

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.4, July 2015 – www.ijais.org

42

Adaptive Mutation Rate for the Artificial Bee Colony

Algorithm: A Case Study on Benchmark Continuous

Optimization Problems

Syeda Shabnam Hasan
Department of Computer Science and Engineering
Ahsanullah University of Science and Technology

Dhaka-1208, Bangladesh

ABSTRACT

A major problem with the Artificial Bee Colony (ABC)

algorithm is its premature convergence to the locally optimal

points of the search space, which often originates from the

lack of explorative search capability of its mutation operator.

This paper introduces ABC with Adaptive Mutation Rate

(ABC-AMR), a novel algorithm that modifies the basic

mutation operation of the original ABC algorithm in an

explorative way. The novelty of the proposed algorithm lies in

an adaptive mutation strategy that enables ABC-AMR to

automatically adjust the mutation rate, separately for each

candidate solution of the bee population, in order to customize

the degree of explorations and exploitations around each

candidate solution, while the original ABC algorithm employs

a naïve fixed mutation rate. Besides, a few more explorative

schemes and parameter values are employed by ABC-AMR to

assist the adaptive mutation procedure. ABC-AMR is

evaluated on several benchmark numerical optimization

problems and results are compared with the basic ABC

algorithm. Results show that ABC-AMR can perform better

optimization than the original ABC algorithm on some of the

benchmark problems.

Keywords

Artificial bee colony algorithm; Mutation; Exploration and

exploitation; Continuous optimization.

1. INTRODUCTION
The Artificial Bee Colony (ABC) algorithm [1] is a recently

introduced swarm intelligence based algorithm inspired by the

intelligent food foraging behavior of the honey bees found in

nature. Since its advent [2], ABC and its variants have often

successfully employed to wide and diverse range of problems,

such as numeric optimization [3], discrete optimization [4],

multi-objective optimization [5], industrial process control

[6], structural design [7], design of digital IIR filters [8], PID

controller [9], machine learning [10] and so on [11].

In comparison to other greedy and local search based

algorithms, ABC is more resilient against premature

convergence and local optima, because the population of

candidate solutions can maintain some amount of diversity

that is necessary to continue search space explorations

avoiding the locally optimal points. However, it is still

possible (e.g., Refs. [12] – [14]) that the evolving population

of candidate solutions loses its diversity and explorative

search capability too soon. This leads the candidate solutions

to prematurely get trapped around the local optima. The risk

of premature convergence usually rises with reduced

explorations and increased exploitations. But, increasing the

explorations may lead to unacceptably slow convergence

speed. So an adaptive and balanced mix of explorations and

exploitations is often necessary for good results and sufficient

convergence speed of the algorithm.

There exist a number of research works (e.g., Refs. [15] –

[34]) that attempt to alter the explorative and/or exploitative

properties of the basic ABC algorithm. However, most of

them focus on altering the selection operation only. In the

literature, not much has been reported to improve the basic,

non-adaptive and fixed mutation operator of ABC. The

proposed algorithm — ABC with Adaptive Mutation Rate

(ABC-AMR) alters the mutation operation of ABC, as well as

incorporates few more basic schemes to increase the degree of

explorations of the basic ABC algorithm. Unlike ABC, the

number of parameters that are mutated by ABC-AMR is

gradually self-adapted, cycle (i.e., generation) by cycle,

separately for each candidate solution of the bee population.

The objective is to customize the degree of explorations and

exploitations at the individual candidate solution level,

separately for each candidate solution during its mutation

operation by adapting and adjusting its mutation rate

separately.

The rest of this paper is organized as follows. Section 2

describes the ABC algorithm. Section 3 presents a few

improved ABC-variants and explains how ABC-AMR is

significantly different from them. Section 4 describes

ABC-AMR in details. Section 5 provides details of the

benchmark problems and compares the results of different

algorithms. Finally, section 6 leaves a few suggestions for

further research with ABC-AMR.

2. THE ARTIFICIAL BEE COLONY

(ABC) ALGORITHM
Honey bees in a colony show remarkable self-organization

and co-ordination skills in their food foraging behavior. Bees

have to forage over a vast area in search of good sources of

food. After an initial exploration stage, more bees are

employed to collect honey from the more profitable food

sources whereas fewer bees are assigned to the less worthy

food sources. Some scout bees are also assigned for

exploration to find newer food sources. If the quality of a food

source declines after some exploitation, this information is

also shared with other bees so that fewer bees are now

attracted to this source. After the quality of a food source falls

below some threshold, the bees assigned to it abandon it. The

foraging process is initiated by scout bees that start searching

for flower patches suitable as food sources. Quality is usually

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.4, July 2015 – www.ijais.org

43

measured as a combination of some values, such as quantity

and density of sugar, ease of access, distance from the colony

etc. After they return to the hive, those scout bees that found a

patch with quality above some threshold, deposit their nectar

and then go to the ‘dance floor’ to perform a dance known as

the ‘waggle dance’. This dance plays the key role to

communicate information among the bees about the food

sources. The waggle dance contains three pieces of

information: i) the quality of the flower patch of this dancing

bee, ii) the distance of the flower patch from the hive, iii) the

direction from the hive that you have to travel in order to

reach the flower. The ‘onlooker’ bees, waiting around the

dance floor, observe the waggle dances of these ‘employed’

bees that have found good food sources and pick any one of

them to become its ‘follower’ and collect nectar from its

flower patch. The better a flower patch as a food source, the

bigger is the number of follower bees along with its employed

bee. However, if the patch is no longer good enough, it will

not be advertised in the next waggle dance and the bees

recruited for it as employed or follower bees will choose

either to follow some other employed bee or start working as

a scout bee to randomly explore the search space for finding

new food source.

The ABC algorithm mimics the food foraging behavior of the

honey bees with these three groups of bees: employed bees,

onlookers and scouts. A bee working to forage a food source

(i.e. solution) previously visited by itself and searching only

around its vicinity is called an employed bee. Employed bees

perform waggle dance to propagate information of its food

source to other bees. A bee waiting around the dance floor to

choose any of the employed bees to follow is called an

onlooker. A bee randomly searching a search space for

finding a food source is called a scout. For every food source,

there is only one employed bee and a number of follower

bees. The scout bee, after finding a good food source also

becomes an employed bee. In ABC algorithm

implementation, half of the colony is employed bees and the

other half is the onlookers. Number of food sources (i.e.,

solutions) is equal to the number of employed bees. An

employed bee whose food source is exhausted (i.e. solution

has not improved after several attempts) becomes a scout. The

detailed pseudocode is given below.

Step 1) Generate an initial population of N individuals. Each

individual is a food source (i.e. solution) and has D attributes,

where D is the dimensionality of the problem.

Step 2) Evaluate the fitness of each individual.

Step 3) Each employed bee searches in the neighborhood of

its current position to find a better food source. For each

employed bee, generate a new solution, vi around its current

position, xi using (1).

 vij = xij + φij (xij – xkj) (1)

Here, k{1, 2, …, Nemp} and j{1, 2, …, D} are randomly

chosen indices. Nemp is the number of employed bees. Φij is a

uniform random number generated from the range [-1, 1].

Step 4) Compute the fitness of both xi and vi. Apply greedy

selection scheme to choose the better one.

Step 5) Calculate the selection probability, Pi for each

solution, xi and normalize the probability value by (2).

 1

N

k

k

i iP fit fit



  (2)

Step 6) Assign each onlooker bee to a solution, xi at random

with probability proportional to Pi

Step 7) Produce new food positions (i.e. solutions), vi for each

onlooker bee using the corresponding employed bee xi by

using (1).

Step 8) Evaluate the fitness of each employed bee, xi and its

produced onlooker bee, vi. Apply greedy selection scheme to

keep the one with better fitness and discard the other.

Step 9) If a particular solution has not been improved over a

number (say, 30) of cycles, then select it for abandonment.

Replace it by placing a scout bee at a food source placed

uniformly at random over the entire search space using (3),

i.e., for j = 1, 2, ..., D

 xij = minj + rand (0,1) * (maxj – minj) (3)

Step 10) Keep track of the best food source position (solution)

found so far.

Step 11) Check for termination. If the best solution found is

acceptable or maximum number of iterations has elapsed, stop

and return the best solution found so far. Otherwise go back to

step 2 and repeat.

3. EXISTING VARIANTS OF THE ABC

ALGORITHM

There exist several recent works (e.g., Refs. [15] – [34]) that

try to tweak the explorative and/or exploitative properties of

the basic ABC algorithm. For example, the cooperative ABC

(CABC) algorithm [16] decomposes the search space into a

number of subspaces and enforces more explorations by

employing different bee colonies to explore the different

subspaces. Another explorative variant –– ABC with diversity

strategy (DABC) [17] tries to preserve sufficient amount of

diversity among the candidate solutions by switching between

two different mutation schemes. Chaotic ABC (CHABC) [18]

is another explorative ABC-variant that uses dynamic chaotic

sequence generators, instead of random number generators, to

improve the explorative characteristics of the basic ABC

algorithm. The explorative search capacity of ABC may also

be improved by intelligent organization of the locally optimal

points [19] and using the information of the global best

solution, as in the Gbest-guided ABC (GABC) [20] algorithm.

The Hooke Jeeves ABC (HJABC) [21] is another improved

ABC-variant that hybridizes the Hooke Jeeves pattern search

technique with the basic ABC algorithm. The elitist ABC

(EABC) [22] is a hybrid ABC variant which hybridizes ABC

with two different local search operators to intensify the

exploitations around the best solutions. Quan and Shi [23]

reported improvement of the convergence speed by

introducing an exploitative search iteration operator based on

the fixed point theorem of contractive mapping. Qingxian and

Haijun [24] employed the Boltzmann selection scheme and

introduced an improved initialization scheme to improve the

convergence speed. The hybrid crossover based ABC

(CbABC) [25] is an exploitative variant that strengthens the

exploitation phase of ABC by using a crossover operation.

Another new ABC-variant — NABC [26] alters the search

pattern of both employed and onlooker bees by searching

around neighborhood of the best solutions. The JA-ABC [27]

tries to improve average fitness of bee population by replacing

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.4, July 2015 – www.ijais.org

44

poor solutions with mutations of the fittest solution, which

makes it exploitative. Some other recently introduced ABC

variants can be found in the Refs. [28] – [34], but each of

them comes with some limitations, such as inadequate degree

of explorations [28] – [30], poor exploitations [31], slower

rate of convergence of the algorithm [32] and increased

computational complexity [33], [34].

A major weakness of most existing ABC-variants (e.g., Refs.

[16] – [34]) is that they do not consider the individual

explorative/exploitative needs of the candidate solutions;

rather they treat all the candidate solutions equally, employing

some population-wide uniform strategy, identically on all

candidate solutions. Another limitation is that they try to

improve either the explorative (e.g., Refs. [16] – [19], [31] –

[34]) or the exploitative (e.g., Refs. [20] – [30]) properties of

the basic ABC algorithm. The explorative enhancements are

usually based on more explorative mutation, selection and/or

initialization (e.g., Refs. [18], [19]) or employing some

technique to maintain more population diversity (e.g., Refs.

[16], [17]), while the exploitative developments are usually

based on increasing the local search operations around the

best candidate solutions (e.g., Refs. [21] – [22], [26] – [27]).

However, only a few (i.e., Refs. [17], [20], [27]) of these

algorithms make some efforts, more or less, to balance

between the explorative and exploitative improvements. But

they often use some fixed, rather than adaptive, strategy to

balance the explorations with exploitations. For example, a

fixed threshold value dlow by DABC [17], fixed control

parameter value C by GABC [20] and fixed replacement rate

of poor solutions by JA-ABC [27].

ABC-AMR differs from all these algorithms in a number of

ways. First, ABC-AMR customizes explorations and

exploitations separately for every candidate solution xi by

introducing and separately maintaining a control parameter

r[xi] for each xi. Secondly, ABC-AMR adopts a self-adaptive

(rather than fixed, as in Refs. [16], [17], [20], [27], [30])

technique to adaptively control the mutation rate for each

candidate solution. Finally, ABC-AMR also employs a few

basic techniques to induce more explorations that assist the

adaptive mutation rate strategy for better performance.

4. ABC WITH ADAPTIVE MUTATION

RATE (ABC-AMR)
The proposed variant, ABC-AMR is different from the

original ABC algorithm in four different aspects. First, the

major difference between ABC and ABC-AMR is that

ABC-AMR alters the mutation equation (1) which is used by

steps 3 and 7 of the original ABC algorithm for producing

new candidate solutions from the existing ones. ABC perturbs

only a single parameter of an existing candidate solution xi by

using (1), which means ABC has a fixed mutation rate of 1/D.

In contrast, ABC-AMR employs a self-adaptive scheme to

automatically adapt the mutation rate at the individual

solution level. The procedure is further explained in the

paragraph that follows. Second, ABC-AMR employs a larger

interval of [–2, 2] to randomly produce the φij values in (1)

instead of the narrower [–1, 1] interval used by the original

ABC algorithm. Third, to increase the degree of explorations,

ABC-AMR employs three scout bees instead of only one

scout used by the original ABC algorithm. Fourth, if a

particular bee xi is not improved over the last 30 cycles,

ABC-AMR first tries to improve it by applying crossover

operation between xi and the best employed bee found so far,

before abandoning it by scout bees. The second and third

schemes improve the degree of explorations, while the fourth

scheme increases degree of exploitations. All these four

schemes work together to facilitate more effective mutations

to produce better offspring solutions from the existing ones.

ABC-AMR includes a mutation probability r[xi] within each

candidate solution xi which is gradually self-adapted, cycle by

cycle, separately for each xi. The original ABC algorithm

perturbs only a single, random parameter of the existing

candidate solutions using (1). This performs search along one

dimension at a time, which may be suitable for separable

problems, but inappropriate for complex non-separable

problems. In contrast, ABC-AMR can perturb any number of

parameters allowing search along any possible direction. To

accomplish this, ABC-AMR maintains and automatically

adapts a control parameter r[xi], separately for every

candidate solution xi. This parameter controls the mutation

rate during producing trial solution vi from xi. To perform

self-adaptation of the value of r[xi], ABC-AMR does the

following — before perturbing any parameter of xi during

producing vi, the value of r[xi] is perturbed first, with

probability t, using (4). This (possibly) perturbed value of r is

inherited by vi, which is now referred as r[vi] and is used as

the probability of perturbing the parameters of xi to produce vi

from xi. A more effective value of r[vi] is likely to produce

fitter new solutions, which are likely to survive better than xi

and produce better, newer solutions that will propagate the

better values of the mutation probability r[vi] across the

population. Thus a gradual self-adaptation towards better,

more effective mutation rates will take place across the

population.

 
 

 

rand(0,1) ; if rand(0,1) <

otherwise

+
=

min max min tr r r






i

i

v
x

r
r

 (4)

Here, t is the probability that r[xi] is perturbed first before

perturbing any parameter of xi during producing vi from xi.

For all of our experiments, we have set rmax = 1.0, rmin = 1/D

and t = 0.05.

5. EXPERIMENTAL STUDIES
ABC-AMR is evaluated using a standard benchmark suite on

numerical optimization problems consisting of 30 functions

[1], [2], [18]. Table 1 presents a brief overview on each of the

30 standard benchmark functions. More details on each

benchmark function can be found in [1]. The benchmark suite

consists both unimodal (f1−f9) and multimodal (f10−f30),

separable (e.g., f1, f3, f15, f16) and non-separable (e.g., f2, f4, f14,

f17), high (f1−f18) and low (f19−f30) dimensional functions. To

optimize a multimodal function, the search algorithm must

possess both exploitative and explorative characteristics so

that it can explore the locally optimal points without being

trapped around any of them. Some of the multimodal

functions can have hundreds of local minima, even when the

dimensionality is just two or three. The number of local

optima usually increases exponentially with the number of

dimensions, which makes their optimization extremely

difficult. For example, the Ackley function f13 has one narrow

global minimum basin, but with exponentially many minor

local minima. The Griewank function f14 has a component

creating linkage among the variables, which complicates the

search by perturbing any subset of the variables. The

difficulty for the Schwefel function f12 arises from its deep

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.4, July 2015 – www.ijais.org

45

Table 1: Standard benchmark functions. D: dimensionality, S: search space, fmin: function value at global

minimum, C: function characteristics — U: Unimodal, M: Multimodal, S: Separable, N: Non-separable.

No Function C D S fmin

f1 Sphere US 30 [-100, 100]D 0

f2 Schwefel 2.22 UN 30 [-10, 10]D 0

f3 Schwefel 2.21 US 30 [-10, 10]D 0

f4 Schwefel 1.2 UN 30 [-100, 100]D 0

f5 Powell UN 24 [-4, 5]D 0

f6 Dixon-Price UN 30 [-10, 10]D 0

f7 Rosenbrock UN 30 [-30, 30]D 0

f8 Step US 30 [-100, 100]D 0

f9 Quartic US 30 [-1.28, 1.28]D 0

f10 Rastrigin MS 30 [-5.12, 5.12]D 0

f11
Non-continuous

Rastrigin
MS 30 [-5.12, 5.12]D 0

f12 Schwefel 2.26 MS 30 [-500, 500]D -12569.5

f13 Ackley MN 30 [-32, 32]D 0

f14 Griewank MN 30 [-600, 600]D 0

f15 Alpine MS 30 [-10, 10]D 0

f16 Weierstrass MS 30 [-0.5, 0.5]D 0

f17 Penalized MN 30 [-50, 50]D 0

f18 Penalized2 MN 30 [-50, 50]D 0

f19 Foxholes MS 2 [-65.53,65.53]D 1

f20 Kowalik MN 4 [-5, 5]D 3.07e-04

f21
Six Hump

Camel Back
MN 2 [-5, 5]D -1.0316

f22 Branin MS 2 [-5, 10] x [0, 15] 0.398

f23 Hartman3 MN 3 [0, 1]D -3.86

f24 Hartman6 MN 6 [0, 1]D -3.32

f25 Shekel5 MN 4 [0, 10]D -10.15

f26 Shekel7 MN 4 [0, 10]D -10.40

f27 Shekel10 MN 4 [0, 10]D -10.54

f28 Fletcher-Powell MN 10 [-π, π]D 0

f29 Michalewicz MS 10 [0, π]D -9.66

f30 Langerman MN 10 [0, 10]D -1.4

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.4, July 2015 – www.ijais.org

46

Table 2: Performance of the proposed algorithm ABC-AMR, compared to the basic ABC algorithm on the

benchmark functions. Results are averaged over 50 independent runs. Better performance by ABC-AMR is

marked with boldface font. In case the performance difference is not significant by t-Test

with at least 95% level of confidence (i.e., α = 0.95), it is marked as “Similar”.

No fmin
ABC ABC-AMR

Better Performance

(t-Test with α = 0.95) Mean Error Std. Dev. Mean Error Std. Dev.

f1 0 3.58e–11 8.14e–12 4.15e–11 3.89e–12 Similar

f2 0 1.04e–14 5.33e–14 1.87e–14 7.80e–15 Similar

f3 0 9.37e+00 3.22e+00 8.65e+00 1.95e+00 Similar

f4 0 2.75e–10 2.49e–10 3.09e–10 8.71e–11 Similar

f5 0 2.50e+00 9.25e–01 8.26e+00 8.33e–01 ABC

f6 0 6.67e–01 8.74e–02 5.01e–03 1.69e–03 ABC-AMR

f7 0 2.75e+00 8.08e–01 3.17e+00 6.24e-01 Similar

f8 0 0 0 0 0 Similar

f9 0 8.61e–13 7.07e–13 7.23e–13 2.02e–13 Similar

f10 0 5.79e–15 2.48e–15 6.58e–15 2.90e–15 Similar

f11 0 8.82e–09 2.33e–09 7.23e–09 2.51e–09 Similar

f12 -12569.5 3.49e+02 1.18e+02 1.06e+02 3.26e+01 ABC-AMR

f13 0 3.08e–06 3.96e–07 6.03e–08 9.58e–09 ABC-AMR

f14 0 4.35e–08 8.47e–09 3.99e–08 1.78e–08 Similar

f15 0 6.90e–06 2.15e–06 6.82e–06 1.93e–06 Similar

f16 0 3.03e–02 8.69e–03 7.36e–02 8.59e–03 ABC

f17 0 5.82e–08 9.42e–09 7.11e–12 2.43e–12 ABC-AMR

f18 0 2.64e–03 8.53e–04 2.49e–03 7.25e–04 Similar

f19 1 0.03 0.013 0.02 0.045 Similar

f20 3.07e–04 7.60e–05 6.69e–06 6.56e–05 7.80e–06 Similar

f21 –1.0316 0.00 0.00 0.00 0.00 Similar

f22 0.398 0.00 0.00 0.00 0.00 Similar

f23 –3.86 0.00 0.00 0.00 0.00 Similar

f24 –3.32 0.00 0.00 0.00 0.00 Similar

f25 –10.15 0.30 0.11 0.28 0.06 Similar

f26 –10.40 0.02 0.0025 0.03 0.021 Similar

f27 –10.54 0.12 0.045 0.04 0.0051 ABC-AMR

f28 0 8.05 2.89 7.95 1.46 Similar

f29 –9.66 0.00 0.00 0.00 0.00 Similar

f30 –1.4 0.54 0.18 1.07 0.24 ABC

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.4, July 2015 – www.ijais.org

47

local minima which are far from the single global minimum.

The low dimensional functions f19−f30 have fewer local

minima, but they are well separated and distant, making them

difficult to be explored without being trapped around them.

Table 2 presents the results of ABC-AMR with the basic

ABC [1] algorithm. For the high dimensional functions f1–f18,

the common parameters are set as — population size SN=50,

maximum number of function evaluations FE=100000 and

limit=100. For low dimensional f19–f30, SN=100, FE=10000

and limit=10*D. Each algorithm made 50 independent runs on

each function. The mean and standard deviation of the best

found solutions from different runs are reported in Table 2.

Following points summarize our observations on the results.

 Out of the 30 functions f1–f30, ABC-AMR performs

better than ABC on five functions, while ABC performs

better only on three functions. On the remaining 22

functions, their results are similar (i.e., the performance

difference is not statistically significant in t-tests with at

least 95% degree of confidence). Thus the overall

performance of ABC-AMR is better than ABC.

 The unimodal functions f1–f9 and low dimensional

functions f19–f30 are relatively easier to optimize. On

these functions, the performance of ABC and ABC-AMR

are mostly similar.

 On the high dimensional multimodal functions f10–f18,
which are the most complex function family for any

algorithm, the performance of ABC-AMR is much better

than ABC. On almost all these functions, ABC-AMR

performs either better or equally well to the basic ABC

algorithm. This indicates that more explorations, as

performed by ABC-AMR, are necessary for good

performance on these multimodal functions with

exponentially many locally optimal points.

 In summary, ABC-AMR is better suited than the basic

ABC algorithm on more complex multimodal and high

dimensional functions.

6. CONCLUSION
This paper introduces ABC-AMR — a novel variant of the

basic ABC algorithm and evaluates its performance on several

standard benchmark functions. Results indicate that

ABC-AMR can perform better than ABC on more complex

functions which require more search space explorations.

There might be several possible ways to further improve

ABC-AMR. Firstly, ABC-AMR uses a simple strategy to

control the mutation rate. Some more sophisticated scheme,

possibly parameterized by the current maturity of the search

process, may improve the algorithm further. Secondly,

ABC-AMR tries more to improve the explorations only.

Putting some emphasis on exploitations, especially around the

best-so-far candidate solutions, may further improve the

results. Thirdly, the quality of the final solution might be

improved further by using an efficient local searcher after the

execution of ABC-AMR is over. Finally, ABC-AMR has been

applied only on the benchmark continuous optimization

problems. It would be interesting to study how well

ABC-AMR performs on many other existing problems,

especially the discrete and real world ones. Some interesting

examples of discrete and real world problems on which

ABC-AMR could be employed are industrial process

control [6], machine learning [10], bioinformatics [35], data

mining [36], telecommunications [37], engineering analysis

and design [38] and many others [11].

7. REFERENCES

[1] D. Karaboga and B. Basturk, On the performance of

artificial bee colony (ABC) algorithm, Applied Soft

Computing 8 (1) (2008) 687–697.

[2] D. Karaboga, An idea based on honey bee swarm for

numerical optimization, Erciyes University, Kayseri,

Turkey, Technical Report-TR06, 2005.

[3] D. Karaboga and B. Akay, A comparative study of

artificial bee colony algorithm, Applied Mathematics and

Computation 214 (1) (2009) 108–132.

[4] S. Sobti and P. Singla, Solving travelling salesman

problem using bee colony based approach, International

Journal of Engineering Research and Technology 2 (6)

(2013) 186–189.

[5] K. Naidu, H. Mokhlis and A.H.A. Bakar, Multiobjective

optimization using weighted sum Artificial Bee Colony

algorithm for Load Frequency Control, International

Journal of Electrical Power and Energy Systems 55 (2)

(2014) 657–667.

[6] R. Mukherjee, D. Goswami and S. Chakraborty,

Parametric optimization of Nd:YAG laser beam

machining process using artificial bee colony algorithm,

Journal of Industrial Engineering, vol. 2013, Article ID

570250, 15 pages, 2013. DOI: 10.1155/2013/570250.

[7] H. Garg, Solving structural engineering design

optimization problems using an artificial bee colony

algorithm, Journal of Industrial and Management

Optimization, 10 (3) (2014) 777–794.

[8] Z. Zhao, D. Yin and Y. Jiang, Improved bee colony

algorithm based on knowledge strategy for digital filter

design, International Journal of Computer Applications,

47 (2) (2013) 241–248.

[9] A. Mishra, A. Khanna, N. Singh and V. Mishra, Speed

control of DC motor using bee colony optimization,

Universal Journal of Electrical and Electronic

Engineering 1 (3) (2013) 68–75.

[10] A. Karegowda and M. Darshan, Optimizing feed forward

neural network connection weights using artificial bee

colony algorithm, International Journal of Advanced

Research in Computer Science and Software Engineering

3 (7) (2013) 452–454.

[11] A. Bolaji, A. Khader, M. Betar and M. Awadallah, Bee

colony algorithm, its variants and applications: A survey,

Journal of Theoretical and Applied Technology 47 (2)

(2013) 434–459.

[12] T. Park and K. R. Ryu, A Dual population genetic

algorithm for adaptive diversity control, IEEE Trans.

Evolutionary Computation 14 (6) (2010) 865–884.

[13] R. K. Ursem, Diversity guided evolutionary algorithms,

in Proc. 7th Int. Conf. Parallel Problem Solving from

Nature (PPSN), 2002, pp. 462–474.

[14] J. Lampinen and I. Zelinka, On stagnation of the

differential evolution algorithm, in Proc. 6th Int. Mendel

Conf. Soft Computing, Brno, Czech Republic, 2000,

pp. 76–83.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.4, July 2015 – www.ijais.org

48

[15] V. Tereshko, A. Loengarov, “Collective Decision-

Making in Honey Bee Foraging Dynamics”, Comput. Inf.

Sys. J., vol. 9, no. 3, pp. 1–7, 2005.

[16] M. Abd, A cooperative approach to the artificial bee

colony algorithm, in Proc. IEEE Congress on

Evolutionary Computation (CEC), 2010, pp. 1–5.

[17] W. Lee and W. Cai, A novel artificial bee colony

algorithm with diversity strategy, in Proc. 7th Int. Conf.

Natural Computation, 2011, pp. 1441–1444.

[18] B. Wu and S. Fan, Improved artificial bee colony

algorithm with chaos, in Computer Science for

Environmental Engineering and Eco-Informatics, Part I,

Communications in Computer and Information Science,

eds. Y. Yu, Z. Yu and J. Zhao, vol. 158, 2011, pp. 51–56.

[19] L. Fenglei, D. Haijun and F. Xing, The parameter

improvement of bee colony algorithm in TSP problem,

Science Paper Online, Nov. 2007.

[20] G. Zhu and S. Kwong, Gbest-guided artificial bee colony

algorithm for numerical function optimization, Applied

Mathematics and Computation 217 (7) (2010) 3166–

3173.

[21] F. Kang, J. Li, Z. Ma and H. Li, Artificial bee colony

algorithm with local search for numerical optimization,

Journal of Software 6 (3) (2011) 490–497.

[22] E. Montes and R. Koeppel, Elitist artificial bee colony

for constrained real-parameter optimization, in Proc.

IEEE Congress on Evolutionary Computation, 2010, pp.

1–8.

[23] H. Quan and X. Shi, On the analysis of performance of

the improved artificial bee colony algorithm, in Proc. 4th

Int. Conf. Natural Computation (ICNC), 2008, 654–658.

[24] F. Qingxian and D. Haijun, Bee colony algorithm for the

function optimization, Science Paper Online, Aug. 2008.

[25] S. Kumar, V. Sharma and R. Kumari, A novel crossover

based artificial bee colony algorithm for optimization,

International Journal of Computer Applications 82 (8)

(2013) 18–25.

[26] Y. Xu, P. Fan and L. Yuan, A simple and efficient

artificial bee colony algorithm, Mathematical Problems

in Engineering, vol. 2013, Article ID 526315, 9 pages,

2013. DOI: 10.1155/2013/526315.

[27] N. Sulaiman, J. Saleh and A. Abro, A modified artificial

bee colony (JA-ABC) optimization algorithm, in Proc.

International Conference on Applied Mathematics and

Computational Methods in Engineering (AMCME),

2013, pp. 74–79.

[28] A. Abro and J. Saleh, Enhanced global-best artificial bee

colony optimization algorithm, in Proc. 6th European

Symposium on Computer Modeling and Simulation,

2012, pp. 95–100.

[29] W. Gao, S. Liu and L. Huang, A global best bee colony

algorithm for global optimization, Journal of

Computational and Applied Mathematics 236 (11)

(2012) pp. 2741–2753.

[30] W. Gao and S. Liu, A modified artificial bee colony

algorithm, Computers and Operations Research 39 (3)

(2012) pp. 687–697.

[31] 20 W. Gao and S. Liu, Improved artificial bee colony

algorithm for global optimization, Information

Processing Letters 111 (17) (2011) pp. 871–882.

[32] G. Zhu and S. Kwong, Gbest-guided artificial bee colony

algorithm for numerical function optimization, Applied

Mathematics and Computation 217 (7) (2010) pp. 3166–

3173.

[33] A. Abro and J. Saleh, An enhanced artificial bee colony

optimization algorithm, Recent Advances in Systems

Science and Mathematical Modelling, ed. D.S. Nikos

Mastorakis, Valeriu Prepelita, 2012: WSEAS Press.

[34] A. Banharnsakun, T. Achalakul and B. Sirinaovakul, The

best-so-far selection in artificial bee colony algorithm,

Applied Soft Computing 11 (2) (2011) pp. 2888–2901.

[35] C. Lin and S. Su, Using an efficient bee colony algorithm

for protein structure prediction, Int. Journal of Innovative

Computing, Information and Control 8 (3b) (2012)

2049–2064.

[36] M. Abdulsalam and A. Bakar, A cluster based deviation

detection using the artificial bee colony (ABC)

algorithm, International Journal of Soft Computing 7 (2)

(2012) 71–78.

[37] A. Ozen and C. Ozturk. "A novel modulation recognition

technique based on artificial bee colony algorithm in the

presence of multipath fading channels, in Proc. IEEE

36th International Conference on Telecommunications

and Signal Processing (TSP), 2013, pp. 239–243.

[38] B. Akay and D. Karaboga, Artificial bee colony

algorithm for large scale problems and design

optimization, Journal of Intelligent Manufacturing 23 (4)

(2012), 1001–1014.

