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ABSTRACT 

This paper introduces a variant of Artificial Bee Colony 

algorithm and compares its results with a number of swarm 

intelligence and population based optimization algorithms. 

The Artificial Bee Colony (ABC) is an optimization algorithm 

based on the intelligent food foraging behavior of honey bees. 

The proposed variant, Artificial Bee Colony Algorithm with 

Balanced Explorations and Exploitations (ABC-BEE) makes 

attempts to dynamically balance the mutation step size with 

which the artificial bees explore the search space. Mutation 

with small step size produces small variations of existing 

solutions which is better for exploitations, while large 

mutation steps are likely to produce large variations that 

facilitate better explorations of the search space. ABC-BEE 

fosters both large and small mutation steps as well as 

adaptively controls the step lengths based on their 

effectiveness to produce better solutions. ABC-BEE has been 

evaluated and compared on a number of benchmark functions 

with the original ABC algorithm, Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO) and Particle Swarm 

Inspired Evolutionary Algorithm (PS-EA). Results indicate 

that the proposed scheme facilitates more effective mutations 

and performs better optimization outperforming all the other 

algorithms in comparison.  

Keywords 

Artificial bee colony algorithm; Mutation; Exploration and 
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1. INTRODUCTION 
Swarm-based optimization algorithms (SOAs) employ a 

population of decentralized, self-organized agents and model 

some means of communication and information sharing 

among them to materialize a co-operative distributed search 

towards some optimal solution. Such an approach often 

mimics nature’s methods to drive a distributed search to 

achieve some objective. Utilizing a population of agents who 

travel through the search space in parallel, SOAs exhibit 

remarkable robustness against being trapped in local optima, 

even in multimodal, high dimensional search space. This is a 

key advantage of SOAs over direct search algorithms such as 

hill climbing or random walk. SOAs can find reasonably good 

quality solutions within relatively short computation time. 

SOAs include Genetic Algorithm (GA) [14], Ant Colony 

Optimization (ACO) [15], Particle Swarm Optimization 

(PSO) [16], Bee Colony Optimization [1]-[5], [6] and so on. 
All of these population-based search algorithms employ some 

strategy to generate variations of the existing population of 

solutions to obtain a new offspring population. For example, 

GA [14], [17] applies genetic operators, like crossover and 

mutation on the existing individuals to alter them with the 

intention of obtaining a new population with better fitness. 

The individuals with better fitness enjoy greater chance to be 

selected for mating (i.e., recombination or crossover) and 

re-insertion to the offspring population. Thus GA tries to 

mimic the natural process of ‘survival of the fittest’ by 

providing privilege to the fitter individuals for selection and 

mating. Another swarm intelligence approach, Particle swarm 

optimization (PSO) is a stochastic optimization technique 

based on the social behavior and interactions in bird flocking 

or fish schooling. In PSO, individuals of the population move 

across the solution space like a group of interacting ‘particles’ 

and search for improved solutions. Each particle has a 

velocity and it changes its position and velocity based on the 

experience of itself and its neighbors. There exist several 

variants of the PSO algorithm based on various aspects of the 

base algorithm. The enormous adaptability of PSO to 

hybridizations and variations is considered its strength over 

many other algorithms. A hybrid approach combining PSO 

and Evolutionary Algorithm (EA) is the Particle swarm 

inspired Evolutionary Algorithm (PS-EA) [21]. PS-EA 

employs PSO, but tries to avoid generating infeasible 

solutions from the improper updates of PSO by heuristics with 

selection and mutation operations. 

The intelligent food foraging behavior of honey bees has 

inspired several models to solve both combinatorial and 

continuous optimization problems [2-13]. A novel routing 

algorithm, BeeHive, is introduced by Wedde et al. [13] based 

on the communicative and dynamically evaluative procedures 

of honey bees. Teodorović proposed Bee Colony 

Optimization metaheuristic (BCO) [8] which can be employed 

to solve deterministic combinatorial problems, as well as 

combinatorial problems with uncertainty [5]. Lucic and 

Teodorović also demonstrated how the intelligent bee swarm 

behavior can be used to solve complex problems in traffic and 

transportation [6]. Tereshko and Loengarov considered bees 

as identical autonomous robots and presented experiments 

exhibiting robust and successful bee algorithms in complex 

robotic tasks [22]. Drias et al. introduced a metaheuristic, 

called Bees Swarm Optimization (BSO) and applied it to 

solve the maximum weighted satisfiability (max-sat) problem 

[9]. Benatchba et al. introduced a metaheuristic derived from 

the reproduction process of honey bees to solve a 3-sat 

problem [23]. Algorithms inspired by bee behavior have also 

been employed for solving Traveling Salesman Problem [24], 

Generalized Assignment Problem [25], Job shop scheduling 

[26], Training neural networks [12], dynamic allocation of 

internet servers [7] and so on. Relatively fewer works have 
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been carried out on continuous and numerical optimization 

problems. Yang developed a virtual bee algorithm (VBA) to 

solve the numeric function optimizations [10]. To minimize 

functions with two-parameters, Yang employed a swarm of 

virtual bees that started by randomly moving around the 

search space and interacting when they find any good quality 

nectar represented by the value of the objective function better 

than some predefined threshold. The optimal solution is 

obtained from the intensity of bee interactions. VBA is tested 

on two functions with two parameters, one is unimodal and 

the other is multimodal. Results show that VBA is much 

efficient than the genetic algorithm. Pham et al. [11] proposed 

a bee inspired optimization algorithm, the Bees Algorithm, 

which is applicable to both combinatorial and functional 

optimization problems. It is applied on eight benchmark 

functions and results show that it outperforms deterministic 

simplex method, stochastic simulated annealing optimization 

procedure, genetic algorithm and ant colony system, in terms 

of both final solution quality (i.e., accuracy) and convergence 

speed (number of iterations). Karaboga has developed an 

artificial bee colony (ABC) algorithm [4] which has fewer 

parameters and employed it for optimizing multivariable 

functions. Basturk and Karaboga presented another variant of 

ABC algorithm, extended the experimental results of the 

original ABC algorithm on five multi-dimensional benchmark 

functions and compared the results with genetic algorithms 

[2], [3]. In this paper, we have further improved the basic 

ABC algorithm by introducing ABC with Balanced 

Explorations and Exploitations (ABC-BEE) which 

incorporates a mutation step size adjustment scheme within 

the basic ABC algorithm. From the experiments, we found 

that ABC-BEE provides better results on most of the 

benchmark functions, which indicates the effectiveness of the 

proposed adjustment scheme.  

The rest of this paper is organized as follows. Section 2 

describes the basic ABC algorithm. The proposed variant 

ABC-BEE is presented in the following section 3. Section 4 

provides details of the benchmarking problems, parameter 

settings of the different algorithms and compares the results. 

Section 5 draws conclusion of this study and leaves a few 

suggestions as future research directions. 

2. THE ABC ALGORITHM 
Honey bees in a colony show remarkable self-organization 

and co-ordination skills in their food foraging behavior. Bees 

have to forage over a vast area in search of good sources of 

food. After an initial exploration stage, more bees are 

employed to collect honey from the more profitable food 

sources whereas fewer bees are assigned to the less worthy 

food sources. Some scout bees are also assigned for 

exploration to find newer food sources. If the quality of a food 

source declines after some exploitation, this information is 

also shared with other bees so that fewer bees are now 

attracted to this source. After the quality of a food source falls 

below some threshold, the bees assigned to it abandon it. The 

foraging process is initiated by scout bees that start searching 

for flower patches suitable as food sources. Quality is 

measured as a combination of some values, such as quantity 

and density of sugar, ease of access, distance from the colony 

etc. After they return to the hive, those scout bees that found a 

patch with quality above some threshold, deposit their nectar 

and then go to the ‘dance floor’ to perform a dance known as 

the ‘waggle dance’. This dance plays the key role to 

communicate information among the bees about the food 

sources. The waggle dance contains three pieces of 

information: i) the quality of the flower patch of this dancing 

bee, ii) the distance of the flower patch from the hive, iii) the 

direction from the hive that you have to travel in order to 

reach the flower. The ‘onlooker’ bees, waiting around the 

dance floor, observe the waggle dances of these ‘employed’ 

bees that have found good food sources and pick any one of 

them to become its ‘follower’ and collect nectar from its 

flower patch. The better a flower patch as a food source, the 

bigger is the number of follower bees along with its employed 

bee. However, if the patch is no longer good enough, it will 

not be advertised in the next waggle dance and the bees 

recruited for it as employed or follower bees will choose 

either to follow some other employed bee or start working as 

a scout bee to randomly explore the search space for finding 

new food source. 

The ABC algorithm mimics the food foraging behavior of the 

honey bees with these three groups of bees: employed bees, 

onlookers and scouts. A bee working to forage a food source 

(i.e. solution) previously visited by itself and searching only 

around its vicinity is called an employed bee. Employed bees 

perform waggle dance to propagate information of its food 

source to other bees. A bee waiting around the dance floor to 

choose any of the employed bees to follow is called an 

onlooker. A bee randomly searching a search space for 

finding a food source is called a scout. For every food source, 

there is only one employed bee and a number of follower 

bees. The scout bee, after finding a good food source also 

becomes an employed bee. In ABC algorithm 

implementation, half of the colony is employed bees and the 

other half is the onlookers. Number of food sources (i.e., 

solutions) is equal to the number of employed bees. An 

employed bee whose food source is exhausted (i.e. solution 

has not improved after several attempts) becomes a scout. The 

detailed pseudocode is given below.  

Step 1) Generate an initial population of N individuals. Each 

individual is a food source (i.e. solution) and has D attributes, 

where D is the dimensionality of the problem. 

Step 2) Evaluate the fitness of each individual.  

Step 3) Each employed bee searches in the neighborhood of 

its current position to find a better food source. For each 

employed bee, generate a new solution, vi around its current 

position, xi using (1). 

  vij = xij + φij (xij – xkj)                (1) 

Here, k{1, 2, …, Nemp} and j{1, 2, …, D} are randomly 

chosen indices. Nemp is the number of employed bees. Φij is a 

uniform random number generated from the range [-1, 1]. 

Step 4) Compute the fitness of both xi and vi. Apply greedy 

selection scheme to choose the better one.   

Step 5) Calculate the selection probability, Pi for each 

solution, xi and normalize by  

  1

N

k

k

i iP fit fit



           (2) 

Step 6) Assign each onlooker bee to a solution, xi at random 

with probability proportional to Pi  

Step 7) Produce new food positions (i.e. solutions), vi for each 

onlooker bee using the corresponding employed bee xi by 

using (1).  
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Step 8) Evaluate the fitness of each employed bee, xi and its 

produced onlooker bee, vi. Apply greedy selection scheme to 

keep the one with better fitness and discard the other.    

Step 9) If a particular solution has not been improved over a 

number of cycles, then select it for abandonment. Replace it 

by placing a scout bee at a food source placed uniformly at 

random over the search space using (3), i.e., for j = 1, 2, ..., D   

   xij = minj + rand (0,1) * (maxj – minj)         (3) 

Step 10) Keep track of the best food source position (solution) 

found so far. 

Step 11) Check for termination. If the best solution found is 

acceptable or maximum number of iterations has elapsed, stop 

and return the best solution found so far. Otherwise go back to 

step 2 and repeat. 

3. ADJUSTMENT OF MUTATION STEP 

SIZE WITH ABC-BEE 
The proposed variant, ABC-BEE is different from the original 

ABC algorithm in three aspects. First, ABC-BEE alters (1) 

which is used by steps 3 and 7 of the original ABC algorithm 

for reproducing new solutions from the existing ones. Second, 

ABC-BEE executes an ‘adjustment phase’ periodically after 

every t generations to automatically adapt the magnification 

factors, i.e., the Mij values that it maintains for every 

dimension, j of every bee, xi. Third, ABC-BEE employs a 

larger interval of [–3, 3] instead of the narrower [–1, 1] 

interval used by the original ABC algorithm. All these three 

schemes work together to facilitate more effective mutations 

to produce better offspring. The magnification factors that 

ABC-BEE maintains and adapts periodically help the 

mutation process perform better exploitations and 

explorations across the search space. Thus (1), which 

conducts the mutation process, now gets tuned by the Mij 

values that try either to enlarge or to shrink the Φij   [–3, 3] 

values to facilitate exploration or exploitation respectively, as 

illustrated in (4). 

vij = xij + Mij * φij * (xij – xkj)  (4) 

All Mij values are initiated to 2.0 during the beginning of the 

search process. As the search progresses across several peaks 

and plateaus or flat regions of the fitness landscape, the Mij 

values are automatically adjusted by the periodically invoked 

adjustment phases in order to take care of the current 

situation. Small values (less than unity) for Mij would shrink 

the product Mij * Φij in (4) to facilitate small mutation steps 

and thus ensure exploitation around the existing solution, xi. 

On the contrary, large enough values for Mij would expand the 

product Mij * Φij in order to promote large mutation steps 

which would help the search process quickly get rid of local 

optima and perform more explorations of the search space. 

Whether exploitation or exploration is better at current search 

stage might not be apparent or could not be predicted 

beforehand. So the adjustment phase executes periodically 

after each t generations, performs mutations with different 

range of Mij values and promotes only those Mij values that 

produce more successful mutations. 

Fig. 1 presents the pseudocode of the mutation step size 

adjustment cycle that is invoked periodically after every t 

generations. In this cycle, ABC-BEE adapts the magnification 

factor values of all the bees involved in the optimization 

process. The adjustment phase generates two uniform random 

values v1 and v2 for each employed and onlooker bee from the 

two Gaussian distributions with (mean, std. dev.) set to (0, α1) 

and (0, α2) respectively. Now, for every individual bee xi, 

three different offspring solutions (i.e., new food sources) are 

generated by using (4): one by employing the existing value 

of Mij and two more offspring by using Mij = 2-v1
 and 2

v2
 

respectively. Since α1 is much smaller than α2, hence the 

magnitude of v1 is likely to be smaller than its counterpart v2. 

Thus the magnification factor, Mij = 2–
v1

 would generate small 

steps for better exploitations, while Mij = 2
v2

 would produce 

large steps for more search space explorations. Now, 

ABC-BEE evaluates the fitness of the three offspring and 

accepts the best one for the next generation. Also, it updates 

the Mij to the weighted average of its current value and the 

magnification factor value that has produced the best 

offspring (say, Mij[k]) using the following formula.  

Mij = β * Mij + (1-β) * Mij[k]     (5) 

However, the adjustment phase, as presented in Fig. 1, often 

causes the Mij values to gradually decrease with generations, 

because exploitative small mutation steps usually have better 

chance to succeed than explorative larger steps. The 

continuous decrement of Mij values shrinks the mutation steps 

which eventually might make the search process get trapped 

at locally optimal points. To avoid this, ABC-BEE adopts a 

simple, yet effective scheme. If a particular Mij drops 

continuously over the last s1 generations, and is never 

increased over these last s1 generations without any fitness 

improvement of the solution xi, then ABC-BEE manually 

resets Mij to 1.0 and keeps it constant at 1.0 for the next s2 

generations (otherwise, Mij may quickly revert back to its 

smaller values again because of the weighted averaging). This 

resetting of magnification factors to higher values promotes 

larger mutation steps and helps get rid of any local optimum 

whenever any solution gets trapped there.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1:  Pseudo code of the mutation step size adjustment 

phase, which is invoked periodically after every t 

generations 
 

Procedure Adjustment Phase 

for each bee i  

 for j = 1 to D 

 { 
        v1 = absolute (Gaussian_Random (0, α1)) 
      v2 = absolute (Gaussian_Random (0, α2)) 

   Mij [1]= 2–v1 

  Mij [2]= 2v2 

  Mij [3]= Mij 
      

          for count = 1 to 3 
 { 

              vij [count] = vij computed from (4), but 

                                     with Mij =Mij [k]  

      fitness[count] = Fitness (vij [count]) 
  } 
     

          Find k such that fitness[k] is the minimum  
               over the array, fitness[1…3]  
         

          Mij = β * Mij + (1- β) * Mij [k]  
    } 
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4. EXPERIMENTS 

4.1 Benchmark functions 
A function is called multimodal if it has multiple local optima. 

In order to minimize such a function, the search process must 

be able to avoid being trapped around the locally optimal 

points. The difficulty increases with the dimensionality of the 

problem, because the number of local minima increases 

exponentially with the number of dimensions. To compare the 

performance of the proposed ABC-BEE with the original 

ABC, PSO, PS-EA and GA, we employ five multimodal 

benchmark functions [21], [27] each with dimensionality set 

to 10, 20, and 30. 

Table 1 shows the benchmark functions used for comparison. 

The first function, f1 is the multimodal Griewank function. It 

reaches the global minimum value of 0 when the variables are 

(0, 0, …, 0). Initialization range of the variables is 

[−600, 600]. The product term present in f1 introduces strong 

interdependence among the variables. So the techniques 

which try to optimize each variable separately without 

considering the others will fail with this function. The curse of 

high-dimensionality, combined with its regularly distributed 

multimodality makes the minimization process quite difficult 

for any algorithm.  

The second function is the Rastrigin function, f2. The first 

term in f2 [27] comes from the sphere function, while the 

second term with cosine product introduces regularly 

distributed multimodality. The initialization range is set to 

[-15, 15]. The function reaches the value of 0 at its unique 

global minimum (0, 0, …, 0). The third function is the 

Rosenbrock function which reaches 0 at the global minimum 

(1, 1, …, 1). The global minimum is inside a narrow parabolic 

shaped flat valley. The variables are strongly dependent and 

gradients usually do not direct to the global minima. Both the 

functions are considered very challenging and have repeatedly 

been used with the optimization algorithms. The fourth 

function is the Ackley function which has the minimum value 

of 0 at its global minimum (0, 0, …, 0). Its initialization range 

is [−32.768, 32.768]. The exponential term with cosine sum 

introduces numerous local minima. Any algorithm using only 

gradient steepest descent will be trapped in a local minimum. 

So the algorithm has to combine both explorative and 

exploitative schemes to reach the global minimum avoiding 

numerous local minima during optimization. The fifth 

function is Schwefel function which has the minimum value 

of 0 at its global minimum (420.9867, 420.9867, …, 

420.9867). Its initial range is [−500, 500]. The function has 

plenty of peaks and valleys. Unlike the previous functions, the 

global minimum is near the edge of the search space. 

Moreover, the function has a second best minimum which is 

far-away from the unique global minimum. This causes a 

great difficulty during the optimization process and many 

search algorithms get trapped in the second best minimum. 

4.2 Parameter Settings for the algorithms  
GA, PSO, PS-EA, ABC and ABC-BEE — all have two 

parameters in common: the population size and maximum 

number of generations. The population size has been set to 

125 and the maximum number of generations is set to 500, 

750 and 1,000 for the problems with dimensions of 10, 20 and 

30 respectively, as specified in [21]. 

Settings for GA, PSO and PS-EA: The particular GA 

scheme we employed is specified in [21] with its parameter 

values. It includes single point uniform crossover, crossover 

rate of 0.95, uniform random selection, linear ranking fitness 

function, Gaussian mutation and mutation rate of 0.1. The 

particular version of PSO we used is based on two distinct 

equations with three parameters — w, φ1 and φ2, as in [21]. 

Here, φ1 and φ2 are learning rates and w is the inertia weight. 

As specified in [21], φ1 and φ2 are set to be 2.0 and w is varied 

linearly with iterations from 0.9 to 0.7. Another algorithm we 

employed is Particle Swarm Inspired Evolutionary Algorithm 

(PS-EA). PS-EA is a hybrid approach employing techniques 

from both the fields of PSO and EA. PS-EA performs an 

updating operation of each individual in the population using 

the Inheritance Probability Tree (PIT). This is part of the 

‘Self-updating Mechanism’ (SUM) of PS-EA. SUM may 

dynamically adjust the inheritance probabilities in PIT. This 

Dynamic Inheritance Probability Adjustment (DIPA) is 

implemented by SUM considering the convergence rate of the 

algorithm during particular iterations. An initial infeasible set 

of inheritance probabilities, as suggested in [21], are used to 

test the performance of the DIPA module in PS-EA. 

Settings for ABC and ABC-BEE: We used colony size of 

125 with the percentage of both employed and onlooker bees 

set to 50% of the colony. The number of scout bees is set to 1. 

Maximum number of generations is set to 500, 750 and 1000 

for the problems with dimensions of 10, 20 and 30 

respectively. The number of fitness evaluations in an 

adjustment phase is three times than that of a typical 

generation, so each adjustment phase of the ABC-BEE 

algorithm is counted as three generations. This ensures a fair 

comparison between ABC and ABC-BEE by allowing equal 

number of fitness evaluations by both the algorithms. The 

adjustment phase is invoked after every t = 25 generations. 

With some preliminary experiments, other parameters are set 

as: s1 = 25, s2 = 10, α1= 0.50, α2=4.0 and β = 0.15. 

4.3 Experimental Results  
GA, PSO, PS-EA, ABC, and ABC-BEE — each is run 50 

times on every benchmark function. The mean of the best 

function values over all the runs for each function is presented 

in Table 2. Results indicate that ABC-BEE outperforms other 

algorithms by several orders of magnitude for most instances. 

It is remarkable that ABC-BEE reaches very close proximity 

of the global minima for all the functions, while the basic 

ABC algorithm fails to reach sufficiently close to the global 

minima on a number of occasions, such as the high 

dimensional Schwefel and Rosenbrock functions. Although 

ABC outperforms ABC-BEE for 30D Ackley function (f4), 

the performance difference is not statistically significant, as 

we have found in t-test with 95% degree of confidence. 

It is also observed that ABC-BEE has much better rate of 

convergence for most of the functions. To evaluate the 

convergence rates quantitatively, we now measure the number 

of generations that is required by both ABC and ABC-BEE to 

locate the global minima. Locating the global minimum x*is 

defined as reaching a function value f(x) such that |f(x) – f(x*)| 

≤10-1. Table 3 shows that ABC-BEE locates the global 

minima with such accuracy faster than the basic ABC 

algorithm. For some functions, such as f3 and f5, ABC often 

fails to reach such proximity of the global minima within 

1000 generations, which is marked as “failed” in Table 3. In 

contrast, ABC-BEE often locates the global minima within a 

few hundred generations. The only instance where ABC 

shows little bit faster convergence is the Ackley function, f4, 

but this difference is not statistically significant, as we have 

found in t-test (not shown) with 95% degree of confidence. 
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How much the proposed adjustment phase can improve the 

mutation operation? To find out, we now compare the 

successful mutation rates achieved by ABC and ABC-BEE. 

Here ‘success rate’ of a mutation scheme is defined as the 

percentage of better offspring produced by that scheme. 

Results from Table 4 demonstrate that the percentage of 

successful mutations is often much higher with ABC-BEE in 

comparison to ABC. In some instances, such as f2, f3 and f5, 

the success rate by ABC-BEE is almost double of ABC.  

These success rates nicely coincides with the results in 

Table 2, because the optimization performance (presented in 

Table 2) of ABC-BEE is most noticeably better than ABC for 

these same three functions, i.e., f2, f3 and f5. Such a beautiful 

correlation between better results and higher mutation success 

rates directly indicates that the proposed adjustment phase, as 

employed by ABC-BEE, yields relatively better offspring by 

mutation step size adjustments and thus contributes towards 

the improvement of the performance of the algorithm.  
 

Table 1. Benchmark functions for experimental study. D: dimensionality of the function, S: search space,                

fmin: function value at global minimum, C:  function characteristics with values — U: Unimodal,                

M: Multimodal, S: Separable and N: Non-Separable. 

No Function D S C fmin 

f1 Griewank 10, 20, 30 [-600, 600]D MN 0 

f2 Rastrigin 10, 20, 30 [-5.12, 5.12]D MS 0 

f3 Rosenbrock 10, 20, 30 [-30, 30]D UN 0 

f4 Ackley 10, 20, 30 [-32, 32]D MN 0 

f5 Schwefel 10, 20, 30 [-500, 500]D MS 0 

 

Table 2. Mean of the best function values found over 50 independent runs for each function by GA, PSO, PS-EA, ABC          

and the proposed ABC-BEE algorithm. The best result for each function is shown in boldface font. 

Function D GA PSO PS-EA ABC ABC-BEE Best Results By 

f1 

10 0.050228 0.079393 0.222366 8.7 x 10-4 9.45 x 10-14 

ABC-BEE 20 1.0139 0.030565 0.59036 2.10 x 10-8 1.08 x 10-14 

30 1.2342 0.011151 0.8211 2.87 x 10-9 7.82 x 10-12 

f2 

10 1.3928 2.6559 0.43404 0 0 

ABC 

ABC-BEE 
20 6.0309 12.059 1.8135 1.45 x 10-8 3.13 x 10-13 

30 10.4388 32.476 3.0527 0.033874 6.59 x 10-9 

f3 

10 46.3184 4.3713 25.303 0.034072 1.32 x 10-7 

ABC-BEE 20 103.93 77.382 72.452 0.13614 7.80 x 10-5 

30 166.283 402.54 98.407 0.219636 2.99 x 10-4 

f4 

10 0.59267 9.85 x 10-13 0.19209 7.8 x 10-11 3.09 x 10-14 

ABC 

ABC-BEE 
20 0.92413 1.178 x 10-9 0.32321 1.6 x 10-11 1.79 x 10-13 

30 1.0989 1.491 x 10-6 0.3771 3 x 10-12 3.16 x 10-12 

f5 

10 1.9519 161.87 0.32037 1.27 x 10-9 6.63 x 10-18 

ABC-BEE 20 7.285 543.07 1.4984 19.83971 9.10 x 10-10 

30 13.5346 990.77 3.272 146.8568 0.009081 
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Table 3. Number of generations required by ABC and ABC-BEE to reach the global minimum.  

Results are averaged over 50 independent runs.  

Function Dimensionality ABC ABC-BEE 
Better 

Convergence By 

f1 30 238.5 181.8 ABC-BEE 

f2 30 319.6 210.7 ABC-BEE 

f3 30 Failed 491.0 ABC-BEE 

f4 30 183.3 186.9 ABC 

f5 30 Failed 835.5 ABC-BEE 

 
Table 4. Comparison of successful mutation rates achieved by ABC and ABC-BEE.  

Results are averaged over 50 independent runs.  
 

Function Dimensionality 
Successful Mutation Rate (%) Better 

Performance By ABC ABC-BEE 

f1 30 18.2 23.8 ABC-BEE 

f2 30 11.2 19.5 ABC-BEE 

f3 30 6.8 12.6 ABC-BEE 

f4 30 25.1 22.3 ABC 

f5 30 5.5 10.9 ABC-BEE 

 

5. CONCLUSION AND FUTURE 

RESEARCH DIRECTIONS  
This paper introduces ABC-BEE, an improvement over the 

basic ABC algorithm incorporating an automatic adjustment 

phase for the mutation step size. ABC-BEE is evaluated on a 

number of benchmark functions and is compared with a 

number of population-based and swarm intelligence 

algorithms. Experiments and empirical results from 

ABC-BEE clearly suggest the effectiveness of adopting the 

proposed mutation step size adjustment phase which employs 

Gaussian and Exponential distributions to produce both large 

and small steps and then picks the more successful step 

lengths. However, there are several future research directions 

suggested by this study. First, ABC-BEE mostly follows a 

greedy management of the magnification factors (i.e., the Mij 

values), as it tends to travel towards the magnification factor 

values that lead to immediate fitness improvements. A more 

sophisticated and less greedy adjustment phase may further 

improve its performance. Second, ABC-BEE demonstrates 

excellent capacity to locate the global optima, so one 

interesting idea would be to hybridize ABC-BEE with other 

existing algorithms. ABC-BEE could be employed on a 

problem that is partially solved by another algorithm while the 

global optimum is still unknown. It would be interesting to 

find out whether ABC-BEE can improve the final solution 

quality. Third, ABC-BEE has been applied only to the 

continuous function optimization problems. It would be 

interesting to study how well ABC-BEE performs for other 

optimization problems, especially the discrete and real world 

optimization problems. 
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