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ABSTRACT 
Datasets grow in size as they are increasingly being gathered by 

cheap and numerous information-sensing mobile devices, 

aerial, software logs, microphones, wireless sensor networks 

and cameras. This paper presents a structure for simply, easily 

and competently parallelizing data mining algorithms for those 

huge datasets together with the incremental mining. 

MapReduce concept is use to execute the parallel FP-Growth 

algorithm by running the windows services parallel. The 

proposed algorithm eliminates duplicated work and spurious 

items. Also, it shortens the response time to a query for the set 

of frequent items. The proposed algorithm is implemented by 

parallel running of many windows services and experimental 

results shows tremendous advantages. The proposed algorithm 

runs 66% faster than the traditional algorithm of data mining. 

Also, memory utilization reduces by 37%. 

General Terms 
Data mining, Association Rule Mining, Grid Computing 

Keywords 
Incremental Data Mining, Parallel FP-growth, MapReduce jobs, 

Incremental Parallel FP-growth. 

1. INTRODUCTION 
Data mining [1] is called knowledge discovery in databases 

(KDD). Both data mining and KDD are at best indistinctly 

defined. Their explanations mostly depend on the background 

and outlooks of the definers. The real meaning of data mining is 

the non-trivial process of recognizing suitable, potentially 

helpful and finally comprehensible patterns in data. Data 

mining is the use of statistical methods with computers to reveal 

helpful patterns in the databases. Huge data is a collection of 

large and complex datasets which is complicated to process by 

using conventional methods and offered technologies of data 

mining. To itinerary huge data using some systematic approach 

can even hardly conclude the work, it takes elongated time and 

the outcome might not be up to the mark. To resolve this 

problem, data mining is undertake with new chances and 

challenges. 

Association rules mining [2], a kind of data mining algorithms, 

are if/then statements that help to discover associations between 

apparently not related data in a relational database or other 

information warehouse. In market basket analysis, association 

rules is “the customers who buy bread are most likely to buy 

butter” might be produced according to the processing 

outcomes. 

Years of study, association rule mining algorithms sound 

effectual and recognized in majority of cases. Though, the 

conventional algorithms are not healthy work when it comes to 

huge data. In an actual situation, databases are incessantly 

updating on daily basis and threshold value also frequently 

changes with wants of mining. It is evidently inefficient to 

restart the entire mining process over again every time new data 

is inserted into the original database or initialize the mining 

parameters. This concerns leads to incremental mining 

conception. Additionally, algorithms for parallelization have 

become predictable to deal with the obscurities arising from 

massive scale data. 

This paper talks about a parallelizing the FP-growth algorithm 

and parallelizing the incremental algorithm and the FP-growth 

algorithm mining techniques. Incremental parallel FP-growth 

algorithm solves the incremental problem brought by the 

dynamic threshold value and database at the same time, which 

evades frequent computation. MapReduce jobs are written on 

windows services and make them run simultaneously to achieve 

parallel mining. Grid computing [3] has been projected as an 

important computational model, illustrious from the 

conventional computing by its focus on huge resource sharing, 

revolutionary applications, and, in some cases, high-

performance orientation. These days’ grid scan is used as 

efficient infrastructures for dispersed high-performance 

computing and data processing. 

2. RELATED WORK 
A basic necessity for mining association rules is to find out the 

frequent itemsets. Several algorithms are present for frequent 

itemset mining. Apriori and FP-Growth are the conservative 

method. 

2.1 APRIORI 
Agrawal et. al.[4] proposed an algorithm for frequent itemset 

mining and association rule learning over 

transactional databases called Apriori. It carry on by 

distinguishing the repeated individual items in the database and 

broadening them to larger itemsets provided that those itemsets 

appear passably often in the database. Its workings depend on 

Candidate Generation and Test Approach. There are mainly two 

steps have to perform in each pass: Candidate generation and 

Candidate counting and selection. 

Apriori have two main disadvantages: Candidate generation,  it 

generates huge candidate sets; 104 frequent 1-itemset will 

generate 107 candidate 2-itemsets and to discover a frequent 

pattern of size 100 and scanning the original database every 

time, any new data is inserted in the database. 

http://en.wikipedia.org/wiki/Mobile_device
http://en.wikipedia.org/wiki/Wireless_sensor_networks
http://en.wikipedia.org/wiki/Digital_camera
http://searchsqlserver.techtarget.com/definition/relational-database
http://en.wikipedia.org/w/index.php?title=Frequent_item_set_mining&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Frequent_item_set_mining&action=edit&redlink=1
http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Databases
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2.2 FP-GROWTH 
FP-growth [5] is specified to conquer the problem of Apriori, 

candidate generation.  FP-growth is a program to discover 

frequent itemsets with the FP-growth algorithm, which writes to 

the transaction database as a prefix-tree that enhances with links 

that arrange the nodes into lists which points to the identical 

item. The search is carried out by analyzing the prefix-tree, 

running recursively on the outcome, and edging the original 

tree. The implementation also supports sifting for closed and 

maximal item sets with restricted itemset storage; even though 

the approach worn in the program fluctuates in whenever it 

used top-down prefix trees instead FP-trees. FP-growth reduce a 

large database into a reduce itemsets, Frequent-Pattern tree (FP-

tree) arrangement with highly compact, but full for frequent 

pattern mining and evade expensive database scans. It develops 

a competent, FP-tree-based frequent pattern mining method 

with a divide-and-conquer tactic which crumbles mining tasks 

into smaller ones and shuns candidate generation.  

The weakness of this algorithm consists in the Tid_branch 

being too lengthy and extended, taking huge memory space as 

well as working out time for intersecting the long sets. Also, the 

algorithm scans the original database every time; any new data 

is inserted in the database. 

2.3 Parallelization in Data Mining 
Zhang et. al. proposed parallel FP-growth algorithm [6] on 

distributed machines. PFP panels computation in such a way 

that each machine performs an independent group of mining 

tasks. . FP-tree building procedures and processing in this 

algorithm are to some extent similar to conservative FP-

Growth, which run on a single computer node. This separation 

eradicates computational dependence between machines, and 

hence communication between them. Pradeepa et. at. presented 

Parallelized Apriori algorithm [7] to estimate an accurate and 

proficient organization technique, greatly spirited and scalable 

compared with other conservative and associative organization 

methods Drawback of these algorithms are that it does not 

support incremental mining. 

Osmar et. al. discuss an algorithm MLFPT [8]for parallel 

mining of frequent patterns, based on FP-growth mining, that 

uses two full I/O scans of the database, eradicating the need for 

generating the candidate items, and distributing the work 

equally among processors to achieve near most favorable load 

balancing. 

Figure 1 illustrates Parallel FP-growth data mining algorithm, 

which uses two MapReduce phases. Following are the steps of 

the parallel FP-growth algorithm. 

 Step 1: Partitioning: Mapper partition the whole 

database into number of small divisions, likely to 

equal to number of Reducers. Also maintain the 

counts of 1-itemset 

 Step 2: Parallel Counting of 1-itemset: Each Reducers 

will count the items of their transaction list and 

combine the count from the Mapper. 

 Step3: Parallel FP-growth: Now each Reducers will 

build its own FP-tree using FP-growth algorithm. 

 Step 4: Aggregation: Finally the results from each 

Reducers are combined and frequent Itemsets are 

discover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1: Flow diagram of Parallel Data mining algorithm 

2.4 Incremental Data Mining Concept 
Databases are updating endlessly in practical situation, where 

exactly expected algorithms like Apriori, FP-growth perform 

incompetently. If the previous algorithms could be examine to 

incrementally mine the frequent itemset from the newly 

included item database, the drawing out process would become 

more proficient and cost associated with the mining process 

would be lessen. The process of updating database continuously 

is Incremental Data Mining. 

Incremental mining trimmed down the cost of mining process 

by using again the former mined results. Correct memory 

consumption and speed of overall mining process are the two 

main factors to monitor performance of incremental data 

mining algorithms. Incremental data mining makes the drawing 

out process more competent as per as time and space 

requirement concern and the overall cost of the process would 

be diminish. Figure 2 demonstrates the overview of incremental 

data mining. 

Cheung et al. described the FUP2 algorithm, which is a more 

common incremental method than FUP.FUP2 is efficient not 

only on budding of a database but also on cutting the data. The 

thought of Apriori algorithm is use and offered in FUP 

algorithm [9] to revise association rules with incremental 

transactions. Although it still needs to examine the original DB 

several times and as the original DB is always very large so it is 

wasteful. T.Garib et. al. presented FIM algorithm [10], to perk 

up the effectiveness of FUP algorithm, where only one scan for 

the whole original DB is needed and hence shrink the 

generation of candidates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Incremental Data mining overview 
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In order to obtain enhanced competence of IUA, Chen et. al. 

projected a new enhanced algorithm AIUA [11]. He 

demonstrates novel function, which connects the matching 

frequent itemsets and evades the iteration to generate many 

ineffectual candidates. Yuchen et. al. describes FIM_AIUA [12] 

algorithm, that continue the idea of both algorithms FIM and 

AIUA algorithm to revise association rules with incremental 

transactions and with threshold value changes simultaneously 

by combining them. Incremental Updating Algorithm also 

suffering from the problem of numerous scan of original 

database and it also requires many similar steps to generate 

several futile candidates. As a result it is incompetent and time-

consuming. This algorithm also enliven the efficacy and precise 

the pitfall of My_IUA algorithm. Hong et. al. proposed fast 

updated FP-tree (FUFP-tree) structure [13], which helps to 

update the tree easily. It maintains the Header_Table which 

helps to fasten the mining process whenever new data is 

inserted in the database.  

3. INCREMENTAL PARALLEL FP-

GROWTH 
Incremental Parallel data mining unites the features of both 

parallelism and incremental mining to improvise the 

competence. It is proved that association rule mining algorithms 

are well known and capable in wide-ranging cases after a long 

study. In tangible circumstances, database is updated 

periodically, continuously and minimum support frequently 

changes with wants of mining. Conversely, when large data 

comes into picture, associated algorithms are not full-grown and 

ineffective, also needs a further exploration. It is undoubtedly 

useless that the full mining process has to be revived from the 

beginning each and every time when new data is added into 

database or mining parameter is retune. Furthermore, to deal 

with the issues resulted from large-scale data, algorithm 

parallelization has become certain. Wei et. al. proposed 

parallelized incremental FP-Growth mining strategy [14] 

successfully explains the incremental issue brought by the 

dynamic threshold value and database simultaneously, which 

shuns repetitive computation. This mining strategy is based on 

MapReduce jobs. 

Proposed algorithm is also combines the advantages of 

incremental mining and parallel mining. Parallel mining is done 

by making windows services run parallel and thereby, create a 

grid services. Grid computing has been projected as an 

important computational model, illustrious from the 

conventional computing by its focus on huge-scale resource 

sharing, pioneering applications, and, in some cases, high-

performance direction. Jointly with the grid move towards 

engineering and commerce applications, a parallel dangle in the 

way of the implementation of data grids has been indexed. 

Figure 3 illustrates the working flow of the incremental parallel 

FP-growth mining strategies, proposed algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Flow diagram of Incremental Parallel Data 

mining algorithm 

This procedure uses three MapReduce phases. The steps of 

incremental parallel data mining are shown as follows. 

 Step 1: Partitioning: Mapper partition the entire 

database D into number of small chunks, likely to 

equal to number of Reducers. Also maintain the 

counts of 1-itemset. 

 Step 2: Parallel Counting of 1-itemset: Each Reducers 

will count the items of their transaction list and 

combine the count from the Mapper. 

 Step 3: Parallel FP-growth: Now each Reducers will 

build its own FP-tree using FP-growth algorithm 

during the recursive progress, the frequent itemsets 

are pull out. 

 Step 4: Aggregation: Finally the results from each 

Reducers are combined and frequent Itemsets are 

discover. 

 Step 5: During this stage, incremental database d is 

added into database and the threshold value is set to 

s′.  

 Step 6: In this stage, new added datasets d is taken 
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MapReduce pass like step 1, partitioning and parallel 

counting. 

 Step 7: According to the new frequent list, database D 

and d are likely to be rescanned. Mapper allocates 

transactions related to new common items to resultant 

cluster; each Reducer updates their own local FP-tree 

using FP-growth algorithm; new frequent items are 

mined in updated FP-trees. 

 Step 8: The last step is to merge all the frequent 

itemsets from stage 7 as the final result. 

The final result will give the frequent itemsets of the respective 

dataset. 

4. EXPERIMENTAL RESULTS 
In this section, proposed algorithm Incremental Parallel FP-

growth (IPFP), Parallel FP-growth (PFP) and one traditional 

association rule mining algorithm, FP-Growth were compared 

and examined through experiments. All the experiments were 

executed on 2.40 GHz Intel i5 processor with 4GB RAM. The 

program code is written in C# and executed on Dot Net 

framework. 

Table 1 shows two datasets used for testing all mentioned 

algorithms of association rule mining. 

Table 1. Datasets for experiment 

Dataset Size(MB) Transaction Items Database 

T10I10D1

36K 

2.93 136,000 870 8000 

Departme

ntal Retail 

5.95 272,000 999 16000 

The new threshold value degrees are shown on x-axis and total 

time required to execute algorithm is shown on y-axis. Figure 4 

and figure 6 illustrates Experiment performed on dataset 1 

“T10I10D136K”, Figure 5 and figure 7 illustrates Experiment 

performed on dataset 2 “Department Retail”. Experiments are 

performed on three algorithms: FP-growth, Parallel FP-growth 

and Incremental Parallel FP-growth. 

From the outcomes we can make out that IPFP-growth takes the 

smallest amount of time, comparing with other three 

algorithms. When data size is small, deviation is not obvious. 

On the other hand, as the amount of data increases, IPFP-

Growth shows tremendous advantage in total running time over 

other three algorithms, particularly when minimum support is 

low. Moreover, as minimum support increases, the amount of 

time require to execute the algorithm is also lower down. 

Results show in the table 2. Values are in milliseconds. 

Table 2.Comparison of time (ms) requirement of three 

algorithms in various minimum_support 

Algori

thms 

Data-

sets 

Minimum_support 

0.2 0.4 0.5 0.8 1 

Fp-

growth 

1 6186 5175 3969 3430 3057 

2 7066 6523 6376 5553 4900 

PFP 
1 4171 2581 2461 1519 1378 

2 5172 4434 3976 2673 2077 

IPFP 
1 2367 1706 1550 212 107 

2 3618 2628 2455 1201 118 

 

 

Figure 4: Experiment on T10I10D136K 

 

Figure 5: Experiment on Department Retail for execution 

time 

As per as memory utilization is concern proposed algorithm 

IPFP consumes significantly less as compared to other two 

algorithms. Figure 6 and figure 7 shows the result of two 

different datasets. 

From the results one can formulate that IPFP-growth takes the 

least amount of memory, comparing with other three 

algorithms. Results show in the table 3. Values are in 

Megabytes. 

Table 3.Comparison of memory (MB) requirement of three 

algorithms in various minimum_support 
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ms 

Data-

sets 
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0.2 0.4 0.6 0.8 1 

Fp-

growth 

1 25 20 17 14 10 

2 40 33 26 20 18 

PFP 
1 18 13 11 6 2 

2 31 25 20 16 13 

IPFP 
1 13 9 5 1 0.8 

2 25 20 17 12 9 
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Figure 6: Experiment on T10I10D136K for memory 

utilization 

 

Figure 7: Experiment on Department Retail for memory 

utilization 

5. CONCLUSION 
Conventional algorithms, Apriori and FP-growth and other data 

mining methods have experienced limitations while handling 

large sized database. For instance, Apriori algorithm to find 

frequent itemsets, needs to scan the database from external 

storage frequently which acquires profound I/O load hence 

lessen the performance. Another traditional algorithm, FP-

growth faces the challenge of maintaining the TID_branch 

which is being elongated, taking considerable memory space as 

well as computation time for intersecting the elongated 

itemsets. In Parallel FP-Growth mining approach MapReduce 

jobs run parallel by running windows services parallel. This 

algorithm significantly decreases the execution time as 

compared to traditional algorithms, but it faces problem when 

comes to incremental mining. It takes significant amount of 

time whenever new data is inserted, its starts the full complete 

mining process again. Proposed algorithm Incremental Parallel 

FP-growth mining method coalesces two concepts incremental 

mining and parallel mining. Therefore, it takes advantage of 

both the techniques. 

Experimental results of Incremental Parallel FP-growth 

identifies that the proposed algorithm is very proficient and 

efficient in reducing time by eliminating duplicated work and 

spurious items. Also, it curtails the response time to a query for 

the set of frequent items. With the increase in the number of 

transactions, if the number of nodes also increases (reducers), 

response time for the query to find frequent itemsets decreases 

significantly. Also as the threshold value decreases, proposed 

algorithm runs significantly efficient. The proposed algorithm 

runs 66% faster than the traditional algorithm FP-growth. Also, 

memory utilization reduces by 37%. 
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