

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.2, June 2015 – www.ijais.org

6

Fast Mining of Finding Frequent Patterns in

Transactional Database using Incremental Approach

Pamli Basak

Computer Engineering
Department

TCET, Kandivali (E)
Mumbai

R.R. Sedamkar
Professor, HOD-PG, Computer

Engineering Department
TCET, Kandivali (E)

Mumbai

Rashmi Thakur
A.P., Computer Engineering

Department
TCET, Kandivali (E)

Mumbai

ABSTRACT
Datasets grow in size as they are increasingly being gathered by

cheap and numerous information-sensing mobile devices,

aerial, software logs, microphones, wireless sensor networks

and cameras. This paper presents a structure for simply, easily

and competently parallelizing data mining algorithms for those

huge datasets together with the incremental mining.

MapReduce concept is use to execute the parallel FP-Growth

algorithm by running the windows services parallel. The

proposed algorithm eliminates duplicated work and spurious

items. Also, it shortens the response time to a query for the set

of frequent items. The proposed algorithm is implemented by

parallel running of many windows services and experimental

results shows tremendous advantages. The proposed algorithm

runs 66% faster than the traditional algorithm of data mining.

Also, memory utilization reduces by 37%.

General Terms
Data mining, Association Rule Mining, Grid Computing

Keywords
Incremental Data Mining, Parallel FP-growth, MapReduce jobs,

Incremental Parallel FP-growth.

1. INTRODUCTION
Data mining [1] is called knowledge discovery in databases

(KDD). Both data mining and KDD are at best indistinctly

defined. Their explanations mostly depend on the background

and outlooks of the definers. The real meaning of data mining is

the non-trivial process of recognizing suitable, potentially

helpful and finally comprehensible patterns in data. Data

mining is the use of statistical methods with computers to reveal

helpful patterns in the databases. Huge data is a collection of

large and complex datasets which is complicated to process by

using conventional methods and offered technologies of data

mining. To itinerary huge data using some systematic approach

can even hardly conclude the work, it takes elongated time and

the outcome might not be up to the mark. To resolve this

problem, data mining is undertake with new chances and

challenges.

Association rules mining [2], a kind of data mining algorithms,

are if/then statements that help to discover associations between

apparently not related data in a relational database or other

information warehouse. In market basket analysis, association

rules is “the customers who buy bread are most likely to buy

butter” might be produced according to the processing

outcomes.

Years of study, association rule mining algorithms sound

effectual and recognized in majority of cases. Though, the

conventional algorithms are not healthy work when it comes to

huge data. In an actual situation, databases are incessantly

updating on daily basis and threshold value also frequently

changes with wants of mining. It is evidently inefficient to

restart the entire mining process over again every time new data

is inserted into the original database or initialize the mining

parameters. This concerns leads to incremental mining

conception. Additionally, algorithms for parallelization have

become predictable to deal with the obscurities arising from

massive scale data.

This paper talks about a parallelizing the FP-growth algorithm

and parallelizing the incremental algorithm and the FP-growth

algorithm mining techniques. Incremental parallel FP-growth

algorithm solves the incremental problem brought by the

dynamic threshold value and database at the same time, which

evades frequent computation. MapReduce jobs are written on

windows services and make them run simultaneously to achieve

parallel mining. Grid computing [3] has been projected as an

important computational model, illustrious from the

conventional computing by its focus on huge resource sharing,

revolutionary applications, and, in some cases, high-

performance orientation. These days’ grid scan is used as

efficient infrastructures for dispersed high-performance

computing and data processing.

2. RELATED WORK
A basic necessity for mining association rules is to find out the

frequent itemsets. Several algorithms are present for frequent

itemset mining. Apriori and FP-Growth are the conservative

method.

2.1 APRIORI
Agrawal et. al.[4] proposed an algorithm for frequent itemset

mining and association rule learning over

transactional databases called Apriori. It carry on by

distinguishing the repeated individual items in the database and

broadening them to larger itemsets provided that those itemsets

appear passably often in the database. Its workings depend on

Candidate Generation and Test Approach. There are mainly two

steps have to perform in each pass: Candidate generation and

Candidate counting and selection.

Apriori have two main disadvantages: Candidate generation, it

generates huge candidate sets; 104 frequent 1-itemset will

generate 107 candidate 2-itemsets and to discover a frequent

pattern of size 100 and scanning the original database every

time, any new data is inserted in the database.

http://en.wikipedia.org/wiki/Mobile_device
http://en.wikipedia.org/wiki/Wireless_sensor_networks
http://en.wikipedia.org/wiki/Digital_camera
http://searchsqlserver.techtarget.com/definition/relational-database
http://en.wikipedia.org/w/index.php?title=Frequent_item_set_mining&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Frequent_item_set_mining&action=edit&redlink=1
http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Databases

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.2, June 2015 – www.ijais.org

7

2.2 FP-GROWTH
FP-growth [5] is specified to conquer the problem of Apriori,

candidate generation. FP-growth is a program to discover

frequent itemsets with the FP-growth algorithm, which writes to

the transaction database as a prefix-tree that enhances with links

that arrange the nodes into lists which points to the identical

item. The search is carried out by analyzing the prefix-tree,

running recursively on the outcome, and edging the original

tree. The implementation also supports sifting for closed and

maximal item sets with restricted itemset storage; even though

the approach worn in the program fluctuates in whenever it

used top-down prefix trees instead FP-trees. FP-growth reduce a

large database into a reduce itemsets, Frequent-Pattern tree (FP-

tree) arrangement with highly compact, but full for frequent

pattern mining and evade expensive database scans. It develops

a competent, FP-tree-based frequent pattern mining method

with a divide-and-conquer tactic which crumbles mining tasks

into smaller ones and shuns candidate generation.

The weakness of this algorithm consists in the Tid_branch

being too lengthy and extended, taking huge memory space as

well as working out time for intersecting the long sets. Also, the

algorithm scans the original database every time; any new data

is inserted in the database.

2.3 Parallelization in Data Mining
Zhang et. al. proposed parallel FP-growth algorithm [6] on

distributed machines. PFP panels computation in such a way

that each machine performs an independent group of mining

tasks. . FP-tree building procedures and processing in this

algorithm are to some extent similar to conservative FP-

Growth, which run on a single computer node. This separation

eradicates computational dependence between machines, and

hence communication between them. Pradeepa et. at. presented

Parallelized Apriori algorithm [7] to estimate an accurate and

proficient organization technique, greatly spirited and scalable

compared with other conservative and associative organization

methods Drawback of these algorithms are that it does not

support incremental mining.

Osmar et. al. discuss an algorithm MLFPT [8]for parallel

mining of frequent patterns, based on FP-growth mining, that

uses two full I/O scans of the database, eradicating the need for

generating the candidate items, and distributing the work

equally among processors to achieve near most favorable load

balancing.

Figure 1 illustrates Parallel FP-growth data mining algorithm,

which uses two MapReduce phases. Following are the steps of

the parallel FP-growth algorithm.

 Step 1: Partitioning: Mapper partition the whole

database into number of small divisions, likely to

equal to number of Reducers. Also maintain the

counts of 1-itemset

 Step 2: Parallel Counting of 1-itemset: Each Reducers

will count the items of their transaction list and

combine the count from the Mapper.

 Step3: Parallel FP-growth: Now each Reducers will

build its own FP-tree using FP-growth algorithm.

 Step 4: Aggregation: Finally the results from each

Reducers are combined and frequent Itemsets are

discover.

Figure1: Flow diagram of Parallel Data mining algorithm

2.4 Incremental Data Mining Concept
Databases are updating endlessly in practical situation, where

exactly expected algorithms like Apriori, FP-growth perform

incompetently. If the previous algorithms could be examine to

incrementally mine the frequent itemset from the newly

included item database, the drawing out process would become

more proficient and cost associated with the mining process

would be lessen. The process of updating database continuously

is Incremental Data Mining.

Incremental mining trimmed down the cost of mining process

by using again the former mined results. Correct memory

consumption and speed of overall mining process are the two

main factors to monitor performance of incremental data

mining algorithms. Incremental data mining makes the drawing

out process more competent as per as time and space

requirement concern and the overall cost of the process would

be diminish. Figure 2 demonstrates the overview of incremental

data mining.

Cheung et al. described the FUP2 algorithm, which is a more

common incremental method than FUP.FUP2 is efficient not

only on budding of a database but also on cutting the data. The

thought of Apriori algorithm is use and offered in FUP

algorithm [9] to revise association rules with incremental

transactions. Although it still needs to examine the original DB

several times and as the original DB is always very large so it is

wasteful. T.Garib et. al. presented FIM algorithm [10], to perk

up the effectiveness of FUP algorithm, where only one scan for

the whole original DB is needed and hence shrink the

generation of candidates.

Figure 2: Incremental Data mining overview

Database

D

Mapper

Reducer

Aggregator

Frequent Itemsets

D

Original

Database D

Frequent

Patterns

Increment-

al Mining

Increment

-al DB d

Updated

Frequent

Patterns

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.2, June 2015 – www.ijais.org

8

In order to obtain enhanced competence of IUA, Chen et. al.

projected a new enhanced algorithm AIUA [11]. He

demonstrates novel function, which connects the matching

frequent itemsets and evades the iteration to generate many

ineffectual candidates. Yuchen et. al. describes FIM_AIUA [12]

algorithm, that continue the idea of both algorithms FIM and

AIUA algorithm to revise association rules with incremental

transactions and with threshold value changes simultaneously

by combining them. Incremental Updating Algorithm also

suffering from the problem of numerous scan of original

database and it also requires many similar steps to generate

several futile candidates. As a result it is incompetent and time-

consuming. This algorithm also enliven the efficacy and precise

the pitfall of My_IUA algorithm. Hong et. al. proposed fast

updated FP-tree (FUFP-tree) structure [13], which helps to

update the tree easily. It maintains the Header_Table which

helps to fasten the mining process whenever new data is

inserted in the database.

3. INCREMENTAL PARALLEL FP-

GROWTH
Incremental Parallel data mining unites the features of both

parallelism and incremental mining to improvise the

competence. It is proved that association rule mining algorithms

are well known and capable in wide-ranging cases after a long

study. In tangible circumstances, database is updated

periodically, continuously and minimum support frequently

changes with wants of mining. Conversely, when large data

comes into picture, associated algorithms are not full-grown and

ineffective, also needs a further exploration. It is undoubtedly

useless that the full mining process has to be revived from the

beginning each and every time when new data is added into

database or mining parameter is retune. Furthermore, to deal

with the issues resulted from large-scale data, algorithm

parallelization has become certain. Wei et. al. proposed

parallelized incremental FP-Growth mining strategy [14]

successfully explains the incremental issue brought by the

dynamic threshold value and database simultaneously, which

shuns repetitive computation. This mining strategy is based on

MapReduce jobs.

Proposed algorithm is also combines the advantages of

incremental mining and parallel mining. Parallel mining is done

by making windows services run parallel and thereby, create a

grid services. Grid computing has been projected as an

important computational model, illustrious from the

conventional computing by its focus on huge-scale resource

sharing, pioneering applications, and, in some cases, high-

performance direction. Jointly with the grid move towards

engineering and commerce applications, a parallel dangle in the

way of the implementation of data grids has been indexed.

Figure 3 illustrates the working flow of the incremental parallel

FP-growth mining strategies, proposed algorithm.

Figure 3: Flow diagram of Incremental Parallel Data

mining algorithm

This procedure uses three MapReduce phases. The steps of

incremental parallel data mining are shown as follows.

 Step 1: Partitioning: Mapper partition the entire

database D into number of small chunks, likely to

equal to number of Reducers. Also maintain the

counts of 1-itemset.

 Step 2: Parallel Counting of 1-itemset: Each Reducers

will count the items of their transaction list and

combine the count from the Mapper.

 Step 3: Parallel FP-growth: Now each Reducers will

build its own FP-tree using FP-growth algorithm

during the recursive progress, the frequent itemsets

are pull out.

 Step 4: Aggregation: Finally the results from each

Reducers are combined and frequent Itemsets are

discover.

 Step 5: During this stage, incremental database d is

added into database and the threshold value is set to

s′.

 Step 6: In this stage, new added datasets d is taken

into consideration. The datasets go through a

Database

D

Mapper

Reducer

Aggregator

Frequent Itemsets

D

Mapper

 Reducer

Aggregator

Updated Frequent

Itemsets

New database d

with

min_support s’

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.2, June 2015 – www.ijais.org

9

MapReduce pass like step 1, partitioning and parallel

counting.

 Step 7: According to the new frequent list, database D

and d are likely to be rescanned. Mapper allocates

transactions related to new common items to resultant

cluster; each Reducer updates their own local FP-tree

using FP-growth algorithm; new frequent items are

mined in updated FP-trees.

 Step 8: The last step is to merge all the frequent

itemsets from stage 7 as the final result.

The final result will give the frequent itemsets of the respective

dataset.

4. EXPERIMENTAL RESULTS
In this section, proposed algorithm Incremental Parallel FP-

growth (IPFP), Parallel FP-growth (PFP) and one traditional

association rule mining algorithm, FP-Growth were compared

and examined through experiments. All the experiments were

executed on 2.40 GHz Intel i5 processor with 4GB RAM. The

program code is written in C# and executed on Dot Net

framework.

Table 1 shows two datasets used for testing all mentioned

algorithms of association rule mining.

Table 1. Datasets for experiment

Dataset Size(MB) Transaction Items Database

T10I10D1

36K

2.93 136,000 870 8000

Departme

ntal Retail

5.95 272,000 999 16000

The new threshold value degrees are shown on x-axis and total

time required to execute algorithm is shown on y-axis. Figure 4

and figure 6 illustrates Experiment performed on dataset 1

“T10I10D136K”, Figure 5 and figure 7 illustrates Experiment

performed on dataset 2 “Department Retail”. Experiments are

performed on three algorithms: FP-growth, Parallel FP-growth

and Incremental Parallel FP-growth.

From the outcomes we can make out that IPFP-growth takes the

smallest amount of time, comparing with other three

algorithms. When data size is small, deviation is not obvious.

On the other hand, as the amount of data increases, IPFP-

Growth shows tremendous advantage in total running time over

other three algorithms, particularly when minimum support is

low. Moreover, as minimum support increases, the amount of

time require to execute the algorithm is also lower down.

Results show in the table 2. Values are in milliseconds.

Table 2.Comparison of time (ms) requirement of three

algorithms in various minimum_support

Algori

thms

Data-

sets

Minimum_support

0.2 0.4 0.5 0.8 1

Fp-

growth

1 6186 5175 3969 3430 3057

2 7066 6523 6376 5553 4900

PFP
1 4171 2581 2461 1519 1378

2 5172 4434 3976 2673 2077

IPFP
1 2367 1706 1550 212 107

2 3618 2628 2455 1201 118

Figure 4: Experiment on T10I10D136K

Figure 5: Experiment on Department Retail for execution

time

As per as memory utilization is concern proposed algorithm

IPFP consumes significantly less as compared to other two

algorithms. Figure 6 and figure 7 shows the result of two

different datasets.

From the results one can formulate that IPFP-growth takes the

least amount of memory, comparing with other three

algorithms. Results show in the table 3. Values are in

Megabytes.

Table 3.Comparison of memory (MB) requirement of three

algorithms in various minimum_support

Algorith

ms

Data-

sets

Minimum_support

0.2 0.4 0.6 0.8 1

Fp-

growth

1 25 20 17 14 10

2 40 33 26 20 18

PFP
1 18 13 11 6 2

2 31 25 20 16 13

IPFP
1 13 9 5 1 0.8

2 25 20 17 12 9

0

2000

4000

6000

8000

0 0.2 0.4 0.6 0.8 1

Ti
m

e
 t

ak
e

n
 (

m
s)

Minimum Support

T10I10D136K

FP-growth
PFP
IPFP

0

2000

4000

6000

8000

0 0.2 0.4 0.6 0.8 1

Ti
m

e
 T

ak
e

n
 (

m
s)

Minimum Support

Department Retail
FP-growth
PFP
IPFP

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.2, June 2015 – www.ijais.org

10

Figure 6: Experiment on T10I10D136K for memory

utilization

Figure 7: Experiment on Department Retail for memory

utilization

5. CONCLUSION
Conventional algorithms, Apriori and FP-growth and other data

mining methods have experienced limitations while handling

large sized database. For instance, Apriori algorithm to find

frequent itemsets, needs to scan the database from external

storage frequently which acquires profound I/O load hence

lessen the performance. Another traditional algorithm, FP-

growth faces the challenge of maintaining the TID_branch

which is being elongated, taking considerable memory space as

well as computation time for intersecting the elongated

itemsets. In Parallel FP-Growth mining approach MapReduce

jobs run parallel by running windows services parallel. This

algorithm significantly decreases the execution time as

compared to traditional algorithms, but it faces problem when

comes to incremental mining. It takes significant amount of

time whenever new data is inserted, its starts the full complete

mining process again. Proposed algorithm Incremental Parallel

FP-growth mining method coalesces two concepts incremental

mining and parallel mining. Therefore, it takes advantage of

both the techniques.

Experimental results of Incremental Parallel FP-growth

identifies that the proposed algorithm is very proficient and

efficient in reducing time by eliminating duplicated work and

spurious items. Also, it curtails the response time to a query for

the set of frequent items. With the increase in the number of

transactions, if the number of nodes also increases (reducers),

response time for the query to find frequent itemsets decreases

significantly. Also as the threshold value decreases, proposed

algorithm runs significantly efficient. The proposed algorithm

runs 66% faster than the traditional algorithm FP-growth. Also,

memory utilization reduces by 37%.

6. REFERENCES
[1] Han, Jiawei, Micheline Kamber, and Jian Pei. Data

mining, southeast asia edition: Concepts and techniques.

Morgan kaufmann, 2006.

[2] Hipp, Jochen, Ulrich Güntzer, and Gholamreza

Nakhaeizadeh. "Algorithms for association rule mining—a

general survey and comparison." ACM sigkdd explorations

newsletter 2, no. 1 (2000): 58-64.

[3] Cannataro, Mario, Domenico Talia, and Paolo Trunfio.

"Distributed data mining on the grid." Future Generation

Computer Systems 18, no. 8 (2002): 1101-1112.

[4] R.Agrawal and R.Srikant, "Fast algorithms for mining

association rules," in Int.Conf. VLDB, pages 487-499,

September 1994.

[5] Jaiwei Han, Jian Pei and Yiwen Yin- “Mining Frequent

Patterns without Candidate Generation,” in Int.Conf. ACM-

SIGMOID. pages 1-12, June 2000.

[6] H. Li, Y. Wang, D. Zhang, M. Zhang and E. Chang, PFP:

Parallel FP-Growth for Query Recommendation,

Proceedings of the 2008 ACM Conference on

Recommender Systems, 2008, pages 107-114.

[7] A. Pradeepa, and A. S. Thanamani, PARALLELIZED

COMPRISING FOR APRIORI ALGORITHM USING

MAPREDUCE FRAMEWORK, International Journal of

Advanced Research in Computer and Communication

Engineering, vol. 2(11), 2013, pp. 4365-4368.

[8] Osmar R. Za¨, Ane Mohammad El-Hajj, Paul Lu, “Fast

Parallel Association Rule mining Without Candidacy

Generation”, Natural Science and Engineering Research

Council of Canada.

[9] D.W.Cheung, J.Han, V.T.Ng, and C.Y.Wong,

"Maintenance of discovered association rules in large

databases: an incremental updating technique. " in

Int.Conf. on Data Engineering, pages 106-114, February

1996.

[10] T.F.Garib, M.Taha, and H.Nassar, “An efficient technique

for incremental updating of association rules.”

International Journal of hybrid Intelligent Systems, pages

45-53, May 2008.

[11] An, Hongmei, Ping Chen, and Lijing Huang. "Study of

Incremental Updating Algorithm for Association Rules."

In Proceedings of the 2012 International Conference on

Computer Application and System Modeling. Atlantis

Press, 2012.

[12] Sun, Li, YuchenCai, Jiyun Li, and Juntao Lv. "An

Efficient Algorithm for Updating Association Rules with

Incremental Transactions and Minimum Support Changes

Simultaneously." In Proceedings of the 2012 Third Global

Congress on Intelligent Systems, pp. 166-171. IEEE

Computer Society, 2012.

[13] Tzung-Pei Hong, Chun-Wei Lin, Yu-Lung Wu,

“Incrementally fast updated frequent pattern trees”, in

Elsevier Ltd: Expert Systems with Applications 34, pages

2424–2435, 2008.

[14] X. Wei, Y. Ma, F. Zhang, M. Liu, W. Shen, Incremental

FP-Growth Mining Strategy for Dynamic Threshold value

and Database Based on Mapreduce, Proceedings of the

2014 IEEE 18th International Conference on Computer

Supported Cooperative Work in Design, May 2014, pages

271-276.

0

10

20

30

0.2 0.4 0.6 0.8 1 M
e

m
o

ry
 U

ti
liz

at
io

n
 (

M
B

)

Minimum Support

T10I10D136K
FP-growth
PFP
IPFP

0

10

20

30

40

50

0.2 0.4 0.6 0.8 1

M
e

m
o

ry
 U

ti
liz

at
io

n
 (

M
B

)

Minimum support

Department Retail

FP-growth
PFP
IPFP

