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ABSTRACT
Although color quantization noise is frequently met in practice, it
has not been given too much attention in color image visual qual-
ity assessment. In this paper, a new image database for the evalu-
ation of image quality metrics over color quantization noise is de-
scribed. It contains 25 reference images and 875 test images pro-
duced by five popular quantization algorithms. Each of the quan-
tized images was evaluated by 22 human subjects and more than
19200 individual human quality judgments were carried out to ob-
tain the final mean opinion scores. A comparative analysis of sev-
eral well-known image quality metrics is presented and their cor-
relation with the human opinion scores is evaluated. This image
database has been made freely available for downloading for re-
search in image quality assessment and other applications [10].

General Terms:
Subjective image quality assessment, Objective image quality assessment

Keywords:
Image quality metrics,Color quantization, Image database

1. INTRODUCTION
Image quality assessment is an important tool in image process-
ing systems. Image quality assessment methods can be classified
into two categories: subjective and objective. The subjective im-
age quality assessment methods are accurate in estimating the
visual quality of an image because they are carried out by human
subjects but are costly and inconvenient processes which require
a large number of observers, take a significant time and nor can
they be automated. On the other hand the objective image quality
assessment methods are computer based methods that can au-
tomatically predict the perceived image quality. Therefore the
objective image quality assessment methods gained more popu-
larity although they tend to correlate rather poorly with human
perception of images quality.
Originally, color quantization has been used to satisfy the dis-
play hardware constraints that allow only a limited number of
colors to be displayed simultaneously. Today the original moti-
vation of color quantization has changed due to the availability
of inexpensive full color displays. However, color quantization is
still an important problem in the fields of image processing and
computer graphics [2]. It can be used in mobile and hand-held
devices where memory is usually small [25], it can be used for
low-cost display and printing devices where only a small number
of colors can be displayed or printed simultaneously [27], it also
has been used as a preprocessing step for many applications such
as object recognition [33], image compression [41], and content-
based image retrieval (CBIR) [34]. Another aspect of importance
of color quantization is that the human visual system cannot per-
ceive a large number of colors at the same time, nor is it able to
distinguish close colors well [21] even though under appropriate
adaptation, it cannot distinguish more than two million colors

[18] while a full color image may contain up to 16 million dif-
ferent colors. This large number of colors makes it difficult to
handle a variety of color-based tasks such as edge detection, en-
hancement, computing histograms,and color adjustment. These
tasks are more efficiently carried out on a small set of colors.
Today, a large variety of objective image quality assessment al-
gorithms has been proposed starting from the widely used mean
square error (MSE) metric and its signal processing counter-
part, the peak signal to noise ratio (PSNR). The weighted signal
to noise ratio (WSNR) [19] simulates the human visual system
properties by filtering both the reference and distorted images
with contrast sensitivity function and then compute the signal
to noise ratio. Miyahara et al. [20] proposed a picture quality
scale (PQS) based on three distortion factors: the amount, loca-
tion and structure of error. The perceptual color fidelity metric
(S-CIELAB) [44] is a spatial extension to the CIELAB metric
for measuring color reproduction errors of digital images. It sim-
ulates the spatial sensitivity of the human visual system by spa-
tial filter processes on images. Wang and Bovik [36] proposed
a new universal image quality index (UQI) and its improved
form, the single-scale structural similarity index (SSIM) [37],
by modeling the image distortion as the combination of loss of
luminance, contrast, and correlation. The single-scale structural
similarity index was extended into a multi-scale structural sim-
ilarity index (MSSIM) [39] that works on scale space of an im-
age and achieved a better result than SSIM. Information fidelity
criterion (IFC) [29] and visual information fidelity (VIF) [28]
both are based on information-theory in which the distorted im-
age is modeled as a sequence of passing the reference images
through distortion channels and quantify the visual quality as a
mutual information between the test image and the reference im-
age. Shnayderman et al. [32] explored the feasibility of singular
value decomposition (SVD) for image quality measurement. A
two staged wavelet based visual signal to noise ratio (VSNR) [4]
was proposed based on the low-level and the mid-level properties
of human vision. A structural information-based image quality
assessment algorithm [9] uses LU factorization for representa-
tion of the structural information of an image. An image quality
metric using the phase quantization code [14] was proposed and
extended to amplitude/phase quantization code [13]. Wang and
Li [38] incorporated the idea of information content weighted
pooling and applied it to peak signal to noise ratio (PSNR) and
structural similarity measure (SSIM) leading to an information
content weighted PSNR (IW-PSNR) and an information content
weighted SSIM (IW-SSIM). A feature similarity index (FSIMc)
[43] for color image quality assessment is proposed based on the
fact that human visual system understands an image mainly ac-
cording to its low-level features. Two kinds of features, the phase
congruency (PC) and the image gradient magnitude (GM), are
used in FSIMc.
Most of the objective image quality metrics are claimed by their
authors to be human perception correlated; this raises the need to
judge them. Although the subjective image quality assessments
are very difficult to carry out, expensive, and time consuming
task but are still the only reliable way of evaluating the correla-
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tion of the objective image quality assessment algorithms with
the human perception. This necessitates the creation of image
databases with subjective opinion scores defining the human per-
ception of quality.
A lot of researchers have contributed significantly in the design
of subjective database for the assessment of image quality met-
rics. The studies [7, 1, 17, 26] present image databases consist of
only compression distortions. The entire database A57 from Cor-
nell University [5] consists of three reference images distorted
by compression distortion, Gaussian blur, and Gaussian white
noise. IVC database [3, 22] contains 235 distorted images gener-
ated from four distortion types JPEG, JPEG2000, LAR coding,
and Blurring. In LIVE database [31, 30] there are twenty nine
reference images distorted with compression distortions, Gaus-
sian blur, White noise, and fast-fading to produce 779 test im-
ages. TID2008 database [23] which is the largest so far available
image database with seventeen distortions types and 1700 test
images. The CSIQ image database [15] consists of 30 original
images distorted using six different types of distortions at four to
five different levels of distortion. The distortions used in CSIQ
are: JPEG compression, JPEG-2000 compression, global con-
trast decrements, additive pink Gaussian noise, additive white
Gaussian noise, and Gaussian blurring. Recently, VCL@FER
[42] is a new image database which consists of four degradation
types: JPEG, JPEG2000, white noise and Gaussian blur with 23
different images and 6 levels of each degradation.
This paper presents a new image database for color image quan-
tization noise which contains 875 quantized images produced
by five popular color quantization algorithms. The performance
of recent state-of-the-art full-reference image quality metrics
over the new database is analyzed and reported. The paper is
organized as follows: Section 2 describes the proposed image
database including the subjective quality tests. In section 3, the
prediction of the image quality metrics is evaluated. Section 4
shows statistical significance analysis of the image quality met-
rics. The study is concluded in section 5.

2. DESCRIPTION OF THE PROPOSED IMAGE
DATABASE

2.1 Choice of Input Images
This image database [10] consists of 25 reference images col-
lected from the Internet based on the number of segments and
number of distinct colors. Those images reflect a variety of im-
age contents includes important objects, uniform regions, slowly
varying color gradients, edges, and high level of details. Fig. 1
shows the reference images used in the study: images from 1 to
7 have small number of segments and colors, images from 8 to
13 have small number of segments but large number of colors,
images from 14 to 18 have large number of segments but small
number of colors, while images from 19 to 25 have large number
of segments and colors.

2.2 Color Quantization Algorithms
All images in the database are of size 512x512 pixels for the pur-
pose of carrying out subjective experiments. Each of the resized
images has been quantized into seven levels (4, 8, 16, 32, 64,
128, and 256 colors) using five color image quantization algo-
rithms that are popular in literature and represent different ap-
proaches (dividing approach, merging approach, clustering ap-
proach, and neural networks approach). The color quantization
algorithms are as follows:

—K-means algorithm [16] where a set of k initial centroids is
randomly selected. At each step, a scan through all pixels of
the original image is performed to assign each pixel to the
nearest centroid. After that, a new set of centroids is generated
as the means of the pixels associated to each centroid. These

Fig. 2. Interface for the subjective study.

steps are repeated until the algorithm converges or the number
of iterations reaches a specified value.

—Median Cut algorithm [11] which repeatedly bipartitions the
color space into smaller and smaller rectangular boxes until
the desired number of clusters is obtained with an approxi-
mately equal number of pixels at each level. The cutting plane
is chosen normal to the longest axes and passes through the
median point of the color distribution projected on this axis.

—Wu’s algorithm [40] is similar to the Median cut algorithm
except that the cutting plane is chosen perpendicularly to the
R, G, B axes separately, and the plane that minimizes the sum
of variances at both sides is chosen to cut the cube into two
boxes. Next, the box with the larger variance is partitioned
into two smaller boxes by the same cutting criterion.

—Octree algorithm [8] repeatedly divides the color space into
eight smaller and smaller cubes in a way that the entire color
space is treated as a hierarchy of octants and each individual
color as a leaf of the octree. The octree is then reduced by
replacing the leaves by their parent containing the average of
that leaves until the desired number of clusters is obtained.

—Dekkers SOM [6] uses a one-dimensional Self-organizing
Neural Network. The network contains one neuron for each
desired cluster. Through the learning process each neuron ac-
quires a weight vector which is used as possible representa-
tive. After learning is completed, pixels are mapped to the
closest weight vector.

2.3 Number, Selection and training of Subjects
A group of twenty two undergraduate students participated in
the psychometric experiment. The majority of the subjects were
males and they were non-experts with image quality assessment.
The reliability of the assessors was qualitatively evaluated by
checking their behavior when reference/reference pairs where re-
liable subjects are expected to give evaluations very close to the
maximum point in the quality scale.
Each subject was individually briefed about the goal of the exper-
iment, what they are going to see, what they have to evaluate and
how they express their opinion, the grading scale, the sequence,
and timing. The subjects also have been shown some examples
in how to evaluate the quality of quantized images. Those exam-
ples approximate the range of quality of the images for different
quantization levels. Images in the training phase were different
from those used in the actual experiment.

2.4 Display Equipments
The psychometric experiments were conducted in a lab with nor-
mal indoor illumination environment using Microsoft Windows
workstations. The display monitors were all 19-inch CRT and
were all approximately the same age. Although the monitors
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Fig. 1. The reference images used in the study

were not calibrated, they were set to the same display settings. A
java-based interface was used to show the images and to enable
the observers vote the quality of the test images. The software
was designed in a way that the observers assess the overall qual-
ity of quantized image with respect to reference image of each
assessment trail presentation by simply dragging a slider on a
quality scale. The quality scale which is of range [0,100] was
unmarked numerically but labeled and divided into five equal
categories: “Bad”, “Poor”, “Fair”, “Good”, and “Excellent” to
be used as general guidance which range from the lowest to the

highest perceptual quality grade. The position of the slider re-
flects the rate given by the observer for that image and its po-
sition was reset after each presentation. Fig. 2 shows the user
interface of the quality assessment software.

2.5 Subjective Quality Tests
To evaluate the quality of the quantized images, a subjective
quality test is used in which a number of human subjects are
asked to judge the quality of the sequence images. The subjec-
tive tests are based on the recommendations given by the Interna-
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Fig. 3. Scatter plots for the subjective MOS versus the quality scores form different image quality metrics: PSNR, WSNR, UQI, SSIM, MSSIM, IFC,
VIF, VSNR, FSIMc, IW-PSNR, IW-SSIM, S-CIELAB.

tional Telecommunication Union (ITU) [12] that define how to
carry out subjective quality tests. The set of subjects is watching
two images (reference and test) at the same time. The observers
are asked to assess the quality of the test image with respect to
the reference image of each assessment trail. In the proposed im-
age database, there are 875 test images to be assessed and as

recommended by ITU each session should not last more than 30
minutes. Therefore overall subjective tests were divided into five
sessions (175 test images for each session). Five dummy images
were added at the beginning of the first session and not consid-
ered in the calculation; their purpose is to stabilize the subjects
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Table 1. Pearson’s correlation coefficient of the scores given by
different quality assessment methods against MOS from the subjective

study after a non-linear mapping.
SOM Median Kmeans Octree Wu All Data

PSNR 0.956 0.965 0.960 0.970 0.957 0.945
WSNR 0.942 0.935 0.940 0.957 0.945 0.920
UQI 0.732 0.772 0.662 0.804 0.720 0.728
SSIM 0.929 0.940 0.911 0.935 0.930 0.913
MSSIM 0.935 0.934 0.910 0.944 0.940 0.917
IFC 0.806 0.783 0.791 0.869 0.812 0.805
VIF 0.950 0.938 0.951 0.967 0.957 0.942
VSNR 0.949 0.929 0.943 0.955 0.953 0.926
FSIMc 0.943 0.928 0.924 0.958 0.949 0.924
IWPSNR 0.959 0.935 0.957 0.969 0.963 0.934
IWSSIM 0.910 0.897 0.868 0.930 0.913 0.888
S-CIELAB 0.963 0.966 0.969 0.977 0.961 0.961

Table 2. Root Mean Square Error
SOM Median Kmeans Octree Wu All Data

PSNR 8.540 8.004 8.678 7.008 8.815 9.774
WSNR 9.801 10.908 10.603 8.383 9.974 11.722
UQI 19.871 19.511 23.205 17.243 21.147 20.574
SSIM 10.831 10.490 12.787 10.302 11.176 12.209
MSSIM 10.334 10.970 12.862 9.532 10.390 11.933
IFC 17.283 19.099 18.938 14.332 17.774 17.811
VIF 9.127 10.609 9.586 7.409 8.815 10.100
VSNR 9.168 11.372 10.304 8.629 9.187 11.289
FSIMc 9.692 11.403 11.823 8.298 9.647 11.474
IWPSNR 8.281 10.860 9.029 7.216 8.234 10.715
IWSSIM 12.076 13.596 15.375 10.672 12.429 13.771
S-CIELAB 7.885 7.920 7.679 6.158 8.400 8.312

Fig. 4. Histogram of the MOS values for the five perceptual quality
range.

to the rating process. Subjects were shown images in a random
order and this order is unique for each subject.

2.6 Outliers Detection and Subject Rejection
Before starting analysis of the data, a screening of the subjec-
tive raw scores was conducted to eliminate observers with un-
stable scores [12]. The generalized ESD many-outlier procedure
[24] was run twice to detect outliers within the subjective raw
data. The generalized ESD many-outlier procedure selects the
maximum k deviations from the mean and compares them with
their corresponding critical values λi, i = 1, .., k that define a
cut points to decide whether an observation is an outlier. The
values of λis are computed based on the percentage points from
the Student’s t distribution. If at any step i a maximum devia-

tion is greater than its corresponding critical value λi then the
extreme observations for the first ith maximum deviations are
all considered to be outliers even some of them are smaller than
or equal to their corresponding critical values. About 2.66 % of
the subjective raw data was rejected as being outliers. All qual-
ity evaluations of a subject were rejected if more than 5 % of
his evaluations were outliers. Only one of the observers was re-
jected.

2.7 Calculation of Mean Opinion Scores
To calculate Mean Opinion Scores (MOS), the subjective raw
data is first converted to Z-score (after outliers removal) to min-
imize the variation between individual subjective values due to
not using the full range of quality scale by the different subjects
during the image quality rating process [35]:

z
ij

=
(vij − vi)

σi
(1)

where vij is the raw scores given by the ith subject to jth test
image, vi and σi are the mean and the standard deviation of raw
scores over all test images evaluated by the ith subject. The final
MOS for each test image j is obtained by averaging all Z-scores
zij given to that image by all subjects. Fig. 4 depicts a histogram
of the subjective MOS scores from the proposed image database.
Notice how the scores are uniformly distributed and span the en-
tire range of perceptual qualities from low to high values.

3. IMAGE QUALITY METRICS AND HUMAN
PERCEPTION

In this section, the performance of several well-known objec-
tive image quality metrics is evaluated. These quality metrics are
commonly used and their implementations are publicly available
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Table 3. Spearman’s Rank Order Correlation Coefficient of the scores
given by different quality assessment methods against MOS from the

subjective study after a non-linear mapping.
SOM Median Kmeans Octree Wu All Data

PSNR 0.950 0.961 0.952 0.965 0.953 0.939
WSNR 0.934 0.932 0.933 0.952 0.941 0.916
UQI 0.742 0.774 0.679 0.802 0.728 0.735
SSIM 0.921 0.938 0.909 0.934 0.929 0.911
MSSIM 0.934 0.931 0.912 0.950 0.939 0.918
IFC 0.812 0.790 0.798 0.873 0.816 0.810
VIF 0.945 0.936 0.946 0.962 0.955 0.938
VSNR 0.944 0.925 0.938 0.954 0.952 0.923
FSIMc 0.942 0.930 0.928 0.959 0.949 0.926
IWPSNR 0.954 0.938 0.950 0.961 0.960 0.931
IWSSIM 0.911 0.897 0.872 0.935 0.913 0.890
S-CIELAB 0.954 0.958 0.960 0.972 0.957 0.956

Table 4. Outlier Ratio (the percentage of the number of predictions
outside the range of two times the standard deviations of the subjective

MOS)
SOM Median Kmeans Octree Wu All Data

PSNR 0.206 0.143 0.189 0.286 0.206 0.280
WSNR 0.257 0.297 0.274 0.349 0.223 0.359
UQI 0.589 0.606 0.686 0.617 0.611 0.647
SSIM 0.274 0.251 0.349 0.417 0.269 0.376
MSSIM 0.257 0.297 0.320 0.349 0.240 0.329
IFC 0.469 0.577 0.537 0.520 0.497 0.542
VIF 0.217 0.240 0.223 0.280 0.194 0.282
VSNR 0.229 0.337 0.240 0.349 0.194 0.335
FSIMc 0.200 0.326 0.337 0.331 0.229 0.328
IWPSNR 0.183 0.314 0.257 0.280 0.171 0.317
IWSSIM 0.303 0.394 0.383 0.377 0.326 0.383
S-CIELAB 0.183 0.160 0.194 0.251 0.234 0.240

on the Internet namely: peak signal to noise ratio (PSNR), the
weighted signal to noise ratio (WSNR) [19], S-CIELAB [44],
universal image quality index (UQI) [36], structural similarity in-
dex (SSIM) [37], multiscale structural similarity index (MSSIM)
[39], information fidelity criterion (IFC) [29], visual information
fidelity (VIF) [28], visual signal to noise ratio (VSNR) [4], in-
formation content weighted PSNR (IW-PSNR) and information
content weighted SSIM (IW-SSIM) [38], and feature similarity
(FSIMc) [43]. For grayscale metrics, the reference and test im-
ages are transformed using the Matlab function rgb2gray.
The scores given by an objective image quality metric are trans-
ferred into a predicted MOS to map the scores of the objective
image quality metric into the range of the subjective MOS and to
remove any nonlinearity between them using non-linear regres-
sion [12]. Fig. 3 shows the scatter plots of the scores given by
the different objective image quality metrics versus the subjec-
tive MOS before non-linear regression. The function chosen for
regression is a four parameters logistic function [30]:

MOSp(Q) =
p1 − p2

1 + exp
(
Q−p3
p4

) + p2 (2)

whereMOSp is the predicted MOS,Q is the quality rating given
by an objective image quality metric. The parameters p1, p2, p3,
and p4 are chosen to minimize the mean square error between
the quality scores given by the objective image quality metric
and the subjective MOS.
A number of measures were used to evaluate the performance of
the objective image quality metrics. These measures characterize
three attributes related to the prediction of each image quality
metric [12]:

(1) Prediction Accuracy: The ability of an objective image qual-
ity metric to predict the subjective MOS with minimum av-
erage error. Root mean square error and the Pearsons linear
correlation coefficient were used to measure the prediction
accuracy.

(2) Prediction Monotonicity: The ability of given by an objec-
tive image quality metric to give values that are monotonic
in their relationship to the corresponding subjective MOS
values. This attribute was measured by the Spearmans rank
order correlation coefficient.

(3) Prediction Consistency: The ability of an objective image
quality metric to provide consistently accurate predictions
for all types of images and not to fail badly for a subset
of images. Outlier ratio was used to measure the prediction
consistency of an image quality metric.

Tables 1-4 show Pearsons correlation coefficient, root mean
square error, Spearmans rank order correlation coefficient, and
outlier ratio of the objective image quality metrics after logistic
transformation for individual datasets as well as for the whole
data. It is clear from those tables that S-CIELAB metric has
the highest prediction accuracy, monotonicity, and consistency
among all the metrics followed by PSNR, VIF, and IWPSNR
that have comparable performance, while UQI and IFC are least
accurate, monotonic, and consistent.

4. STATISTICAL SIGNIFICANCE OF IMAGE
QUALITY METRICS

The statistical significance of each metric’s performance relative
to other metrics was evaluated by performing an F -test in the set
of residuals (prediction errors). For variances σ2

A and σ2
B of two
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Table 5. Normality test for the set residuals (Skewness / Kurtosis)
SOM Median Kmeans Octree Wu All Data

PSNR -0.08 / 4.14 0.25 / 4.0 -0.13 / 4.16 0.02 / 3.6 0.48 / 4.3 0.13 / 3.6
WSNR -0.22 / 4.22 0.29 / 3.5 0.06 / 4.2 -0.19 / 3.86 0.05 / 4.8 0.13 / 3.7
UQI -0.21 / 2.71 -0.16 / 3.05 0.10 / 2.7 0.39 / 3.4 -0.13 / 3.02 -0.01 / 3.01
SSIM -0.30 / 3.81 -0.47 / 4.80 -0.50 / 4.12 -0.15 / 3.67 -0.06 / 4.81 -0.11 / 4.01
MSSIM -0.66 / 4.50 -0.64 / 4.49 -0.39 / 5.80 0.14 / 4.1 -0.96 / 6.05 -0.35 / 4.94
IFC 0.01 / 3.3 0.40 / 3.5 0.05 / 3.6 0.63 / 4.3 0.01 / 3.7 0.12 / 3.6
VIF -0.37 / 4.02 0.16 / 4.3 -0.43 / 4.55 0.94 / 5.7 -0.22 / 4.73 -0.04 / 4.47
VSNR -0.17 / 3.50 0.41 / 3.9 0.14 / 4.7 -0.20 / 4.50 0.17 / 4.9 0.28 / 3.9
FSIMc -0.33 / 3.65 -0.13 / 4.10 0.07 / 5.31 0.17 / 4.78 -0.30 / 4.11 -0.09 / 4.33
IWPSNR -0.25 / 3.88 0.12 / 3.64 -0.05 / 4.26 0.28 / 4.85 0.07 / 4.20 0.25 / 4.04
IWSSIM -0.60 / 4.48 -0.32 / 4.18 -0.01 / 5.42 0.50 / 5.21 -0.78 / 5.44 -0.20 / 4.96
S-CIELAB 0.00 / 2.78 0.10 / 3.43 0.16 / 2.76 0.22 / 3.72 0.23 / 2.61 0.11 / 3.03

Table 6. The F-test results for all datasets
PSNR WSNR UQI SSIM MSSIM IFC VIF VSNR FSIMc IWPSNR IWSSIM S-CIELAB

PSNR - - - - - - 1111-1 111111 111111 111111 111111 -1- - - - -111-1 1111-1 -1- - -1 111111 - - -0-0
WSNR 0000-0 - - - - - - 111111 - -11- - - -11- - 111111 - - - - - 0 - - - - - - - - - - - - 0-0000 111111 000000
UQI 000000 000000 - - - - - - 000000 000000 0-0000 000000 000000 000000 000000 000000 000000
SSIM 000000 - -00- - 111111 - - - - - - - - - - - - 111111 0-0000 0-0000 - - -000 0-0000 -11- -1 000000
MSSIM 000000 - -00- - 111111 - - - - - - - - - - - - 111111 - -0000 - -0- - - - - -0- - 0-0000 111-11 000000
IFC 000000 000000 1-1111 000000 000000 - - - - - - 000000 000000 000000 000000 000000 000000
VIF -0- - - - - - - - -1 111111 1-1111 - -1111 111111 - - - - - - - - -1-1 - -1- -1 - - - - -1 111111 0000-0
VSNR -000-0 - - - - - - 111111 1-1111 - -1- - - 111111 - - -0-0 - - - - - - - -1- - - - -00- - 111111 0000-0
FSIMc 0000-0 - - - - - - 111111 - - -111 - - -1- - 111111 - -0- -0 - -0- - - - - - - - - 0-0000 111111 000000
IWPSNR -0- - -0 1-1111 111111 1-1111 1-1111 111111 - - - - -0 - -11- - 1-1111 - - - - - - 111111 -000-0
IWSSIM 000000 000000 111111 -00- -0 000-00 111111 000000 000000 000000 000000 - - - - - - 000000
S-CIELAB - - -1-1 111111 111111 111111 111111 111111 1111-1 1111-1 111111 -111-1 111111 - - - - - -

sets of residuals from metricsA andB respectively; the F statis-

tic is defined as F =
σ2
A

σ2
B

. If F > Fcritical (F < 1/Fcritical)

then it signifies that at a given confidence level, metricA has sig-
nificantly larger (smaller) residuals than metric B. The Fcritical
is computed based on the number of residuals and the confidence
level [4]. In this study, 95% confidence level was used. The F -
test assumes that the set of residuals (prediction errors) are nor-
mally distributed. A simple normality test was used based on the
rule of thumb that a set of values is normally distributed if its kur-
tosis and skewness values between 2 to 4, and -1 to 1 respectively
[30] (the Normal distribution has a kurtosis of 3 and a skewness
of zero). The results of the normality test are given in Table 5.
Table 6 lists the F -test statistics results carried out on the set
of residuals of each objective image quality metric for the indi-
vidual subsets as well as for the full dataset. Each entry in the
Table 6 is a codeword of six symbols. The position of the sym-
bol in the code word represents the following datasets (from left
to right): Dekker SOM, Median Cut, Kmeans, Octree, Wus al-
gorithm, and all data. Each symbol gives the result of the F -test
on the dataset represented by the symbols position. “1” means
that the image quality metric from the row is statistically better
than the image quality metric from the column, “0 means that it
is statistically worse and “-” means that it is statistically indistin-
guishable. Thus in terms of statistical significance, as expected
S-CIELAB is statistically the best performing metric because it
is color fidelity based metric followed by the PSNR. Although
many studies have shown that the PSNR perform badly in as-
sessing the quality of images. Other studies also have shown that
the PSNR have the best performance in assessing the quality of
images for different distortions including color quantization dis-
tortions [43, 1]. The structure similarity based metrics come in
the middle since the quality of a distorted image is evaluated
based on how much structure is preserved within the distorted
image compared with the reference image. Although color quan-
tization is not in the first place a structural distortion, but reduc-
ing the number of colors in an image may result in a distortion
of the structure of the quantized image. It is clear also that VIF

is significantly better than the structure similarity based metrics
while IFC and UQI metrics have the worst performance.

5. CONCLUSION
In this paper, a new image database was presented. This image
database can be used to evaluate the performance of image qual-
ity metrics. The database consists of 25 reference images, 875
test images produced by five popular color quantization algo-
rithms. The prediction performance of recent state-of-the-art im-
age quality metrics over the new image database was analyzed
and reported. The database has been put for downloading freely
to the research community to further study in the field of image
quality assessment.
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