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ABSTRACT 

This paper investigates various wavelets in terms of information 

preservation in hyperspectral image analysis. The compression 

method uses Principal Component Analysis (PCA) to provide 

spectral decorrelation and also dimensionality reduction. 

Principal Component (PC) images are then compressed by 

various wavelets and Set Partitioning in Hierarchical Trees 

(SPIHT) based coder. Experimental results by using five 

wavelets show that the compression method preserves spatial 

details and spectral features for all wavelets. Among the five 

wavelets used, coiflet achieves higher signal-to-noise ratio at 

high compression in spectral dimension. Performance is best 

when a few (10 or less than 10) PCs are retained for coding. 

The order of performance is coiflet2, biorthogonal2.2, symlet2, 

daubechies4 and biorthogonal1.1 for given AVIRIS dataset.  
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1. INTRODUCTION 
Hyperspectral imaging (HSI) is one of the most powerful and 

fastest growing technologies in the field of remote sensing. 

Hyperspectral images are three dimensional multivariate data 

structures (called hypercube) with two spatial dimensions     (x 

– y) and one wavelength dimension (λ). The hyperspectral data 

refers to the large number of measured wavelength bands that 

are continuous and narrow. The data corresponds to the 

reflected radiation from a particular region of earth’s surface. 

Each pixel in a hyperspectral image represents a radiation that 

is a characteristic feature of light absorbing and/or scattering 

properties of the spatial region corresponding to that pixel. This 

forms the spectral signature of the object and it can be used to 

uniquely characterize and identify any given material. As the 

hyperspectral imagery is collected by capturing hundreds of 

continuous wavelength bands, the size of the data is huge. For 

example, Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) is capable of capturing several gigabytes of data per 

day. These images contain geographical information and reflect 

the characteristics of geographical features and spatial 

structures on the earth surface. This huge amount of 

information is very useful in large number of applications such 

as detection and identification of the surface and atmospheric 

constituents present, analysis of soil type, monitoring 

agriculture and forest conditions, environmental analysis and 

military surveillance [1]. As the HSI data is typically collected 

by satellites, the transmission and storage of such a data to 

terrestrial receiver sites is a research issue that requires the 

employment of compression technology [2]. There are spectral 

as well as spatial redundancies in hyperspectral image. So the 

compression method is effective that removes the redundancy. 

In literature, there are number of approaches to the compression 

of hyperspectral imagery proposed. Prominent techniques 

include Principal Component Analysis (PCA) [3], vector 

quantization [4], KLT, DWT, DCT (e.g. [5-7]) applied to 

spectral dimension. The dimensionality reduction and 

compression method for HSI data based on Independent 

Component Analysis (ICA) and wavelet transform is proposed 

in [8]. Wavelet based lossy compression techniques are widely 

used as they provide excellent performance for traditional 2D 

images. Further, 3D compression algorithms are extensions of 

2D algorithms. Widely used 3D wavelet based techniques are 

3D-SPECK, 3D-SPIHT [9]. 

In this paper, PCA is used to remove spectral redundancy and 

achieve the dimensionality reduction in order to preserve the 

spectral features of hyperspectral image. This feature 

preservation is important for further analysis. The obtained 

principal component images have spatial correlation. Under 

lossy compression scheme, wavelet decomposition is used here 

for data reduction. This paper examines various wavelets like 

coiflet, symlet, daubechies, biorthogonal wavelets etc, which 

can be used in hyperspectral image compression. The functional 

block diagram of hyperspectral image compression and 

decompression based on PCA and DWT is presented in Figure 

1. 

 

Fig. 1. Hyperspectral image compression &decompression 

based on PCA and DWT 
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In this paper, the performance of Principal Component Analysis 

(PCA) for dimensionality reduction, along with Discrete 

Wavelet Transform (DWT) for spatial compression, in terms of 

information preservation i.e. in terms of usefulness of the 

reconstructed data in analysis such as, classification, and object 

identification, is investigated. Experimental results indicate that, 

the compression and decompression of hyperspectral image 

based on PCA and DWT performs well, in terms of SNR, 

RMSE, MAE and SAM, even when only low resolution 

subbands of a few (10 or less than 10) PCs are coded. 

2. PCA BASED DIMENSIONALITY 

REDUCTION OF HYPERSPECTRAL 

IMAGE  
Principal Component Analysis is a simple mathematical tool 

from linear algebra, which provides a roadmap for how to 

reduce a complex data set to a lower dimension. It is a well 

known technique used in multivariate data analysis. As 

hyperspectral images (HSI) are 3-Dimensional multivariate data 

structures with two spatial dimensions and one wavelength 

dimension, PCA is widely used in HSI for spectral 

decorrelation and spectral dimensionality reduction. 

In hyperspectral imagery, multiple images are captured at wide 

range of wavelength in an electromagnetic spectrum and with a 

narrow and continuous bandwidth. Thus, resultant consecutive 

bands are highly correlated and may contain redundant 

information. Hence, the smaller number of spectral bands must 

be selected for storage such that they describe the data that is 

useful to the end use application. PCA is used in hyperspectral 

imaging as it is capable of representing the spectral variance 

from the hundreds of bands into a small set (typically less than 

10) of principal component images.[10]  

The case when all principal components are retained, PCA is 

commonly termed as Karhunen Loeve Transform (KLT). In any 

KLT based compression system, for a hyperspectral image with 

n spectral bands, a covariance matrix called KLT matrix of n×n 

dimension is generated. This matrix is data dependent and need 

to be communicated to the decoding end.  

In PCA, only those eigenvectors from covariance matrix are 

retained that correspond to largest P eigen values. The data 

volume passed to the decoder has P < n spectral components. In 

[3] it is shown that rate distortion performance can be 

significantly improved by employing principal component 

analysis for spectral decorrelation. As the minor PCs are almost 

noisy, it is better to preserve a subset of PCs for dimensionality 

reduction. 

The conventional PCA works on 2-Dimensional data matrix. 

For this reason, hyperspectral data cube is unfolded to form a 2-

Dimentional matrix where each column represents spectrum of 

a pixel and each row represents each band of the cube as 

illustrated in Figure 2. 

The mean vector can be computed by the sample average as, 

   
 

 
   

 
              .                                        (1) 

Each input vector differs from the average. The mean is then 

subtracted from each input vector to get the zero mean data. 

This set of very large vectors is subjected to PCA. 

 

 

Fig. 2. 2D representation of 3D hypercube [11] 

The covariance matrix Cx is computed as (2). 

   
 

   
        

        
 
   .                                 (2) 

The size of Cx is n×n. Covariance measures the variation of 

each dimension from mean, with respect to each other. The 

eigenvalues D and eigenvector matrix V of Cx are then 

computed. The term (K-1) is used to obtain an unbiased 

estimate of covariance matrix from the samples. 

The PCA based dimensionality reduction algorithm is 

summarized as follows, 

i. Convert the hyperspectral image cube to a matrix 

X with n rows and MN columns. 

ii. Compute the mean vector as (1). 

iii. Subtract the mean from each input vector to get 

the zero mean data or the centered data. 

iv. Compute the covariance matrix as (2). 

v. Compute the eigenvalues D and the 

corresponding eigenvectors V of the covariance 

matrix. 

vi. Compute VT × X to obtain PC images. 

vii. Select those PC images with the first P largest 

eigenvalues to achieve dimensionality reduction. 

Figure 3 shows first four principal components obtained by 

applying PCA to AVIRIS Indian Pine data. 

 

Fig. 3. PCA – showing first four principal components for 

AVIRIS Indian Pine Image. 
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3. WAVELET COMPRESSION 
Wavelets are finite energy functions having localization 

properties. This means a small finite number of coefficients are 

required to represent a complicated signal. Due to this 

localization feature, wavelet transformation is used in data 

compression. Wavelet transform provides a good time 

resolution at high frequencies and good frequency resolution at 

low frequencies. Low amplitudes correspond to the frequency 

bands that are not so prominent in the original signal. Hence, 

those wavelet coefficients can be discarded without much loss 

of data. This facilitates data reduction. 

In literature, wavelet analysis is applied to hyperspectral image 

data in various ways. Scholl and Denmark [12] propose a 

discrete wavelet transform that consists of 2-D discrete wavelet 

transform in spatial dimension and 1-D DWT in spectral 

dimension. In this paper, principal components images are 

subjected to wavelet based compression. Each PC is a 2D 

image. A 2D DWT is implemented as a filter bank. Wavelet 

transform helps in embedded coding in that majority of the 

signal energy is concentrated in low frequency components and 

thus they are important than high frequency components in 

reconstruction [2]. Schmanske and Loew [5] propose a lossy 

compression by setting all highpass subband coefficients to 

zero, providing higher compression ratios, without necessarily 

degrading the overall performance. The various wavelets that 

we encounter are coiflet, symlet, daubechies and biorthogonal 

wavelets. 

4. SPIHT BASED CODING AND 

DECODING 
Wavelet transform efficiently approximates each PC image by 

representing it with small number of coefficients. The next 

important step is to represent wavelet coefficients by a coder. 

Shapiro [13] used the zerotrees of wavelet coefficients to 

develop the embedded zerotree coding of wavelet coefficients 

(EZW) and later Said and Pearlman [14] proposed a good WT 

coding technique, set partitioning in hierarchical trees (SPIHT). 

Here basic SPIHT is implemented in coding the coefficients. 

Also coding based on linear set partitioning is proposed. 

Experimental results show that the distortion parameters in 

linear partitioning are same as those using hierarchical sets. The 

difference is in number of coded bits. The bits in the encoded 

bitstream are more in linear partitioning than that in hierarchical 

trees. The advantage of linear partitioning lies in simplicity 

during implementation. The coding based on linear partitioning 

is summarized as follows, 

i. Low pass subband of each principal component is 

arranged as a column vector of a matrix CA. Number 

of columns of a matrix CA is equal to the number of 

principal components. 

ii. Number of sets is equal to the number of rows of a 

matrix CA such that partitioning is linear rowwise. 

iii. Coding is performed using the SPIHT coding and 

then decoding. 

iv. Matrix CA is then regenerated. 

v. Each column is then arranged as 2D image. These 

images are subjected to inverse wavelet transform. 

5. PERFORMANCE COMPARISON OF 

VARIOUS WAVELETS 
The performance of the lossy compression is determined by 

measuring the distortion. Distortion measures the fidelity of the 

reconstructed data to the original data. Distortion may be 

evaluated according to the radiometric distortion and to spectral 

distortion [3]. Sagrista and Llinas [15] gives the various 

radiometric distortion parameters used like signal to noise ratio 

(SNR), root mean squared error (RMSE), mean absolute error 

(MAE) etc. and also proposed the other distortion measures like 

Spectral Angle Mapper (SAM) to help evaluation and to guide 

the compression approach. SAM provides us the value of 

spectral angle (in degrees or radians) between the pair of 

vectors. The spectral angle is more appropriate for spectral 

signature comparison as it considers the shape of the spectra 

and not the overall energy. 

6. RESULTS AND DISCUSSION 
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

dataset – Indian Pine is used in the experiment. The image 

resolution is listed in Table 1. The architecture shown in Figure 

1 is implemented in MATLAB as discussed in sections 2, 3, 4 

and 5. 

Table 1. Indian Pine Dataset 

Data set size (in pixels) 145 × 145 (21025) 

Number of bands 220 

Ground resolution 17m 

Spectral region 0.4-2.5μm 

bandwidth 10-nm 

 

Table 2. Compression performance in terms of radiometric distortions 

 Coif2 Bior2.2 Sym2 Db4 Bior1.1 

#PCs 10 220 10 220 10 220 10 220 10 220 

SNR 22.4013 22.4029 22.1406 22.1420 22.0648 22.0661 20.7492 20.7495 20.218 20.2177 

MAE 125.169 125.0923 127.307 127.244 130.911 130.824 150.527 150.477 159.429 159.407 

RMSE 226.435 226.3946 233.335 233.297 235.381 235.345 273.872 173.862 291.147 291.154 
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Table 3. Compression performance in terms of spectral distortion 

 Coif2 Bior2.2 Sym2 Db4 Bior1.1 

#PCs 10 220 10 220 10 220 10 220 10 220 

ρ 0.9899 0.9899 0.9893 0.9893 0.9891 0.9891 0.9853 0.9853 0.9833 0.9833 

μSAM 2.8063 2.8044 2.8544 2.8522 2.9622 2.9607 3.3981 3.3976 3.6324 3.6324 

σSAM 1.9459 1.9467 2.1209 2.1217 2.0690 2.0696 2.4973 2.4975 2.8264 2.8266 

var 0.0661 0.0661 0.0785 0.0786 0.0747 0.0748 0.1088 0.1089 0.1394 0.1394 

#PCs = number of PCs coded, ρ = spatial correlation coeficient, 

μSAM,  σSAM , var – mean, standard deviation and variance of SAM in degrees over entire dataset 

 

Figure 4 shows the SNR performance of AVIRIS Indian Pine 

dataset for various wavelets. From Figure 4, it is observed that 

SNR values for coeflet are maximum as compared to other 

wavelets used when same numbers of PCs are coded. In terms 

of SNR, the performance order is coiflet2, biorthogonal2.2, 

symlet2, daubechies4 and biorthogonal1.1 for the given dataset. 

Figure 5 and Figure 6 shows the MAE and RMSE performance, 

respectively, of AVIRIS Indian Pine dataset for five wavelets 

used. From Figure 5 and Figure 6, it is observed that the coiflet 

performance is best among the five wavelets when same 

numbers of PCs are coded. In terms of MAE as well as RMSE, 

the performance order of wavelets is same as coiflet2, 

biorthogonal2.2, symlet2, daubechies4 and biorthogonal1.1. 

From Table 2, it is observed that if all 220 PCs are retained, 

then there is no substantial improvement in SNR, MAE and 

RMSE values. By keeping 10 PCs, the compression ratio of 

0.045 can be achieved in spectral dimension. This means data 

occupies 4.5% of its original size. 

In practical applications of hyperspectral image compression, it 

is important to consider the usefulness of the reconstructed data. 

Table 3 presents the distortion measures in terms of information 

preservation when original image cube is compared with the 

reconstructed image cube. The measure of similarity 

comparison is the spatial correlation coefficient ρ – the closer ρ 

is to 1.0, the better performance is considered to be. Table 3 

also shows the mean and standard deviation of the SAM in 

degrees over the entire image. It is observed that the average 

spectral distortion is quite small even when a few (10 or less 

than 10) PCs are coded for various wavelets used. In comparing 

Table 2 and Table 3, it is observed that number of PCs yeilding 

maximum SNR, minimum MAE and RMSE is close to the 

number of PCs yeilding maximum performance in terms of 

information preservation. If the dataset is coded using 10 PCs, 

the reconstructed image is still useful for practical data analysis, 

such as classification because these PCs should perform good in 

that terms also. Table 3 also dipicts the same order of 

performance of wavelets as coiflet2, biorthogonal2.2, symlet2, 

daubechies4 and biorthogonal1.1. Among the various wavelets 

used, coiflet stands better in terms of radiometric as well as 

spectral distortion measures for the given AVIRIS dataset. 

 

 

Fig. 4. SNR performance as the number of principal components coded varies for various wavelets on Indian Pine dataset 
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Fig. 5. MAE performance as the number of principal components coded varies for various wavelets on Indian Pine dataset 

 

 

Fig. 6. RMSE performance as the number of principal components coded varies for various wavelets on Indian Pine dataset 

7. CONCLUSION 
This paper investigates the performance of various wavelets in 

hyperspectral image compression. Experimental results on 

AVIRIS dataset show that five wavelets, each from different 

wavelet family, when used in hyperspectral image compression, 

perform well in terms of radiometric distortion measures like 

SNR, RMSE, MAE as well as spectral distortion parameter like 

SAM. It is observed that the average spectral distortion is quite 

small even when 10 or less than 10 PCs are coded. Thus it can 

be concluded that, all these wavelets when used for spatial 

compression provide the data that can be useful after 

reconstruction in analysis such as classification. Among the five 

wavelets used, the coif2 provides maximum performance in 

radiometric distortion parameters as well as in terms of 

information preservation. So it can be used for compressing 

hyperspectral images to be useful for classification. Future work 

is to perform the classification so that compression method can 

be modified to achieve high classification accuracy. 
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