sr  best healthJ   are split and copies that are 

     made are placed at the same location as their parents.  

     (reproduction loop of step 2 ends) 

6. Pick up the bacteria B with max ( healthJ ) value. The 

     Probability that the food F belongs to bacteria B (with 

      category D) is: 

      =       100*
 weighttotal

 ) (Jmax health  

 
 
 

  
Fig 1:- Proposed algorithm for integration of BFO 

with CBR 

 

Thus half of the currently considered cases that are less similar 

to problem case are removed and other halves that are more 

similar are duplicated. This will help to find the most similar 

cases (from Case Base) to problem case.  

 

5.4 Elimination  Dispersal 
Since there are fixed number of positions (cases in Case Base) 

that bacteria can tumble to and each position will be considered 

exactly once in chemotaxis step, bacteria can’t get stuck in local 

optima . So elimination dispersal step is not required in the 

proposed algorithm.  
 

6. RESULTS AND DISCUSSION 
  The algorithm for groundwater possibility detection using 

Bacteria Foraging Optimization as shown in Fig. 1 is coded in 

Matlab 7.0 [10]. 

 

6.1 Case Base 
 The case base used in our experiments as in Table 1 consists of 

six geological features (geology, land form, soil type, land use, 

lineament, slope) and depending upon the set of values of 

these features in a given area, the ground water possibility is 

recorded in fuzzy terms of high, moderate and low. This Case 

Base has been  designed by domain experts by on the basis of 

their ground observations. In Table 1, first column gives the 

geological attributes used in case base and the second column 

indicates their corresponding possible values [6]. 

 

Table1. Six attributes used to design Case 

Base of ground water possibility 

detection 
 

 

Attributes 
Values 

Geology Sedimentary, Younger alluvium, Older 

alluvium, Igneous, Metamorphic 

Landform 

Floodplain, Intermontanevalley, 

Pediment, 

Alluvialfans ,Bajada, Pediplain, 

Buriedpediment, 

AlluvialPlain,DeltaicPlain, 

Wadi, Riverterraces, Oldmeander etc. 

Soil 
Sandyloam, Sandygravel, Coarsesand, 

Clayloam, Alluvialsand, Gravelsand, 

Gravel Sand Pebbles, Sand, Rocky etc. 

Land use 

Agriculturalland, Forest, Cultivatedland, 

Fallowland, Waterbody, Wasteland, 

Swampy land, Buildup, Urban ,Grass, 

Shrubs ,mixed vegetation etc. 

Slope 
Gentle, Steep 

Lineament 
Absent, Present 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.4, May 2012 – www.ijais.org 

 

34 

 
 The possible values of each geological attribute (F) is assigned 

numerical values for simplicity and stored in first six columns 

and the numerical value of decision (D) of ground water 

possibility is stored in  seventh columns of row. First column of 

table 1 gives the categorical attributes that are used in the 

dataset and the second column indicates the attribute values. 

One row represents one case in Case Base. 

                       Each case in the case base will be stored as 

shown in Table 2 
 

Table 2: Cases stored in Case Base 

 

 
  

6.2 User Interface 
The development of Graphical User Interface for ground water 

possibility retrieval system is accomplished using Matlab 7.0 

(as in Fig. 2). It is similar to the interface used in [5][6].  

 

  
Fig 2:- GUI of Ground Water Possibility 

Detection 

 

Table 3: Example of Query Entered by User 

 

Geology Metamorphic 

LandForm Floodplain 

Soil SandyLoam 

Land Use Cultivated land 

Slope Gentle 

Lineament absent 

Decision To be find 

  

User is required to enter values for all the six attributes to 

predict ground water possibility in a given area. The example of 

query entered by user is shown in Table 3. This query entered 

by user becomes the position of food and all the cases in case 

base  become the possible positions of bacteria in proposed 

Bacteria Foraging algorithm. The most similar case from case 

base is retrieved using proposed algorithm and decision (of 

ground water possibility) of that case is assigned as a decision 

to the query case.  

 

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.4, May 2012 – www.ijais.org 

 

35 

The result of query in Table 3 is: 

“GROUND WATER POSSIBILITY IS HIGH WITH 

75%” 
The percentage value denotes the amount of similarity between 

problem case and the solution case. 

 

7.  CONCLUSION AND FUTURE SCOPE 
In this paper, we have presented Bacteria Foraging 

Optimization and Case Base Reasoning as an efficient 

technique to detect ground water possibility in a given area. 

Bacteria Foraging Optimization has been used as case retrieval 

method to retrieve the most similar case from Case Base. The 

decision of most similar case is provided as the decision to 

query case.  The results obtained in this work are comparable to 

the work already done in this field. A system has been 

developed which can determine ground water level at any place 

without drilling holes by knowing its geological features only. 

The system developed is of great significance as the presence or 

absence of ground water in a given area has a direct effect on its 

real estate values. So the system can play a crucial role in 

economic sector of a nation. Moreover, it is very useful in 

military applications during the time of combats to find 

groundwater possibility in inaccessible areas like areas across 

the border of a nation. Movement of troops depends largely on 

such information as water is a basic need for survival. 

Future research includes exploring Bacteria Foraging 

Optimization with different kind of Case Base Reasoning 

systems. Other possible applications may be processing medical 

data where integration of Bacteria Foraging and CBR system 

can be used to diagnose the disease of patients. Other areas such 

as oceanographic astronomical observations can be attacked. 

Further, a method may be proposed by using Bacteria Foraging 

to revise the retrieved solution and retain new solution into 

CBR system to solve new problems. 

8. REFERENCES 
[1]  Adler, J. 1996. Chemotaxis in bacteria, Science,   vol 153,  

pp. 708–716. 

[2] Chen, H. , Zhu, Y.  and Hu, K.. 2009 Cooperative  Bacterial  

Foraging Optimization, Discrete  Dynamics in Nature and 

Society,vol. 2, no.1,    pp.501-517. 

[3]  Pal, S.K. and Shiu, Simon C. K. , 2009 Foundation of Soft 

case based reasoning, Wiley Series on Intelligent systems. 

Hoboken, New Jersey,.  

[4] Agnar Aamodt and Enric Plaza, Foundational Issues, 

Methodological Variations, and System Approaches, 

Artificial Intelligence Communications, IOS Press, vol. 7, 

no. 1,pp. 39-59. 

[5] Chunhua Yang, Hongqiu Zhu and Weihua Gui, , 2008 

Permeability prediction model for imperial smelting 

furnace based on improved case-based reasoning, IEEE 

Proceedings of the 7th world congress on intelligent 

control and automation, June 25-27,  Chongqing, China. 

[6] Panchal, V.K. , Kundra, H. and Kaur,A. , 2009 An 

integrated approach to Biogeography Based Optimization 

with case based reasoning for retrieving Groundwater 

possibility In Proceedings of 8th Annual Asian Conference 

and Exhibition on Geospatial Information, Technology and 

Applications, Singapore.  

 [7] Swagatam Das, Arijit Biswas, Sambarta Dasgupta, and 

Ajith Abraham, 2009. Bacterial Foraging Optimization 

Algorithm: Theoretical Foundations, Analysis, and 

Applications, IEEE. 

[8] Swagatam Das, Sambarta Dasgupta, Arijit Biswas, and 

Ajith Abraham, 2009. On Stability of the Chemotactic 

Dynamics in Bacterial-Foraging Optimization algorithm, 

IEEE Transaction on systems, mans, and cybernetics, 

VOL. 39, NO. 3 

[9] Kevin M.Passino, 2010 Bacteria Foraging Optimization, 

Internantional journal of warm intelligence research.  

[10] The MATLAB ver 7, The MathWorks, Inc. 

 

 


