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ABSTRACT 

A major problem with the Artificial Bee Colony (ABC) 

algorithm is its premature convergence to the locally optimal 

points of the search space, which often originates from the 

lack of explorative search capability of its mutation operator. 

This paper introduces ABC with Adaptive Mutation Rate 

(ABC-AMR), a novel algorithm that modifies the basic 

mutation operation of the original ABC algorithm in an 

explorative way. The novelty of the proposed algorithm lies in 

an adaptive mutation strategy that enables ABC-AMR to 

automatically adjust the mutation rate, separately for each 

candidate solution of the bee population, in order to customize 

the degree of explorations and exploitations around each 

candidate solution, while the original ABC algorithm employs 

a naïve fixed mutation rate. Besides, a few more explorative 

schemes and parameter values are employed by ABC-AMR to 

assist the adaptive mutation procedure. ABC-AMR is 

evaluated on several benchmark numerical optimization 

problems and results are compared with the basic ABC 

algorithm. Results show that ABC-AMR can perform better 

optimization than the original ABC algorithm on some of the 

benchmark problems.   

Keywords 

Artificial bee colony algorithm; Mutation; Exploration and 

exploitation; Continuous optimization. 

1. INTRODUCTION 
The Artificial Bee Colony (ABC) algorithm [1] is a recently 

introduced swarm intelligence based algorithm inspired by the 

intelligent food foraging behavior of the honey bees found in 

nature. Since its advent [2], ABC and its variants have often 

successfully employed to wide and diverse range of problems, 

such as numeric optimization [3], discrete optimization [4], 

multi-objective optimization [5], industrial process control 

[6], structural design [7], design of digital IIR filters [8], PID 

controller [9], machine learning [10] and so on [11].  

In comparison to other greedy and local search based 

algorithms, ABC is more resilient against premature 

convergence and local optima, because the population of 

candidate solutions can maintain some amount of diversity 

that is necessary to continue search space explorations 

avoiding the locally optimal points. However, it is still 

possible (e.g., Refs. [12] – [14]) that the evolving population 

of candidate solutions loses its diversity and explorative 

search capability too soon. This leads the candidate solutions 

to prematurely get trapped around the local optima. The risk 

of premature convergence usually rises with reduced 

explorations and increased exploitations. But, increasing the 

explorations may lead to unacceptably slow convergence 

speed. So an adaptive and balanced mix of explorations and 

exploitations is often necessary for good results and sufficient 

convergence speed of the algorithm.  

There exist a number of research works (e.g., Refs. [15] – 

[34]) that attempt to alter the explorative and/or exploitative 

properties of the basic ABC algorithm. However, most of 

them focus on altering the selection operation only. In the 

literature, not much has been reported to improve the basic, 

non-adaptive and fixed mutation operator of ABC. The 

proposed algorithm — ABC with Adaptive Mutation Rate 

(ABC-AMR) alters the mutation operation of ABC, as well as 

incorporates few more basic schemes to increase the degree of  

explorations of the basic ABC algorithm. Unlike ABC, the 

number of parameters that are mutated by ABC-AMR is 

gradually self-adapted, cycle (i.e., generation) by cycle, 

separately for each candidate solution of the bee population. 

The objective is to customize the degree of explorations and 

exploitations at the individual candidate solution level, 

separately for each candidate solution during its mutation 

operation by adapting and adjusting its mutation rate 

separately.  

The rest of this paper is organized as follows. Section 2 

describes the ABC algorithm. Section 3 presents a few 

improved ABC-variants and explains how ABC-AMR is 

significantly different from them. Section 4 describes 

ABC-AMR in details. Section 5 provides details of the 

benchmark problems and compares the results of different 

algorithms. Finally, section 6 leaves a few suggestions for 

further research with ABC-AMR.  

2. THE ARTIFICIAL BEE COLONY 

(ABC) ALGORITHM 
Honey bees in a colony show remarkable self-organization 

and co-ordination skills in their food foraging behavior. Bees 

have to forage over a vast area in search of good sources of 

food. After an initial exploration stage, more bees are 

employed to collect honey from the more profitable food 

sources whereas fewer bees are assigned to the less worthy 

food sources. Some scout bees are also assigned for 

exploration to find newer food sources. If the quality of a food 

source declines after some exploitation, this information is 

also shared with other bees so that fewer bees are now 

attracted to this source. After the quality of a food source falls 

below some threshold, the bees assigned to it abandon it. The 

foraging process is initiated by scout bees that start searching 

for flower patches suitable as food sources. Quality is usually 
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measured as a combination of some values, such as quantity 

and density of sugar, ease of access, distance from the colony 

etc. After they return to the hive, those scout bees that found a 

patch with quality above some threshold, deposit their nectar 

and then go to the ‘dance floor’ to perform a dance known as 

the ‘waggle dance’. This dance plays the key role to 

communicate information among the bees about the food 

sources. The waggle dance contains three pieces of 

information: i) the quality of the flower patch of this dancing 

bee, ii) the distance of the flower patch from the hive, iii) the 

direction from the hive that you have to travel in order to 

reach the flower. The ‘onlooker’ bees, waiting around the 

dance floor, observe the waggle dances of these ‘employed’ 

bees that have found good food sources and pick any one of 

them to become its ‘follower’ and collect nectar from its 

flower patch. The better a flower patch as a food source, the 

bigger is the number of follower bees along with its employed 

bee. However, if the patch is no longer good enough, it will 

not be advertised in the next waggle dance and the bees 

recruited for it as employed or follower bees will choose 

either to follow some other employed bee or start working as 

a scout bee to randomly explore the search space for finding 

new food source.  

The ABC algorithm mimics the food foraging behavior of the 

honey bees with these three groups of bees: employed bees, 

onlookers and scouts. A bee working to forage a food source 

(i.e. solution) previously visited by itself and searching only 

around its vicinity is called an employed bee. Employed bees 

perform waggle dance to propagate information of its food 

source to other bees. A bee waiting around the dance floor to 

choose any of the employed bees to follow is called an 

onlooker. A bee randomly searching a search space for 

finding a food source is called a scout. For every food source, 

there is only one employed bee and a number of follower 

bees. The scout bee, after finding a good food source also 

becomes an employed bee. In ABC algorithm 

implementation, half of the colony is employed bees and the 

other half is the onlookers. Number of food sources (i.e., 

solutions) is equal to the number of employed bees. An 

employed bee whose food source is exhausted (i.e. solution 

has not improved after several attempts) becomes a scout. The 

detailed pseudocode is given below.  

Step 1) Generate an initial population of N individuals. Each 

individual is a food source (i.e. solution) and has D attributes, 

where D is the dimensionality of the problem. 

Step 2) Evaluate the fitness of each individual.  

Step 3) Each employed bee searches in the neighborhood of 

its current position to find a better food source. For each 

employed bee, generate a new solution, vi around its current 

position, xi using (1). 

  vij = xij + φij (xij – xkj)                 (1) 

Here, k{1, 2, …, Nemp} and j{1, 2, …, D} are randomly 

chosen indices. Nemp is the number of employed bees. Φij is a 

uniform random number generated from the range [-1, 1]. 

Step 4) Compute the fitness of both xi and vi. Apply greedy 

selection scheme to choose the better one.   

Step 5) Calculate the selection probability, Pi for each 

solution, xi and normalize the probability value by (2).   

  1

N

k

k

i iP fit fit



           (2) 

Step 6) Assign each onlooker bee to a solution, xi at random 

with probability proportional to Pi  

Step 7) Produce new food positions (i.e. solutions), vi for each 

onlooker bee using the corresponding employed bee xi by 

using (1).  

Step 8) Evaluate the fitness of each employed bee, xi and its 

produced onlooker bee, vi. Apply greedy selection scheme to 

keep the one with better fitness and discard the other.    

Step 9) If a particular solution has not been improved over a 

number (say, 30) of cycles, then select it for abandonment. 

Replace it by placing a scout bee at a food source placed 

uniformly at random over the entire search space using (3), 

i.e., for j = 1, 2, ..., D   

   xij = minj + rand (0,1) * (maxj – minj)        (3) 

Step 10) Keep track of the best food source position (solution) 

found so far. 

Step 11) Check for termination. If the best solution found is 

acceptable or maximum number of iterations has elapsed, stop 

and return the best solution found so far. Otherwise go back to 

step 2 and repeat. 

3. EXISTING VARIANTS OF THE ABC 

ALGORITHM  

There exist several recent works (e.g., Refs. [15] – [34]) that 

try to tweak the explorative and/or exploitative properties of 

the basic ABC algorithm. For example, the cooperative ABC 

(CABC) algorithm [16] decomposes the search space into a 

number of subspaces and enforces more explorations by 

employing different bee colonies to explore the different 

subspaces. Another explorative variant –– ABC with diversity 

strategy (DABC) [17] tries to preserve sufficient amount of 

diversity among the candidate solutions by switching between 

two different mutation schemes. Chaotic ABC (CHABC) [18] 

is another explorative ABC-variant that uses dynamic chaotic 

sequence generators, instead of random number generators, to 

improve the explorative characteristics of the basic ABC 

algorithm. The explorative search capacity of ABC may also 

be improved by intelligent organization of the locally optimal 

points [19] and using the information of the global best 

solution, as in the Gbest-guided ABC (GABC) [20] algorithm. 

The Hooke Jeeves ABC (HJABC) [21] is another improved 

ABC-variant that hybridizes the Hooke Jeeves pattern search 

technique with the basic ABC algorithm. The elitist ABC 

(EABC) [22] is a hybrid ABC variant which hybridizes ABC 

with two different local search operators to intensify the 

exploitations around the best solutions. Quan and Shi [23] 

reported improvement of the convergence speed by 

introducing an exploitative search iteration operator based on 

the fixed point theorem of contractive mapping. Qingxian and 

Haijun [24] employed the Boltzmann selection scheme and 

introduced an improved initialization scheme to improve the 

convergence speed. The hybrid crossover based ABC 

(CbABC) [25] is an exploitative variant that strengthens the 

exploitation phase of ABC by using a crossover operation. 

Another new ABC-variant — NABC [26] alters the search 

pattern of both employed and onlooker bees by searching 

around neighborhood of the best solutions. The JA-ABC [27] 

tries to improve average fitness of bee population by replacing 
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poor solutions with mutations of the fittest solution, which 

makes it exploitative. Some other recently introduced ABC 

variants can be found in the Refs. [28] – [34], but each of 

them comes with some limitations, such as inadequate degree 

of explorations [28] – [30], poor exploitations [31], slower 

rate of convergence of the algorithm [32] and increased 

computational complexity [33], [34]. 

A major weakness of most existing ABC-variants (e.g., Refs. 

[16] – [34]) is that they do not consider the individual 

explorative/exploitative needs of the candidate solutions; 

rather they treat all the candidate solutions equally, employing 

some population-wide uniform strategy, identically on all 

candidate solutions. Another limitation is that they try to 

improve either the explorative (e.g., Refs. [16] – [19], [31] –

[34]) or the exploitative (e.g., Refs. [20] – [30]) properties of 

the basic ABC algorithm. The explorative enhancements are 

usually based on more explorative mutation, selection and/or 

initialization (e.g., Refs. [18], [19]) or employing some 

technique to maintain more population diversity (e.g., Refs. 

[16], [17]), while the exploitative developments are usually 

based on increasing the local search operations around the 

best candidate solutions (e.g., Refs. [21] – [22], [26] – [27]). 

However, only a few (i.e., Refs. [17], [20], [27]) of these 

algorithms make some efforts, more or less, to balance 

between the explorative and exploitative improvements. But 

they often use some fixed, rather than adaptive, strategy to 

balance the explorations with exploitations. For example, a 

fixed threshold value dlow by DABC [17], fixed control 

parameter value C by GABC [20] and fixed replacement rate 

of poor solutions by JA-ABC [27]. 

ABC-AMR differs from all these algorithms in a number of 

ways. First, ABC-AMR customizes explorations and 

exploitations separately for every candidate solution xi by 

introducing and separately maintaining a control parameter 

r[xi] for each xi. Secondly, ABC-AMR adopts a self-adaptive 

(rather than fixed, as in Refs. [16], [17], [20], [27], [30]) 

technique to adaptively control the mutation rate for each 

candidate solution. Finally, ABC-AMR also employs a few 

basic techniques to induce more explorations that assist the 

adaptive mutation rate strategy for better performance. 

4. ABC WITH ADAPTIVE MUTATION 

RATE (ABC-AMR)  
The proposed variant, ABC-AMR is different from the 

original ABC algorithm in four different aspects. First, the 

major difference between ABC and ABC-AMR is that 

ABC-AMR alters the mutation equation (1) which is used by 

steps 3 and 7 of the original ABC algorithm for producing 

new candidate solutions from the existing ones. ABC perturbs 

only a single parameter of an existing candidate solution xi by 

using (1), which means ABC has a fixed mutation rate of 1/D. 

In contrast, ABC-AMR employs a self-adaptive scheme to 

automatically adapt the mutation rate at the individual 

solution level. The procedure is further explained in the 

paragraph that follows. Second, ABC-AMR employs a larger 

interval of [–2, 2] to randomly produce the φij values in (1) 

instead of the narrower [–1, 1] interval used by the original 

ABC algorithm. Third, to increase the degree of explorations, 

ABC-AMR employs three scout bees instead of only one 

scout used by the original ABC algorithm. Fourth, if a 

particular bee xi is not improved over the last 30 cycles, 

ABC-AMR first tries to improve it by applying crossover 

operation between xi and the best employed bee found so far, 

before abandoning it by scout bees. The second and third 

schemes improve the degree of explorations, while the fourth 

scheme increases degree of exploitations. All these four 

schemes work together to facilitate more effective mutations 

to produce better offspring solutions from the existing ones.    

ABC-AMR includes a mutation probability r[xi] within each 

candidate solution xi which is gradually self-adapted, cycle by 

cycle, separately for each xi. The original ABC algorithm 

perturbs only a single, random parameter of the existing 

candidate solutions using (1). This performs search along one 

dimension at a time, which may be suitable for separable 

problems, but inappropriate for complex non-separable 

problems. In contrast, ABC-AMR can perturb any number of 

parameters allowing search along any possible direction. To 

accomplish this, ABC-AMR maintains and automatically 

adapts a control parameter r[xi], separately for every 

candidate solution xi. This parameter controls the mutation 

rate during producing trial solution vi from xi. To perform 

self-adaptation of the value of r[xi], ABC-AMR does the 

following — before perturbing any parameter of xi during 

producing vi, the value of r[xi] is perturbed first, with 

probability t, using (4). This (possibly) perturbed value of r is 

inherited by vi, which is now referred as r[vi] and is used as 

the probability of perturbing the parameters of xi to produce vi 

from xi. A more effective value of r[vi] is likely to produce 

fitter new solutions, which are likely to survive better than xi 

and produce better, newer solutions that will propagate the 

better values of the mutation probability r[vi] across the 

population. Thus a gradual self-adaptation towards better, 

more effective mutation rates will take place across the 

population.  

 
 

 

rand(0,1) ; if rand(0,1) <

otherwise

+
=

min max min  tr r r   

                                      






i

i

v
x

r
r

  (4) 

Here, t is the probability that r[xi] is perturbed first before 

perturbing any parameter of xi during producing vi from xi.  

For all of our experiments, we have set rmax = 1.0, rmin = 1/D 

and t = 0.05.  

5. EXPERIMENTAL STUDIES 
ABC-AMR is evaluated using a standard benchmark suite on 

numerical optimization problems consisting of 30 functions 

[1], [2], [18]. Table 1 presents a brief overview on each of the 

30 standard benchmark functions. More details on each 

benchmark function can be found in [1]. The benchmark suite 

consists both unimodal (f1−f9) and multimodal (f10−f30), 

separable (e.g., f1, f3, f15, f16) and non-separable (e.g., f2, f4, f14, 

f17), high (f1−f18) and low (f19−f30) dimensional functions. To 

optimize a multimodal function, the search algorithm must 

possess both exploitative and explorative characteristics so 

that it can explore the locally optimal points without being 

trapped around any of them. Some of the multimodal 

functions can have hundreds of local minima, even when the 

dimensionality is just two or three. The number of local 

optima usually increases exponentially with the number of 

dimensions, which makes their optimization extremely 

difficult. For example, the Ackley function f13 has one narrow 

global minimum basin, but with exponentially many minor 

local minima. The Griewank function f14 has a component 

creating linkage among the variables, which complicates the 

search by perturbing any subset of the variables. The 

difficulty for the Schwefel function f12 arises from its deep 
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Table 1:  Standard benchmark functions. D: dimensionality, S: search space, fmin: function value at global 

minimum, C:  function characteristics — U: Unimodal, M: Multimodal, S: Separable, N: Non-separable. 

No Function C D S fmin 

f1 Sphere US 30 [-100, 100]D 0 

f2 Schwefel 2.22 UN 30 [-10, 10]D 0 

f3 Schwefel 2.21 US 30 [-10, 10]D 0 

f4 Schwefel 1.2 UN 30 [-100, 100]D 0 

f5 Powell UN 24 [-4, 5]D 0 

f6 Dixon-Price UN 30 [-10, 10]D 0 

f7 Rosenbrock UN 30 [-30, 30]D 0 

f8 Step US 30 [-100, 100]D 0 

f9 Quartic US 30 [-1.28, 1.28]D 0 

f10 Rastrigin MS 30 [-5.12, 5.12]D 0 

f11 
Non-continuous 

Rastrigin 
MS 30 [-5.12, 5.12]D 0 

f12 Schwefel 2.26 MS 30 [-500, 500]D -12569.5 

f13 Ackley MN 30 [-32, 32]D 0 

f14 Griewank MN 30 [-600, 600]D 0 

f15 Alpine MS 30 [-10, 10]D 0 

f16 Weierstrass MS 30 [-0.5, 0.5]D 0 

f17 Penalized MN 30 [-50, 50]D 0 

f18 Penalized2 MN 30 [-50, 50]D 0 

f19 Foxholes MS 2 [-65.53,65.53]D 1 

f20 Kowalik MN 4 [-5, 5]D 3.07e-04 

f21 
Six Hump 

Camel Back 
MN 2 [-5, 5]D -1.0316 

f22 Branin MS 2 [-5, 10] x [0, 15] 0.398 

f23 Hartman3 MN 3 [0, 1]D -3.86 

f24 Hartman6 MN 6 [0, 1]D -3.32 

f25 Shekel5 MN 4 [0, 10]D -10.15 

f26 Shekel7 MN 4 [0, 10]D -10.40 

f27 Shekel10 MN 4 [0, 10]D -10.54 

f28 Fletcher-Powell MN 10 [-π, π]D 0 

f29 Michalewicz MS 10 [0, π]D -9.66 

f30 Langerman MN 10 [0, 10]D -1.4 
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Table 2:  Performance of the proposed algorithm ABC-AMR, compared to the basic ABC algorithm on the 

benchmark functions. Results are averaged over 50 independent runs. Better performance by ABC-AMR is 

marked with boldface font. In case the performance difference is not significant by t-Test 

with at least 95% level of confidence (i.e., α = 0.95), it is marked as “Similar”.  

No fmin 
ABC ABC-AMR 

Better Performance    

(t-Test with α = 0.95)  Mean Error Std. Dev. Mean Error Std. Dev. 

f1 0 3.58e–11 8.14e–12 4.15e–11 3.89e–12 Similar 

f2 0 1.04e–14 5.33e–14 1.87e–14 7.80e–15 Similar 

f3 0 9.37e+00 3.22e+00 8.65e+00 1.95e+00 Similar 

f4 0 2.75e–10 2.49e–10 3.09e–10 8.71e–11 Similar 

f5 0 2.50e+00 9.25e–01 8.26e+00 8.33e–01 ABC 

f6 0 6.67e–01 8.74e–02 5.01e–03 1.69e–03 ABC-AMR 

f7 0 2.75e+00 8.08e–01 3.17e+00 6.24e-01 Similar 

f8 0 0 0 0 0 Similar 

f9 0 8.61e–13 7.07e–13 7.23e–13 2.02e–13 Similar 

       
f10 0 5.79e–15 2.48e–15 6.58e–15 2.90e–15 Similar 

f11 0 8.82e–09 2.33e–09 7.23e–09 2.51e–09 Similar 

f12 -12569.5 3.49e+02 1.18e+02 1.06e+02 3.26e+01 ABC-AMR 

f13 0 3.08e–06 3.96e–07 6.03e–08 9.58e–09 ABC-AMR 

f14 0 4.35e–08 8.47e–09 3.99e–08 1.78e–08 Similar 

f15 0 6.90e–06 2.15e–06 6.82e–06 1.93e–06 Similar 

f16 0 3.03e–02 8.69e–03 7.36e–02 8.59e–03 ABC 

f17 0 5.82e–08 9.42e–09 7.11e–12 2.43e–12 ABC-AMR 

f18 0 2.64e–03 8.53e–04 2.49e–03 7.25e–04 Similar 

       
f19 1 0.03 0.013 0.02 0.045 Similar 

f20 3.07e–04 7.60e–05 6.69e–06 6.56e–05 7.80e–06 Similar 

f21 –1.0316 0.00 0.00 0.00 0.00 Similar 

f22 0.398 0.00 0.00 0.00 0.00 Similar 

f23 –3.86 0.00 0.00 0.00 0.00 Similar 

f24 –3.32 0.00 0.00 0.00 0.00 Similar 

f25 –10.15 0.30 0.11 0.28 0.06 Similar 

f26 –10.40 0.02 0.0025 0.03 0.021 Similar 

f27 –10.54 0.12 0.045 0.04 0.0051 ABC-AMR 

f28 0 8.05 2.89 7.95 1.46 Similar 

f29 –9.66 0.00 0.00 0.00 0.00 Similar 

f30 –1.4 0.54 0.18 1.07 0.24 ABC 
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local minima which are far from the single global minimum. 

The low dimensional functions f19−f30 have fewer local 

minima, but they are well separated and distant, making them 

difficult to be explored without being trapped around them. 

Table 2 presents the results of ABC-AMR with the basic 

ABC [1] algorithm. For the high dimensional functions f1–f18, 

the common parameters are set as — population size SN=50, 

maximum number of function evaluations FE=100000 and 

limit=100. For low dimensional f19–f30, SN=100, FE=10000 

and limit=10*D. Each algorithm made 50 independent runs on 

each function. The mean and standard deviation of the best 

found solutions from different runs are reported in Table 2. 

Following points summarize our observations on the results. 

 Out of the 30 functions f1–f30, ABC-AMR performs 

better than ABC on five functions, while ABC performs 

better only on three functions. On the remaining 22 

functions, their results are similar (i.e., the performance 

difference is not statistically significant in t-tests with at 

least 95% degree of confidence). Thus the overall 

performance of ABC-AMR is better than ABC. 

 The unimodal functions f1–f9 and low dimensional 

functions f19–f30 are relatively easier to optimize. On 

these functions, the performance of ABC and ABC-AMR 

are mostly similar.  

 On the high dimensional multimodal functions f10–f18, 
which are the most complex function family for any 

algorithm, the performance of ABC-AMR is much better 

than ABC. On almost all these functions, ABC-AMR 

performs either better or equally well to the basic ABC 

algorithm. This indicates that more explorations, as 

performed by ABC-AMR, are necessary for good 

performance on these multimodal functions with 

exponentially many locally optimal points. 

 In summary, ABC-AMR is better suited than the basic 

ABC algorithm on more complex multimodal and high 

dimensional functions.  

6. CONCLUSION  
This paper introduces ABC-AMR — a novel variant of the 

basic ABC algorithm and evaluates its performance on several 

standard benchmark functions. Results indicate that 

ABC-AMR can perform better than ABC on more complex 

functions which require more search space explorations. 

There might be several possible ways to further improve 

ABC-AMR. Firstly, ABC-AMR uses a simple strategy to 

control the mutation rate. Some more sophisticated scheme, 

possibly parameterized by the current maturity of the search 

process, may improve the algorithm further. Secondly, 

ABC-AMR tries more to improve the explorations only. 

Putting some emphasis on exploitations, especially around the 

best-so-far candidate solutions, may further improve the 

results. Thirdly, the quality of the final solution might be 

improved further by using an efficient local searcher after the 

execution of ABC-AMR is over. Finally, ABC-AMR has been 

applied only on the benchmark continuous optimization 

problems. It would be interesting to study how well 

ABC-AMR performs on many other existing problems, 

especially the discrete and real world ones. Some interesting 

examples of discrete and real world problems on which 

ABC-AMR could be employed are industrial process 

control [6], machine learning [10], bioinformatics [35], data 

mining [36], telecommunications [37], engineering analysis 

and design [38] and many others [11]. 
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