

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume **– No.*, ____ 2012 – www.ijais.org

31

Hybrid HMAC using Improved SHA-512

Kamal Shah, Ph.D
Professor, IT Department

Thakur College of Engineering
and Technology

Mumbai-400101, India.

Vikas Kaul
Assi.Professor, IT Department
Thakur College of Engineering

and Technology
Mumbai-400101, India.

Pratik Kanani
M.E.I.T (pursuing)

Thakur College of Engineering
and Technology

Mumbai-400101, India

ABSTRACT

With the fast progression of digital data exchange in

electronic way, information security is becoming more

important in data storage and transmission. Cryptography has

come up as a solution which plays a vital role in information

security system against malicious attacks. The confidentiality,

Integrity and Availability are the three main goals of

Information Security. To protect Confidentiality and Integrity

of the message, key mechanisms and Hash functions are used.

This paper proposes a novel scheme, which computes Hybrid

HMAC based on improved SHA-512 algorithm. The proposed

system gives a constant output of 512 bits for any input length

of data and generates HMAC using multiple available keys.

Paper also provides a method for reducing the time taken by

traditional HMAC functions and increases complexity of

SHA-512.

General Terms

Information Security, Data Integrity.

Keywords

HMAC, SHA-512, Modified SHA-512, Avalanche effect,

Buffers.

1. INTRODUCTION
Robust and fast security functionality is basic tenant for

secured computer transactions. A hash function H accepts a

variable-length block of data as input and produces a fixed-

size hash value h=H(M) with the objective principle of data

integrity. Hash functions needed for security applications are

stated as Cryptographic Hash Function.

National Institute of Standards and Technology (NIST) as

a U.S. Federal Information Processing Standard (FIPS)

endures a category of cryptographic hash function known as

Secure Hash Algorithm (SHA)[1].

Hashing algorithms has certain hitches within its community,

with their security receiving inattention than standard

encryption algorithms and excluding speed parameter. Hence

many standards and products have started preferring larger

hash sizes. This comes with a cost of SHA-256 which is about

2.2 times slower than SHA-1.

SHA-512[2] is faster than SHA-256 on 64-bit machines

because it has 37.5% less rounds per byte. The adoption

across the extensiveness of the range of 64 bit ALU’s make it

probable to achieve enhanced security using SHA-512 in less

time than it takes to compute a SHA-256 hash[3].

Generally for message authentication, Message

Authentication Code (MAC) is used between two parties

that share a secret key to authenticate information exchanged

between those parties. A MAC function takes as input, a

secret key and a data block and produces a hash value,

referred as MAC. The combination of hashing and encryption

results in an overall function i.e. E(K, H(M)) called as Hash

Based Message Authentication Code (HMAC). It is a

function of a variable-length message and a secret key that

produces a fixed-size output which is secured against an

opponent who does not know the secret key.[1,2,3]

2. SHA – 512

2.1 Previous SHA Versions
Multiple versions of SHA exists, such as SHA-0(160 bit),

SHA-1(A 160-bit hash function resembling the earlier MD5

algorithm), SHA-2(224-bit, 256-bit, 384-bit, 512-bit), SHA-

3(the same hash lengths as SHA-2, and its internal structure

differs significantly from the rest of the SHA family)[1].

Table 1. Comparison of SHA parameters [2]

Versions

And

parameters

SHA-1
SHA-

224

SHA-

256

SHA-

384

SHA-

512

Message

Digest

size

160 224 256 384 512

Message

size
<264 <264 <264 <2128 <2128

Block size 512 512 512 1024 1024

Word size 32 32 32 64 64

Number of

Steps
80 64 64 80 80

The algorithm takes as input a message with a maximum

length of less than 2128 bits and produces as output a 512-bit

message digest. The SHA-512 compression function operates

on a 1024-bit message block and a 512-bit intermediate hash

value. The basic eight buffers used in SHA-512 are as

follows.

http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/United_States_of_America
http://en.wikipedia.org/wiki/Federal_Information_Processing_Standard

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume **– No.*, ____ 2012 – www.ijais.org

32

a = 6A09E667F3BCC908

e = 510E527FADE682D1

b = BB67AE8584CAA73B

f = 9B05688C2B3E6C1F

c = 3C6EF372FE94F82B

g = 1F83D9ABFB41BD6B

d = A54FF53A5F1D36F1

h = 5BE0CD19137E2179

These buffers are obtained by taking the fractional parts of the

square roots of the first eight primes.

The input is divided into to 1024 bits block and then

processed. If the input is less than the 1024 bits then the extra

bits are appended to make 1024 bits.

The message digest generation is shown in Fig.1.

+ = word-by-word addition modulo 264

Fig 1: Message Digest Generation Using SHA-512 [2].

2.2 SHA – 512 Compression Function
The SHA -512 compression functions can be given as follows.

Where 80 iterations are done .

 For i=0 to 79

 {

 T1  h + Σ1(e) + Ch(e,f,g) + Ki + Wi

 T2  Σ0(a) + Maj(a,b,c)

 h  g

 g  f

 f  e

 e  d + T1

 d  c

 c  b

 b  a

 a  T1 + T2

 }

Where , Ch(x,y,z) = (x ∧ y) ⊕ (¬ x ∧ y)

Maj(x,y,z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)

Σ0(x) = S28(x) ⊕ S
34

(x) ⊕ S
39

(x)

Σ1(x) = S14(x) ⊕ S
8
(x) ⊕ S

41
(x)

σ 0(x) = S1(x) ⊕ S
18

(x) ⊕ R
7
(x)

σ 1(x) = S19(x) ⊕ S
61

(x) ⊕ R
6
(x)

R left shift of the 64-bit argument x by n bits with padding

by zeros on the right

S circular right shift (rotation) of the 64-bit argument x by n

bits

⊕ bitwise XOR

∧ bitwise AND
⋁ bitwise OR
¬ bitwise complement

+ mod 264 addition

Wi = Mi for i=0,1,2…15 and

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume **– No.*, ____ 2012 – www.ijais.org

33

 For i=16 to 79

{

Wi  σ 1(Wi-2) + Wi-7 + σ 0(Wi-7) + Wi-16

}

The entire message of 1024 bits is divided into the

chunks of 64 bits, where each 64 bit chunk is represented as

W. The W starts from 0 and goes till 79. The definition of W

is given above.

After 79th iteration the new buffers are added to the

old buffers and by appending all buffers respectively it forms

the output message.

A1 = a + new(a)

B1 = b + new(b)

C1 = c + new(c)

D1 = d + new(d)

E1 = e + new(e)

F1 = f + new(f)

G1 = g + new(g)

 H1 = h + new(h)

The final message digest = A1 B1 C1 D1 E1 F1 G1 H1

Fig.2 Creation of 80-word Input Sequence for SHA-512

processing of Single Block [2]

To compute HMAC function by using exiting SHA-512, first

we need to find the message digest for the given input length

and by encrypting the message digest value using some key.

HMAC(M)=E(K,H(M)).

3. Improved HMAC Using Modified SHA

3.1 New Buffers
The eight new buffers used in improved SHA are as follows

a = 6A67E685F3CAC93B

e = 5105528CAD3E821F

b = BB09AE6T84BCA708

f = 9B0E687F2BE66CD1

c = 3C4FF33AFE1DF8F1

g = 1FE0D919FB7EBD79

d = A56EF5725F94362B

h = 5B83CDAB1341216B

These buffers are obtained by taking the permutations and

combinations of the available buffers to increase the

avalanche effect and the complexity of the message digest.

The message digest function is same as the Fig.1.

3.2 Modified SHA – 512 Compression

Functions
The modified SHA-512 is same as traditional SHA-512 with

the only change in some of the compression functions that are

changed and the new buffers are used. After taking the

required text to find its Hash function append the string of o’s

and one’s to it. E.g. 0101010101…

The modified SHA -512 compression functions are as

follows. Where 80 iterations are done .

 For i=0 to 79

 {

 T1  h + Σ1(e) + Ch(e,f,g) + Ki + Wi

 T2  Σ0(a) + Maj(a,b,c)

 h  g + Ki

 g  f

 f  e + c

 e  d + T1

 d  c

 c  b

 b  a

 a  T1 + T2

 }

Where , Ch(x,y,z) = (x ∧ y) ⊕ (¬ x ∧ y)

Maj(x,y,z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)

Σ0(x) = S18(x) ⊕ S
44

(x) ⊕ S
29

(x)

Σ1(x) = S44(x) ⊕ S
8
(x) ⊕ S

21
(x)

σ 0(x) = S7(x) ⊕ S
38

(x) ⊕ R
34

(x)

σ 1(x) = S15(x) ⊕ S
61

(x) ⊕ R
26

(x)

Ki = Key used for encryption for HMAC

R left shift of the 64-bit argument x by n bits with padding

by zeros on the right

S circular right shift (rotation) of the 64-bit argument x by n

bits

Wi = Mi for i=0,1,2…15 and

 For i=16 to 79

 {

 Wi  σ 1(Wi-2) + Wi-7 + σ 0(Wi-7) + Wi-16

 }

This approach differs from traditional SHA-512 algorithm by

an additive constant k. However in this proposed idea the

additive constant k is replaced by the Key. And furthermore

the key at iteration is used if

 Ki%i == 0 for i<10

 Ki%i == 0 for i>10, i=i/10.

It means that multiple keys are available to calculate HMAC

function and based on the above conditions each key will be

used at particular number of iteration and with this while

finding a SHA – 512, an encryption is also done so no extra

efforts are required for the same.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume **– No.*, ____ 2012 – www.ijais.org

34

Fig.3 Processing of a Single 1024-Bit Block [2]

In the above figure shown, at each iteration the respective key

K will be introduced to find SHA – 512 and HMAC.

4. PERFORMANCE IPMPROVEMENTS
Performance improvements for any system can be

accomplished in two ways. 1) Majorly, by modifying the

architecture design of the system and 2) Slightly, by applying

some software and hardware techniques that is

implementation idea plays a role. In this system we have used

some of the compact coding techniques. The above system is

implemented in java programming language and the

performance is measured.

The traditional SHA-512 was implemented using recursion

function as (for Wi)

String getw(String Binaryinput,int k)

 {

 String w=Binaryinput.substring((64*k),(64*(k+1)));

 return (w);

 }

String getW(String Binaryinput,int k)

 {

 if(k<16)

 {

 String W=getw(Binaryinput,k);

 return (W);

 }

 else

 {

 ………..Find Corresponding W by

 Wi  σ 1(Wi-2) + Wi-7 + σ 0(Wi-7) + Wi-16

 }

In above piece of code whenever the W is requested the

function checks for w existence and if not it goes for W. But

for higher passes the function even calculates every w and W

recursively which consumes lots of system memory and time.

So an amendment to this can be

String WBuffer[80];

String getw(String Binaryinput,int k)

 {

 String w=Binaryinput.substring((64*k),(64*(k+1)));

 WBuffer[k]=w;

 return (w);

 }

String getW(String Binaryinput,int k)

 {

 if(!WBuffer[k]==””)

 return(WBuffer[k]);

 if(k<16)

 {

 String W=getw(Binaryinput,k);

 return (W);

 }

 else

 {

 ………..Find Corresponding W by

 Wi  σ 1(Wi-2) + Wi-7 + σ 0(Wi-7) + Wi-16

 WBuffer[k]=W;

 return(WBuffer[k]);

 }

 }

The new logic initially works same as old logic and takes

almost same time and space as initial logic but as loop goes to

higher passes it will be much efficient than the previous

passes, since at each and every iteration it will check for the

existing value of W in an array of WBuffer[]. If the value

exist, than it returns the same, and if not than it calculates the

new value of W and stores in the array. It means, each W is

calculated only once in a second piece of code.

Furthermore new available data types in java such as

BigInteger and BigDecimal can be used which provides in

built functions for logical operations such as AND, OR, NOT,

MOD, Ex-OR, which gives better and fast results rather than

working every time with String data types where each

operation has to be implemented manually.[4,5]

5. SIMULATION
The simulation program is developed using java. This model

asks user to input the message of any length and gives output

of fixed length 512bits. The SHA – 512 and improved SHA -

512 and HMAC are generated and different parameters are

noted down as follows.

Table 2. Specification of the test-bed hardware and

software.

CPU Intel core 2 duo 1.60FHz

RAM 1GB

Platform Windows XP 32-bit

5.1 Time Requirements
The times taken by the functions are uncovered using

System.currentTimeMillis(). Only first 35 passes are executed

and the corresponding results are shown.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume **– No.*, ____ 2012 – www.ijais.org

35

Table 3. Time taken in ms

Iteration SHA-512

Modified

SHA-512 HMAC

10 172 187 201

15 453 475 490

20 610 625 653

25 969 975 986

30 1922 1715 1732

35 5163 4632 4666

As the iteration goes higher the time taken by program

reduces.

5.2 Space Requirements
The space requirements by the system are discovered by using

java Runtime class and its methods. Space requirements of

first 35 passes are shown in table 4.

From the given table it can be concluded that after the

modification in recursion function the space required by

modified SHA-512 and HMAC is less than the traditional

SHA for higher iterations.

Table 4. Space requirements in bytes

Iteration SHA-512

Modified

SHA-512 HMAC

10 460296 470200 470542

15 1073224 1092334 1094579

20 1142552 1142599 1143652

25 863744 853252 853895

30 1525376 1437440 1438104

35 2662680 2542440 254304

5.3 Evaluation parameter
Each of the encryption techniques has its own strength and

weaknesses. In order to analyze the encryption schemes the

critical analysis of such techniques are necessary. A desirable

property of such algorithms are a small change in the input

must cause the bigger change in the output that is in cipher

text. So that a small change also makes the output more

complex in order to analyze it.

Avalanche Effect = Number of flipped bits

 Number of bits

When plain text and cipher text is calculated to find the

Avalanche effect[6] the result is as follows.

Table 5. Avalanche Effect in %

Iteration SHA-512

Modified

SHA-512 HMAC

10 42.24 42.58 42.68

20 48.34 48.66 48.96

30 51.96 52.21 52.47

35 52.266 52.30 53.01

The avalanche effect does not vary much between modified

SHA-512 and HMAC but it matters in HMAC function since

the encryption key is involved. The other existing tools can be

used to find the similarity between plain test and the cipher

text.[7]

6. CONCLUSION
In this paper a modification in SHA-512 algorithm is done to

in order to improve its efficiency and to find HMAC out of it.

This proposed algorithm suggests new buffers for modified

SHA-512 algorithm and some of the compression functions

are added. It is then simulated in java environment and its

corresponding time, space and avalanche effect has been

measured. The results obtained shows that the improvement to

existing SHA-512 is done.

In Future, this function can be more advanced with more

complex buffers and functions. Also it can be integrated with

other security parameters to make a system which will alone

ensures the CIA of Information Security.

7. REFERENCES
[1] Secure Hash Algorithm, Wikipedia (access on 10

January 2014)

http://en.wikipedia.org/wiki/Secure_Hash_Algorithm

[2] William Stallings, Cryptography and Network Security :

Principles and Practice , fifth Edition, Prentice hall.

[3] S.Gueron, S.Johnson and J.Walker, “SHA-512/256”,

IEEE Conference on IT:new Generations, pp.354-358,

2011.

[4] BigDecimal and BigInteger, Stackoverflow (access on 20

January 2014)

http://stackoverflow.com/search?q=bigdecimal+and+bigi

nteger

[5] Java Optimization Rules, Appperfect (access on 22

January 2014) http://www.appperfect.com/support/java-

coding-rules/optimization.html

[6] A.Mandal and A.Tiwari, “Analysis of Avalanche Effect

in Plaintext of DES using Binary codes”, International

Journal of Emerging Trnds and Technology in Computer

Science, vol. 1 , pp. 166-171, 2012.

[7] String Similarity test, Tools4noobs (access on 2 February

2014) http://www.tools4noobs.com/online_tools/String-

similarity

http://en.wikipedia.org/wiki/Secure_Hash_Algorithm
http://stackoverflow.com/search?q=bigdecimal+and+biginteger
http://stackoverflow.com/search?q=bigdecimal+and+biginteger
http://www.appperfect.com/support/java-coding-rules/optimization.html
http://www.appperfect.com/support/java-coding-rules/optimization.html
http://www.tools4noobs.com/online_tools/String-similarity
http://www.tools4noobs.com/online_tools/String-similarity

