

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

24

Adaptive Post-silicon Server Validation using Machine

Learning

Paidipeddi Pridhiviraj

Department of ECE, National
Institute of Technology Warangal,

India

Tomar Dheerendra S
Server System Validation Group

Intel Corporation Bangalore,
India

P Muralidhar
Department of ECE, National

Institute of technology, Warangal,
India

ABSTRACT

This paper mainly focuses on providing solutions for efficient

feature validation. Modern day server processors and

computer systems are developed with billions of transistors.

Validation of such a complex systems is playing a crucial role

in current research. Pre-silicon validation is not enough to get

a full system functional coverage. Post-silicon validation is a

necessary step to validate these complex systems and to

determine the escaped functional silicon bugs during pre-

silicon validation. During post-silicon validation in order to

get a full system functional coverage there are more number

of features for testing. Applying all the features manually and

going through the each test results is difficult to maintain. In

order to reduce resource requirements for determining test

failure signature, and to reduce the time to debug the failure,

introduced the machine learning in current validation

environment. The proposed validation algorithm in this paper,

which is very useful in feature validation of server processer’s

and is adaptive to the previous validation learning’s.

Validation is mainly carried out for power management

features provided by Advanced Configuration and Power

Interface specification. The functional coverage implemented

for important power management features namely processor

power states, processor performance states and thermal states.

This feature coverage analysis is provided through graphical

plots.

General Terms

Algorithm, Functional coverage, Machine learning, Processor

Power and Thermal management, Validation

Keywords

Adaptation, Debugging, Feature, Functional coverage,

Learning set, Machine learning, Pre-silicon, Post-silicon,

Power management, System under test (SUT), Thermal

management and Validation.

1. INTRODUCTION
Chips containing millions of transistors are the silicon brains

inside the mobile, desktop and server platforms. Validation of

these systems confirming that, those should be verified

functionally before releasing into market. Now a days the

research and development also focuses on ensuring the correct

operation and functionality of systems despite of rising levels

of the design complexity. So these efforts led to increasing the

advances in the theory and practice of design and logic

verification before and after manufacturing of digital systems

over several decades [1-2]. Validation mainly contains two

phases, one is pre-silicon and other is post silicon validation.

Pre-silicon verification techniques are mainly simulation,

emulation and formal verification tools are limited in scope

and volume. The main drawback of pre-silicon verification is,

the current pre-silicon verification technologies and tools are

not sufficient for full system functional verification. So Post-

silicon validation is a necessary step in a full system

functional validation process [3]. Pre-silicon verification

models such as simulation and emulation are having excellent

controllability, repeatability and observability and hence easy

to debug. It is not sufficient to get more functional coverage

of system. Post-silicon validation has insufficient

controllability and observability due to limited access to

internal signals and hence difficult to debug, but it gives

system level functional coverage.

Post silicon validation is not a new innovation or idea and it is

being used in many industry system validation areas for many

years. Post silicon validation is mainly focuses on detecting

and fixing the functional bugs of systems after manufacture.

Due to high design complexity it is impossible to detect all

these functional bugs before manufacture, which are those

escaped in pre-silicon verification [4]. Post silicon validation

goes through four steps. The validation of server processor is

carried for the power management features provided by

advanced configuration and power interface (ACPI). 1.

Initially detecting the problem by running the test suites

containing combinations of these features, on server or system

under test (SUT), for a long time until a system failure occurs.

2. According to problem, need to localize the system failure to

a small region of the system. 3. Have to identify the root cause

of the problem. 5. According to the root cause, need to fix or

bypass the problem through patching and circuit editing etc.

[5].

Pseudo random multi master concurrency is the method used

in post silicon server validation. A master is anything, which

can have the capability to generate some form of system

traffic. Typical masters are Central Processing Unit (CPU), a

Peripheral Component Interconnect (PCI) device or a

Universal Serial Bus (USB) device. These masters can

interact with others through register and/or memory, write and

read operations. In a computer system, there are infinite

number of bus transactions and logic states. It’s an unsolvable

problem to execute each and every transaction. In order to

make the task more efficient, and to cover the validation space

more, tests are generated randomly. This is not only random

but it’s a pseudo random generation, which is to be needed in

a situation to reproduce a particular failure again on demand.

This is highly desirable in a debug situation, where a

particular set of tests results in failure. If there are several

masters, each of which can be programmed to generate

pseudo random traffic on its respective interface, system

stress is maximized by executing all of that traffic

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

25

simultaneously (concurrency). After maximizing the system

stress, some functional bugs will come. These failures need to

debug and fix them in subsequent product families.

2. POWER MANAGEMENT FEATURES
System power management is a global feature, which is built

around a standard specification called advanced configuration

and power interface specification (ACPI). The main purpose

of system power management is to switch the systems into

lower-power state when inactive. The main reasons behind to

use power management in computing devices is to reduce

overall power consumption, cooling requirements and to

increase battery life and performance [6]. The power

management of computing systems is done in two levels, one

is in processor level and the other is in operating system (OS)

level. In the OS level, when system is in hibernate mode it

moves the contents of RAM into hard disk and completely

switches off the system to save the power. In the processor

level, CPU core voltage and clock rate are the two important

parameters of processor are altered in real time to decrease the

power consumption at the cost of lowering the performance.

These two variations are called dynamic frequency and

voltage scaling [7].

ACPI is an interface specification, which is comprised of both

software and hardware elements. As ACPI document states

that “The Advanced Configuration and Power Interface

(ACPI) specification was developed to establish industry

common interfaces enabling robust operating system (OS)-

directed motherboard device configuration and power

management of both devices and entire systems”. This

interface specification is suitable to all computing devices

including mobile, desktop, workstation and server machines.

ACPI includes global system states, device power states,

processor performance states (pstates), processor power states

(cstates) and thermal states [8].

Global system states:

These states apply to the entire system and these are visible to

the users. G0 is the working state, where the processor and all

peripheral devices are in running state and consumes more

power. G1 is the sleeping state where computer consumes less

power and most of the system context is saved by the

hardware and software. G2 is the soft off state where

computer consumes minimal amount of power and no context

is saved by the hardware. G3 is the mechanical off state where

no electrical current passed through circuitry and power

consumption is zero except for real time clock. OS restart is

required for G2 and G3 states, not required for G0 and G1 [9].

Processor power states (Cxstates):

These are the processor power consumption states within the

global system state G0 (working state). When CPU is idle, it

enters into one of the below power saving modes. C0 is the

operating state of CPU, where it executes instructions. C1 is

the halt state where it stops CPU main internal clocks by

software and not executes any instructions. C1E is the

enhanced halt state where in addition to stopping CPU clock

and reduces CPU voltage for lower power consumption. C2 is

the stop clock state, where it stops the CPU main internal and

external clocks by hardware.C3 is the sleep state where in

addition of stopping clocks and core PLL (phase locked

loops), even core cache are flushed. C6 is a deep power down

state, where core PLL are off, core cache is flushed and CPU

voltage is reduced to 0v [10].

These core cstates are extending up to C10 in modern server

processors. When all the cores are in a particular cstate, then it

is called package cstate like PC3 (package C3 state) and PC6

(package C6 state), are the examples of package cstates. So

C0 to C6 are the processor power states, where each of these

states consumes less power by cutting CPU clock and reduces

the voltage [11].

Processor performance states (pstates):

In the modern day servers the power consumption of intel

processor is approximately 30 % of total power dissipation. In

order to save power when system is in working state (G0), and

the processor is in operating state (C0) intel develops a new

technology called Enhanced speed step technology, also

called as demand based switching or GV3(Geyserville)

technology [12]. By using dynamic voltage and frequency

scaling concepts operating system alters the voltage and

frequency to trade-off the power and performance constraints.

So operating system continuously monitor’s CPU utilization,

it reduces the CPU speed when it is in idle state and

increasing the speed whenever load increases. Processor

performance states or pstates are a pre-defined set of voltage

and frequency combinations at which a CPU can run for

optimum power and performance. Pstates are in the order of

P0, P1, P2 ….Pn. P0 is the highest frequency and consumes

more power, Pn is the lowest frequency and consumes very

less power. These frequency variations are altered by OS

depends on work load by using model specific register’s

(MSR). The register IA32_PERF_CTL is used for changing

the frequency of CPU by writing a pstate value to the lower

16bits of register. And to monitor the CPU frequency, OS

reads the lower 16 bits of IA32_PERF_STATUS register.

Table 1 is the example of how pstates combinations are looks

like, for optimum power and performance levels. Where

power dissipation is the product of squared voltage and

frequency [13].

PαV2F where P-power, V-voltage and F-frequency.

Table 1. Pstate table.

Processor

pstate
Voltage Frequency

Power

dissipated

P0 1.5V 2.6GHz 86 watts

P1 1.4V 2.3GHz 75 watts

P2 1.3V 2.0GHz 68 watts

P3 1.2V 1.7Ghz 54 watts

P4 1.0V 1.5Ghz 45 watts

Thermal states:

Thermal states are defined as the different operating

temperatures within the surrounding thermal zones of the

system. Each system has one or more thermal zones. A

thermal zone is the amount of space occupied by the

temperature sensing device. In general for Intel processor’s

there are two types of independent thermal sensor’s present in

the entire system, one is the temperature sensor mainly used

for thermal monitor and the other is on-die thermal diode for

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

26

the thermal management. These two are independent and

isolated temperature sensors. The thermal diode is mainly

monitor’s processor temperature, and help in asserting

PROCHOT signal when processor reached its maximum

operating temperature. Once PROCHOT signal is asserted

thermal control circuit is enabled, which controls the CPU

temperature by clock modulation. IA32_THERM_STATUS is

the architectural MSR used for measuring the CPU

temperature. If CPU temperature reaches the catastrophic

point, the THERMTRIP signal is asserted and when

THERMTRIP is active, the processor will catastrophically

shut down [14-16].

3. CURRENT VALIDATION

METHODOLOGY
The current validation methodology is shown in Figure 1.

Results
Apply

Test

System Under

Test(SUT)

Figure 1. Current validation methodology

 Procedure is applying test case to server or SUT.

 Get the results.

 Manually verifying the results and test status pass or fail.

 Have to identify the root cause of the issue.

 Need to Fix or bypass the problem by patching and

circuit editing etc.

But in real time, the test is failed due to many variables. If the

test is failed due to original functionality it is called actual

failure. If the test is failed due to any other variables it is

called false failure. In real time execution there are high

number of tests are applied to SUT. Going through each &

every failure is also difficult. So introduced the machine

learning in current validation methodology to simplify the

validation & debug framework and to reduce man power and

resource requirements. The validation environment that learns

from the previous validation experience.

Machine learning –is a concept in which it models a particular

problem through the use of set of input and output data sets,

instead of using the underlying actual system responses and

equation’s etc, because in real time most of the real world

problems knowing the system dynamic’s and building the

ideal system model is not an easy task. In such cases machine

learning techniques eases the modelling task [17-18]. In the

current validation, input test cases and possible output results

are known. In the next section it contains proposed validation

framework, which is modelled using these input test cases and

possible test results. And the algorithm is suitable for

validation and reduce the time to triage and to debug the

failures. The algorithm is adaptive to previous validation data

of server processor’s.

Many of the machine learning algorithms are inspired directly

from the nature. Fuzzy logic uses the human vague thinking,

Artificial neural networks uses the brains massive parallelism,

Simulated Annealing uses the slow cooling process in

metallurgy, Genetic algorithms adopted the survival of fittest

concept etc. So machine learning algorithms are also known

as soft computing methods [19].

Machine learning algorithms are classified into many forms

based on how the algorithm treated the inputs. Those are

supervised learning and unsupervised learning, etc. Nowadays

machine learning algorithms are used in many areas like data

mining, medical diagnosis, stock market analysis, OCR,

computer vision, search engines [20]. The post silicon system

validation field has been slower to adopt the modern machine

learning techniques as compared to the degree seen in other

fields.

4. PROPOSED VALIDATION

FRAMEWORK
The current validation methodology has many drawbacks

those are discussed in the last section. In order to simplify the

debug and validation framework, the proposed validation

framework introduced the machine learning in current

validation. That means validation methodology learns from

the previous validation learnings. The proposed validation

framework is developed based on the Venn diagram described

on figure 2.

Universal test

cases

A :learning set for

known valid device.

B : new set of test

cases to validate a

future generation

device.

Actual failure

False failure

PASS

(B)

Learning Set

(A)

FAIL

(B)

Figure 2. Test cases Organization

The Venn diagram contains test cases organization. Universal

test cases are the total tests independent of the system and

result. In order to validate server processor power

management features there needs to be more number of tests

have to be applied. These large number of tests results in more

failures due to some feature bugs, script failures, and false

failures. In order to automate validation the above Venn

diagram plays a crucial role.

The validation of server processor is going through two

phases. In the first phase need to prepare a learning set which

is a set of test cases being passed from a known valid server

processor (A) i.e that device was already validated. In the

second phase validation of current or future generation server

processor (B) is done through the use of previously generated

learning set. Phase one is only for generating learning set,

which is the initial requirement for the validation framework.

The proposed validation framework defined in the second

phase is used continuously for future generation server

products. While validating this current or future generation

server product need to update the learning set in parallel. This

updated learning set is useful in validating the further future

generation products.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

27

4.1 Preparation of learning set for a known

valid server processor (A)
The block diagram for the learning set preparation is shown in

Figure 3.

Steps for preparing learning set:

 Select a known valid server processor (A) or SUT, which

was already validated.

 Apply a test for specified duration, obtain the result and

log the result.

 Prepare the learning set depends on the result.

 Learning set is a dictionary which contains pairs of tests

and results.

 If the test passes add it to the learning set.

 If it fails, test is not a valid one because device (A) is

valid. Apply another test.

 Repeat the above procedure until all the test features are

over.

Known device(A)

Is result

pass?

Test Result

Learning set

Change test

pass

 fail

 Figure 3. Learning set preparation for a known valid

device (A)

Test feature command line is pm_test_suit.py --

xmlFile=pm_test.xml --iteration=5 --time=6 --

test=@program_feature

Pseudo code for developing learning set:

for i=0 to M

Feature (F) =L[i]

Command line: [pm_test_suit.py -

xmlFile=pm_test.xml --iteration=5 --time=6 --

test=@program_feature (F)]

System (command line)

If Result: Pass

Learning set R {feature: [F, Result]}

Else

Continue

Where L=list of features, R=learning set i.e. dictionary,

F=feature to be tested, and pm_test.xml file contains program

sections each section denotes what combination of features

want to test.

So by using the above procedure learning set for a known

valid device (A) is prepared, which will be used in the second

phase for validation of future server products.

4.2 Proposed Algorithm for validating

server processor or SUT
Proposed framework for system validation is shown in Figure

4. By the use of previously generated learning set for a known

valid server (A), will validate future generation server

processor (B). This proposed algorithm is mainly

implemented from the Venn diagram shown in figure 2 which

describes the test cases organization. Steps for system

validation are

SUT
Apply

test
Result

Update

learning set

Is result

pass

If test is in

learning set

If test is a

new feature

pass

fail

Actual

failure

yesno

Change

test

yes

no

False failure

Debug

and root

cause

Work

around it

Figure 4. Algorithm for validating server processor (B) or

SUT and for updating learning set.

 Select a future generation server processor (B) for

validation.

 Apply test to server processor (B) or SUT

 If test is passed, then update it on the learning set

 Else if it fails then check whether the test is in the

learning set or not.

 If the test is in the learning set, that means the failure is

called “actual failure”

 Else if it is not in the learning set, check for feature or

functionality.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

28

 If the test is a new feature then update it on the learning

set, else if it is not a new feature then the failure is called

“false failure”.

 Actual failures need to debug and root cause the problem

 If the root cause of the problem is identified, work

around for the problem and fix it

 False failures are not a valid failures. Those failures can

leave and rerun the test with necessary steps.

 Repeat the above process until all the test features are

over.

Figure 5 contains the pseudo code for proposed validation

algorithm. Where command line for feature execution is

[pm_test_suit.py -- xmlFile=pm_test.xml --iteration=5 --

time=6 --test=@program_feature (F)] Where L=list of

features, R=learning set i.e. dictionary, F=feature to be tested,

and pm_test.xml file contains program sections each section

denotes what combination of features want to test.

Pseudo code for proposed algorithm:

For i=0 to m

 Feature (F) =L[i]

 Command line:

 System (command line)

 If Result: Pass

 Learning set R {feature: [F, Result]}

 Else if feature (F) not in the learning set R:

 Learning set R {feature: F}

 Else if feature (F) in learning set R:

 #actual failure section

 Case A: functional failure

 Feature (F) Actual failure

 Debug (); //manual debugging

 Break;

 #false failure section

 Case B: false failure variables //Refer Table 2

 Feature (F) False failure

 Continue;

Figure 5. Pseudo code for proposed validation algorithm

The above algorithm each time it updates new input data

features and their corresponding results. And also it gives

failure signature and whether it is an actual failure or false

failure. While validating this server product (B), updated the

learning set. So updated learning set is useful for validation of

future server products. So each time, validation framework do

the validation through the use of previous validation

learnings.

5. RESULTS AND DISCUSSIONS
By using the above proposed validation framework did the

validation of server processor mainly for power management

features of ACPI. Those features include processor power

states (cstates), processor performance states (pstates), device

power states, link states and thermal states are explained in

power management features section. These features are global

features and there are many other features in component level

are validated by using the above validation framework.

Example features of power management are shown in below.

Figures 6-9 shows pstates (processor performance states)

feature. Pstates feature nothing but running the CPU with

different pstates (or frequencies) to reduce power

consumption. By continuously writing the random pstates to

the IA32_PERF_CTL MSR fields, the CPU will run with

corresponding frequencies specified by the datasheet. The

Intel’s CPU core frequency is measured by using

IA32_PERF_STATUS architectural model specific register

(MSR) fields. Figures 6-9, these all plots are CPU frequency

plots measured when testing pstates feature on a Xeon-D

server system having 8 cores i.e. 16 CPU’s (each core having

two threads). On all 16 CPU’s frequencies are measured. Four

of the frequency plots shown in figure 6-9. These plots covers

the pstates coverage and help in showing the pstate

transitions. This coverage plots help in debugging the

functional failures.

Table 2 is the pstate table for Xeon-D server system. Where

[P0-P1] Turbo frequency range-[2600-2000] and [P1-Pn]

Non Turbo frequency range-[2000-800]. In all the four

frequency plots processor transition between turbo frequency

clips as well as non-turbo frequency range for optimum power

and performance levels [21].

In all the frequency plots (Figure 6-9)

Range 1Turbo frequency clips [2600-2000]

Range 2 Non-turbo frequency range [2000-800].

These transitions indicate pstates feature is functionally

covered.

Table 2. Xeon D Processor Pstate table

Processor Pstate Frequency (MHz)

P0 2600

P1 2000

P2 1900

P3 1800

P4 1700

Pk …..

Pm …..

Pn 800

Figure 6. CPU 0 instantaneous frequency

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

29

Figure 7. CPU 1 instantaneous frequency

Figure 8. CPU 2 instantaneous frequency

Figure 9. CPU 3 instantaneous frequency

Figure 10. Thermal states feature

Similarly thermal states means different operating

environment temperatures near the CPU. The CPU

temperature is measured using

IA32_PACKAGE_THERM_STATUS architectural MSR

fields. When running some CPU load, the CPU temperature

variation is shown in Figure 10. The CPU temperature

variation with respect to frequency when running load on

CPU is shown in Figure 11. In region 1: Running load on

CPUmaximum frequencytemperature increases. In region

2: No load on CPUfrequency fluctuationtemperature

decreases to room temperature. But both plots (Figure 10-11)

will tell us how thermal management works on Intel server

platforms. These plots provide thermal states or Tstates

coverage.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

30

Region 2 Region 1 Region 2

temperaturefrequency

Figure 11. CPU temperature vs frequency

Figure 12. CPU Package Cxstates

One more example feature called CPU Cxstates (processor

power states). To test this feature, need to vary the cstates

continuously from C0 state to C6 state. Figure 12 describes

the amount of time that CPU spend in that package cstate

when varying cstates feature. To calculate the percent of time

in CX state= MSR_PKG__CX_Residency/TSC. Where TSC

is Time Stamp counter MSR (0x10H) and

MSR_PKG_CX_RESIDENCY is a MSR which gives

residence counter of CX states since last reset of CPU.

For example to Calculate the percent of time in PC6:

%PC6_time = MSR_PKG_C6_RESIDENCY /TSC.

The graph (Figure 12) plotted for 9 sample instants with

sampling time of 10 seconds. So in each 10 second duration

calculated the amount of time that CPU spend in that Cstate.

This data will clearly tell us CPU will take more time to enter

and exiting the PC6 state and will take less time to enter and

exiting of PC2 state. This will help in whether PC6, PC3 and

PC2 are happening or not. This will cover processor power

states (cstates) coverage. These features are tested by using

randomization and multithreading algorithms. After running

those random features and combination of features in parallel,

test failures are categorized as actual and false failures. Those

failures and their failure signatures are shown in Table 3 and

Table 4.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

31

Table 3. Some tested features and their corresponding

“Actual Failure” signatures

Test feature Failure signature

Core Cstate test Cstates are not happening

Pstate test
Requested frequency ratios are not

achieved

Temperature

test
CPU temperature is not changing

Link states test Link is busy

GV Test Not able to achieve the ratio

Turbo test Turbo frequency not achieved

Core C and P

states test

Package cstate (PC-6) is not

happening

Device state test
Not able to attend the device state,

as device is busy

Hardware

power management

Hardware is not able to do power

management

Table 4. Some false failure signatures

False failure signature’s

Not a new feature of ACPI

CPU is locked

Insufficient memory

Wrong command line was picked up

Actual failures are mainly due to functional failures.

Functional failures may be because of script failures, silicon

bugs or software bugs. These functional failures need to

debug and root cause the problem. Fixing the issue is final

step in validation. False failures are due to so many variables,

these failures are any failures other than actual failures. The

algorithm is adaptive to the previous validation learnings.

Each time if a future generation server processor is needs to

validate, learning set plays a crucial role, then

correspondingly the algorithm is suitable for validation, to

triage the failures and reduce the time to debug.

6. CONCLUSIONS
So this paper contains validation framework that is suitable

for post silicon server validation, and also validation is mainly

carried out for power management features provided by

Advanced Configuration and Power Interface specification

(ACPI). Proposed and implemented the feature functional

coverage for important power management features. Feature

functional coverage is mainly implemented for processor

power states (package cstates), processor performance states

(pstates) and thermal states. The algorithms for functional

coverage implementation is provided. Feature functional

coverage analysis is provided through graphical plots. These

plots will clearly explain whether these features are

functionally covered or not. These functional coverage plots

are taken when testing the features in real time execution

environment.

7. REFERENCES
[1] Subhasish Mitra , Sanjit A. Seshia, and Nicola Nicolici,

Post-Silicon Validation Opportunities, Challenges and

Recent Advances. Design Automation Conference

(DAC), 2010 47th ACM/IEE

[2] Intel Platform and Component Validation A

Commitment to Quality, Reliability and Compatibility.

http://www.intel.com/design/chipsets/labtour/pvpt_white

paper.htm

[3] Amir Nahir, Avi Ziv, Rajesh Galivanche, Alan Hu,

Miron Abramovici, Bob Bentley, Valeria Bertacco,

Albert Camilleri, Harry Foster, and Shakti Kapoor

“Bridging Pre-Silicon Verification and Post-Silicon

Validation” DAC'10, June 13-18, 2010, Anaheim,

California, USA. ACM 978-1-4503-0002-5/10/06

[4] Adir, S. Copty, S. Landa, A. Nahir, G. Shurek, A. Ziv, C.

Meissner, and J. Schumann, ‘‘A unified methodology for

pre-silicon verification and post-silicon validation,’’ in

Proc. Design Autom. Test Eur. Conf. Exhibit., 2011,

DOI: 10.1109/DATE.2011.5763252.

[5] Pridhiviraj Paidipeddi and Dheerendra Singh Tomar

“Machine Learning Adaptation in Post Silicon Server

Validation” International Journal of Applied Information

Systems (IJAIS) – ISSN: 2249-0868 Foundation of

Computer Science FCS, New York, USA, Volume 7–

No.11, November 2014 – www.ijais.org

[6] Intel® Performance Counter Monitor - A better way to

measure CPU utilization. https://software.intel.com/en-

us/articles/intel-performance-counter-monitor

[7] White Paper: Power Management in Intel® Architecture

Servers, April 2009

[8] Advanced configuration and power interface

specification, Revision 5.0a, November 13, 2013

[9] http://acpi.info/spec.htm

[10] Jonathan A. Winter , David H. Albonesi , Christine A.

Shoemaker, Scalable thread scheduling and global power

management for heterogeneous many-core architectures,

Proceedings of the 19th international conference on

Parallel architectures and compilation techniques,

September 11-15, 2010, Vienna,

Austria [doi>10.1145/1854273.1854283]”

[11] Intel® Turbo Boost Technology in Intel® Core™

Microarchitecture (Nehalem) Based Processors, white

paper

[12] Stuart Hayes | Enterprise Linux Engineering, Controlling

Processor C-State Usage in Linux. A Dell technical white

paper describing the use of C-states with Linux operating

systems

[13] White paper: Enhanced Intel® SpeedStep® Technology

for the Intel® Pentium® M Processor, March 2004,

Order Number: 301170-001

[14] Understanding Power Management of Intel® Processors

for Mil/Aero Applications, cutriss wright controls,

Embedded computing

[15] E. Rotem, A. Naveh, et al., “Analysis of Thermal

Monitor features of the Intel Pentium M Processor”,

Proceedings of TACS-01, ISCA-31, 2004.

[16] A. Naveh, E. Rotem, et al.,”Power and Thermal

Management in the Intel® Core™ Duo” , Intel

Technology Journal Vol. 10 #2, 2006. ITJ MY

[17] Intel® 64 and IA-32 Architectures Software Developer’s

Manual,

http://www.ijais.org/
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://acpi.info/spec.htm
http://dl.acm.org/citation.cfm?id=1854283&CFID=669068804&CFTOKEN=34256636
http://dl.acm.org/citation.cfm?id=1854283&CFID=669068804&CFTOKEN=34256636
http://dl.acm.org/citation.cfm?id=1854283&CFID=669068804&CFTOKEN=34256636
http://dl.acm.org/citation.cfm?id=1854283&CFID=669068804&CFTOKEN=34256636
http://dl.acm.org/citation.cfm?id=1854283&CFID=669068804&CFTOKEN=34256636
http://dl.acm.org/citation.cfm?id=1854283&CFID=669068804&CFTOKEN=34256636
http://dl.acm.org/citation.cfm?id=1854283&CFID=669068804&CFTOKEN=34256636
http://doi.acm.org/10.1145/1854273.1854283

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.1, June 2015 – www.ijais.org

32

http://www.intel.com/content/www/us/en/architecture-

and-technology/64-ia-32-architectures-software-

developer-instruction-set-reference-manual-325383.html

[18] Phil Simon (March 18, 2013). Too Big to Ignore: The

Business Case for Big Data. Wiley. p. 89.ISBN 978-

1118638170.

[19] Mitchell, T. (1997). Machine Learning, McGraw Hill.

ISBN 0-07-042807-7, p.2.

[20] Andrew DeOrio, Qingkun Li, Matthew Burgess and

Valeria Bertacco, Machine Learning-based Anomaly

Detection for Post-silicon Bug Diagnosis, Design,

Automation & Test in Europe Conference & Exhibition

(DATE), 2013, pp.491.

[21] Wernick, Yang, Brankov, Yourganov and Strother,

Machine Learning in Medical Imaging, IEEE Signal

Processing Magazine, vol. 27, no. 4, July 2010, pp.

25-38.

[22] Intel® Xeon® Processor D-1500 Product Family

Datasheet- Volume 1 of 4: Integrated Platform Controller

Hub

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.html

