

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

20

Search based Software Testing Technique for

Structural Test Case Generation

M. S. Geetha Devasena
Assistant Professor,

Dept. of CSE

Sri Ramakrishna Engg. College

M. L. Valarmathi
Associate Professor

Dept. of CSE

Govt. College of Technology

ABSTRACT

Software testing is an important activity in the software

development life cycle and it is widely used validation

approach in software industry, deployed by programmers and

testers. The program with the moderate complexity cannot be

tested completely. Innovative methods are needed to perform

testing as a whole and unit testing in particular with minimum

effort and time. Unit testing is mostly done by developers

under a lot of schedule pressure since the software companies

find a compromise among functionality, time to market and

quality. Thus there is a need for reducing unit testing time by

optimizing and automating the process. Test suite generation

is an error-prone, tedious and time consuming part of unit

testing. Two techniques are proposed to automatically

generate test cases from the input domain using scatter search

and tabu search for branch coverage criteria with respect to

cyclomatic complexity measure.

Keywords

Software testing, Unit testing, Branch Coverage Criteria, tabu

search, Scatter Search

1. INTRODUCTION
There is one famous saying that “Over testing is a Sin and

Under Testing is a Crime”. One of the main challenges in

testing is that exhaustive testing is not possible, when to stop

testing cannot be assessed and there is no way to show the

absence of errors. With the increased pace of production

schedules, the tremendous proliferation of software design

methodologies and programming languages, and the increased

size of software applications, software testing has evolved

from a routine quality assurance activity into a sizable and

complex challenge in terms of manageability and

effectiveness. The major challenges to software testing in

today„s business environment are,

• Efficiency. Is the test cycle too long? How can you

ensure every test is a good investment of time and money?

• Thoroughness. How can you tell when you are

done testing? How can you be reasonably sure the program is

bug-free?

• Resource Management. Are testing resources

strategically allocated, focusing on the highest-risk elements

of the software? Are the functionally central parts of the

program receiving an acceptable level of testing?

In practice, unit level testing ranges from the ad hoc

tests done by programmers as they are writing code to

systematic white box testing, where Unit level testing is part

of a every unit must be tested and documented by a QA and

Test group. In either case, the tester begins with the goal of

coverage, for it is the very purpose of unit level testing [1] to

achieve the highest level of coverage possible. Unit testing is

performed early in the development process and it is more

cost-effective at locating errors. Identifying a minimum set of

unit level tests to run is the greatest challenge of unit level

testing. In an ideal world, every possible path of a program

would be tested, accounting for all executable decisions in all

possible combinations. But this is impossible when one

considers the enormous number of potential paths embedded

in any given program (2 to the power of the number of

decisions). The challenge is to isolate a subset of paths that

provide coverage for all testable units, and to make that subset

as minimal and free of unit-level redundancies as possible.

A good set of test cases is one which has a high chance of

uncovering previously unknown errors and a successful test

run is one that discovers these errors. To uncover all possible

errors in a program, exhaustive testing is required to exercise

all possible input and logical execution paths. But it is neither

possible nor economically feasible. Therefore, a practical goal

for software testing is to maximize the probability of finding

errors using a finite number of test cases, performed in

minimum time with minimum effort. A large number of

testing methods developed over the last decades, designed to

help the tester with the selection of appropriate test data

because of the central importance of test case design for

testing.

Existing test case design methods can be categorized into

black-box testing and white-box testing. Black-box test cases

are determined from the specification of the program under

test and white-box test cases are derived from the internal

structure of the software. But in both the cases. it is difficult to

achieve complete automation of the test case design [4,9].

If a formal specification exists, then only black-box tests can

be automated. Due to the limits of symbolic execution the

tools supporting white-box tests are limited to program code

instrumentation and coverage measurement. The test case

design has to be performed manually. Hence the quality of

test is reliant on the tester and the manual test case design is

time-intensive and error prone when done manually.

2. EXISITING SYSTEM

2.1 Random Test Data Generation
Random test data generation techniques [2] select inputs

randomly until useful inputs are found. This technique may

fail to find test data to satisfy the requirements because

information about the test requirements is not incorporated.

The various disadvantages of this method are such as it is

appropriate only for simple and small programs, many sets of

values may lead to the same observable behavior and are thus

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

21

70%

6%

4%

4%

4%

3%

3%
2%

2%2%

Percentage of Applications

Testing and Debugging

Management

Distribution, Maintanance

Miscellaneous

General Aspects

Software/Program Verification

Design Tools and Techniques

Requirements/Specifications

Network Protocols

Metrics

Artificial Intelligence

Coding Tools and Techniques

redundant and the probability of selecting particular inputs

that cause buggy behavior may be astronomically small.

2.2 Static Method
Static method generates test cases without execution of the

program. It considers several constraints based on the input

variables of the program under test. Static techniques have

several problems in treatment of loops and resolution of

computed storage locations. Also computational cost is high.

2.3 Dynamic Method
Dynamic test-data generation technique collects information

during the execution of the program and it determines which

test cases come closest to satisfying the requirement. These,

test inputs are then incrementally modified until one of them

satisfies the requirement. Most dynamic techniques use search

based software techniques.

2.4 Search based software testing
Search-Based Software Engineering (SBSE) is the application

of optimization techniques (OT) in solving software

engineering problems. Optimization is the process of

attempting to find the best possible solution amongst all those

available. The percentage of application of search based

techniques to software testing is 70% as shown in Figure 1.

Fig 1: Application of SBSE

Software testing is a suitable candidate for Search-Based

Software Engineering because the generation of software tests

is an undecidable problem [14, 15] and a program‟s input

space is very large, exhaustive enumeration is infeasible. To

perform evolutionary testing, the task of test case design is

transformed into an optimization problem and it can be solved

with meta-heuristic search techniques, such as evolutionary

algorithms or simulated annealing. The search space is

represented by the input domain of the system under test.

From this search space the test data fulfilling the test

objectives under consideration is generated. The main aim of

evolutionary testing is to increase the quality of the tests. Also

a high degree of automation helps in cost savings in system

development. In various case studies, it has been proved that

evolutionary testing has the potential to improve the

effectiveness and efficiency of the testing process

significantly. An overview of different applications of

evolutionary testing is provided by McMinn [12].

2.5 Symbolic test case generation technique
Symbolic test data generation techniques [7, 8] assign

symbolic values to the variables and create algebraic

expressions for the several constraints in the program. A

constraints solver is used to find a solution for these

expressions that satisfies a test requirement. This technique

cannot determine which symbolic values of the potential

values will be used. The constraint solvers cannot produce

floating point constraints and hence floating point inputs

cannot be found.

3. STRUCTURAL TESTING

3.1 Bug Statistics

The bug statistics [17] through SDLC collected from various

sources given by Boris Beizer for a program of 1,00,000 lines

of code shown in table 1, among the other bugs structural

bugs are the highest and half of the structural bugs are control

flow and sequence bugs as shown in Figure 2.The automated

structural testing techniques can help in reducing these bugs

to a large extent.

Table 1. Bug Statistics

Fig 2: Bar Graph representation of Bug Statistics

Size of source code: 6870000 statements

Total Reported Bugs: 16209

Bug Categorization
Total number

of bugs

% of bugs among

the total bugs

Requirements 1317 8.1

Features and Functionality 2624 16.2

Structural Bugs 4082 25.2

Data 3638 22.4

Implementation and
Coding

1601 9.9

Integration 1455 9.0

System, Software and

Architecture
282 1.7

Test Definition and

Execution
447 2.8

Other, Unspecified 763 4.7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A B C D E F G H I

T
o

ta
l r

ep
o

rt
ed

 b
u

g
s

Bugs Categorized by SDLC Stages

No of Reported Bugs Control Flow Bugs
Processing Bugs

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

22

The horizontal axis details of Figure 3 is mentioned below

A-Requirements

B-Features and Functionality

C-Structural Bugs

D-Data

E-Implementation and Coding

F-Integration

G-System and software Architecture

H-Test Definition and Execution

I-Other, unspecified

3.2 Cyclomatic complexity measure

Cyclomatic complexity [11, 16] (or conditional complexity) is

software structural metric (measurement) used to measure the

complexity of a program using Control flow graph of the

program. The cyclomatic complexity of a structured program

is defined as M=E-N+2P where, M- Cyclomatic Complexity,

E- the number of edges of the graph, N- The number of nodes

of the graph and P- The number of disconnected components.

It provides lower bound on the number of test cases required

to achieve branch coverage. The amount of test effort is better

judged Cyclomatic Complexity. If there are fewer test cases

than the measure then missing cases are to be found and more

test cases than the measure shows that the coverage can be

achieved with less number of test cases.

3.3 Evolutionary Testing

Evolutionary testing is characterized by the use of

metaheuristic search techniques for test case generation. The

test aim is transformed into an optimization problem. The

search space is the input domain of the test object . The search

algorithm explores the search space to find test data that

fulfils the respective test aim. The neighborhood search

methods such as hill climbing are not suitable in such cases.

So meta-heuristic search methods are employed, e.g.

evolutionary algorithms, simulated annealing, or scatter

search [5, 6, 13]. The robustness and suitability of

evolutionary algorithms for the solution of different test tasks

has already been proven in previous work [10]. But most of

the previous works in applying search techniques for test case

generation problem are not taking into account float values for

input domain. The first work in applying scatter search to test

case generation is given by Diaz and the cyclomatic

complexity is not considered [3]. The proposed work extends

the previous work and applies scatter search and tabu search

techniques to test case generation in compliance with

cyclomatic complexity measure for unit testing and compares

the performance with random test case generation based on

the measures of test suite size and branch coverage.

4. PROPOSED SYSTEM
The proposed system develops a tool for automatic test suite

generation. It takes control flow graph as input and

automatically generates test cases from the input domain of

various variables using scatter search and tabu search

techniques. The architecture of the proposed work is shown in

Figure 3. The Control Flow Graph Generator takes the source

code of programs for which test case is to be generated and

generates Control Flow Graphs.

4.1 Methodology

The various steps in the automated framework of test case

generation are,

1. Taking source code under test as input CFG

generator generates CFG.

2. Find the Cyclomatic Complexity measure.

3. The CFG is analyzed and the branching condition

information is extracted.

4. The test cases are generated for each condition

from input domain of the variables involved in the

condition using scatter search technique.

5. Find the compliance of number of test cases with

Cyclomatic Complexity measure.

6. The generated test cases are applied to the

instrumented source code to check the branch

coverage.

7. The best test cases form an effective test suite for

the given source code under test.

Source Code of

Programme under Test

Test Suite Generator Using

Scatter & Tabu Search

CFG Generator Instrumentor

Instrumentated Source

Code

Cyclomatic Complexity

Measure
Percentage of Coverage

Optimized Test Suite

Test Cases

Fig 3: Flow diagram of Proposed System

Tabu search and Scatter search are search based techniques

that solves a great variety of real-world problems, such as job

shop scheduling, multiprocessor task scheduling, vehicle

routing problems, graph coloring and many other

combinatorial optimization problems. Recently it is found

suitable for test case generation problems in software testing.

But only few results have been published with relatively few

samples and it must be further proven with all data types of

input domain and with more samples. The proposed system

uses Tabu and Scatter search to automate the generation of

test cases to obtain high branch coverage.

4.2 Scatter search technique algorithm

The scatter search algorithm is given as below,

begin

 Initialize Current Solution

 Store Current Solution in CFG

 Add Current Solution to memory list

 do

 Select a subgoal node to be covered

 Calculate neighbourhood candidates

 for each candidate do

 calculate branch covered by candidate

 endfor

 if (subgoal node covered) then Add Current

 Solution to memory list

 else Add Current Solution to memory list

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

23

 endif

 while (NOT all nodes covered AND number of

 iterations<MAXIT)

 end

4.3 Tabu search technique algorithm

The Tabu search algorithm is given as below,

 begin

 Initialise Current Solution

 Store Current Solution in CFG

 Add Current Solution to tabu list ST

 Select a subgoal node to be covered

 Calculate neighbourhood candidates

 for each candidate do

 if (candidate value in node n <CFG in node n) then

 Store candidate in CFG

 endif endfor

 if (subgoal node not covered) then Add Current

 Solution to tabu list ST

 else

 Delete tabu list ST endif

 Select a subgoal node to be covered and Current

 solution

 if (Current Solution is depleted) then

 Add Current Solution to tabu list LT

 Apply a backtracking process: new Current Solution

 and maybe new subgoal node endif

 while (NOT all nodes covered AND number of

iterations<MAXIT)end

5. RESULTS
The proposed technique has been tested with 12

benchmarking samples including the triangle classifier

program which is widely used in various research papers [1, 3,

13] in the test suite generation. The results obtained are

encouraging and scatter search technique performs better than

random technique. The Performance measures such as the

Test Suite Size, Percentage of branch coverage are considered

for comparison of the techniques. Also the test suite size is

compared with the cyclomatic complexity of the program

structure under test which gives the measure of test cases

required to cover the program. The results got by random

technique can be given in Table 2.

Table 2. Results of Random Technique

The results show that the branch coverage varies from75% to

a maximum of 100% and that is achieved with more number

of test cases than the calculated Cyclomatic Complexity

measure. The results got by scatter search technique are given

in Table 3.

Table 3. Results of Scatter search Technique

It is found that branch coverage is increased by 10

percentages and test suite size is reduced by 67 percentages.

It is achieved with as many numbers of test cases as

calculated by Cyclomatic Complexity measure.

Table 4. Results of Tabu search Technique

The branch coverage is found to be 100 percentage in tabu

search is achieved due to back tracking process as shown in

Table 4. The list of sample programs under test is shown in

Table 5.

Table 5. List of sample programs

The performance analysis graph based on the number of test

cases in the test suite and the percentage of branch coverage

of both the techniques is given in Figure 4 and Figure 5

respectively.

Samples
Test Suite

Size

% of Branch

Coverage

Cyclomatic

Complexity

S1 8 75 3

S2 5 80 2

S3 7 100 3

S4 3 100 2

S5 9 77.77 3

S6 11 81.8 3

S7 5 100 2

S8 6 100 3

S9 5 100 2

S10 8 87.5 3

S11 10 88.88 3

S12 15 93.33 4

Samples
Test Suite

Size

% of Branch

Coverage

Cyclomatic

Complexity

S1 3 100 3

S2 2 100 2

S3 3 100 3

S4 2 100 2

S5 3 100 3

S6 3 100 3

S7 2 100 2

S8 3 100 3

S9 2 100 2

S10 3 100 3

S11 2 88.88 3

S12 3 93.33 4

Samples
Test Suite

Size

% of Branch

Coverage

Cyclomatic

Complexity

S1 3 100 3

S2 2 100 2

S3 3 100 3

S4 2 100 2

S5 3 100 3

S6 3 100 3

S7 2 100 2

S8 3 100 3

S9 2 100 2

S10 3 100 3

S11 3 100 3

S12 4 100 4

Sample Number Program under test

S1 Perfect square root

S2 Bessel

S3 Greater than zero or not

S4 Greatest of two no.

S5 GCD

S6 Sum of a number

S7 Factorial

S8 Fibonacci

S9 Reverse of a number

S10 Greatest of three number

S11 Prime factor

S12 Triangle classifier

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

24

Figure 6 is a snapshot of search based software testing

technique

Fig 4: Test Suite Size Comparison

Fig 5: Percentage of Branch Coverage Comparison

Fig 6: Snapshot of search based software testing technique

6. CONCLUSION
Software Testing comprises of 50% of the software

development cost and also exhaustive testing is not possible.

The proposed system automatically generates test cases from

input domain for branch coverage criteria using Tabu search

and Scatter search Techniques. Tabu search and Scatter search

provides promising results and better performance than

random testing,

 By reducing test suite size

 By obtaining maximum coverage

 Reducing unit testing time

 With high performance regard to range of input

variables.

This technique of automated generation of test cases from the

input domain can assist the developers and Quality assurance

team in software companies to perform effective unit testing.

Also the optimized number of test cases generated is much

helpful in regression testing which otherwise carried out with

greater number of test cases. This technique can be further

extended for multiple coverage criteria.

7. REFERENCES

[1] Chilenski1, John Joseph Chilenski and Steven P. Miller,

1994. „Applicability of Modified Condition/Decision

Coverage to Software Testing‟, Software Engineering

Journal Vol. 9, No. 5, pp.193-200.

[2] Edvardson, J. 1999. „A Survey on Automatic Test data

generation‟, In proceedings of the second conference on

computer science and engineering Vol.2, No.1, pp.343-

351.

[3] Eugenia Diaz, Javier Tuya, Raquel Blanco, Jose Javier

Dolado, 2008. „A tabu search algorithm for structural

software testing‟, Computers and Operations Research

Vol. 14, No. 3, pp.38-69.

[4] Ferguson and Korel, B. 1966. „The chaining approach

for software test data generation‟, ACMTOSEM vol. 5,

pp.63-86.

[5] Glover, F. 1989. „Tabu search: part I‟, ORSA Journal on

Computing, Vol. 3, No.1,pp.190-206.

[6] Glover, F. 1990. „Tabu search: part II‟, ORSA Journal on

Computing, Vol. 4, No. 2, pp.4–32.

[7] Howden, W.E. 1977. „Symbolic testing and the

DISSECT symbolic evaluation system‟, IEEE

Transactions on Software Engineering vol.3, no. 4, pp.

266-278.

[8] John Clarke, Mark Harman, Bryan Jones. 2000. „The

Application of Metaheuristic Search techniques to

Problems in Software Engineering‟, IEEE Computer

Society Press Vol.42, No.1, pp.247-254.

[9] Lindquist, T.E. and Jenkins, J.R. 1998.„Test-case

generation with IOGen‟, IEEE Software vol.5, no.1,pp.

72-79.

[10] Lin, Yeh, P.L. 2001. „Automatic test data generation for

path testing using Gas‟, Information Sciences Vol. 4,

No.13, pp. 47-64.

[11] McCabe, Tom, 1976. „A Software Complexity Measure‟,

IEEE Trans. Software Eng Vol.2, No.6, pp.308-320.

0

5

10

15

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1
0

S1
1

S1
2

T
es

t
su

it
e

si
ze

Sample program under Test

Random Technique

Scatter Search Technique

Tabu search Technique

0

20

40

60

80

100

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1
0

S1
1

S1
2

%
 o

f
B

ra
n

ch
 C

o
v

er
a

g
e

Sample program under test

Random Technique

Scatter Search Technique

Tabu search Technique

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

25

[12] McMinn, p. 2004. „Search Based Software Test Data

Generation:A survey‟, Journal on Software Testing,

Verification, and Reliability vol.14, no.2, pp.105-156.

[13] Raquel Blanco , Javier Tuya , Belarmino Adenso-Díaz.

2009. „Automated test data generation using a scatter

search approach‟, Information and Software Technology

Vol. 51, No.1, pp. 708-720.

[14] Tao Feng, Kasturi Bidarkar. 2008. „A Survey of

Software Testing Methodology‟ vol.25, no-3, pp.216-

226.

[15] Voas, J.M, Morell, J. and Miller, K.W. 1991. „Predicting

where faults can hide from testing‟, IEEE vol: 8, pp,

41-48.

[16] Wegener, Baresel DeMillo RA, Offutt, A.J. 1991.

„Constraint-based automatic test data generation‟ IEEE

Transactions on Software Engineering Vol.17.

[17] Boris Beizer. 2000. „Software Testing Techniques‟,

Second edition.

