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ABSTRACT 

This paper mainly focuses on providing solutions for efficient 

feature validation. Modern day server processors and 

computer systems are developed with billions of transistors. 

Validation of such a complex systems is playing a crucial role 

in current research. Pre-silicon validation is not enough to get 

a full system functional coverage. Post-silicon validation is a 

necessary step to validate these complex systems and to 

determine the escaped functional silicon bugs during pre-

silicon validation. During post-silicon validation in order to 

get a full system functional coverage there are more number 

of features for testing. Applying all the features manually and 

going through the each test results is difficult to maintain. In 

order to reduce resource requirements for determining test 

failure signature, and to reduce the time to debug the failure, 

introduced the machine learning in current validation 

environment. The proposed validation algorithm in this paper, 

which is very useful in feature validation of server processer’s 

and is adaptive to the previous validation learning’s. 

Validation is mainly carried out for power management 

features provided by Advanced Configuration and Power 

Interface specification. The functional coverage implemented 

for important power management features namely processor 

power states, processor performance states and thermal states. 

This feature coverage analysis is provided through graphical 

plots. 
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1. INTRODUCTION 
Chips containing millions of transistors are the silicon brains 

inside the mobile, desktop and server platforms. Validation of 

these systems confirming that, those should be verified 

functionally before releasing into market. Now a days the 

research and development also focuses on ensuring the correct 

operation and functionality of systems despite of rising levels 

of the design complexity. So these efforts led to increasing the 

advances in the theory and practice of design and logic 

verification before and after manufacturing of digital systems 

over several decades [1-2]. Validation mainly contains two 

phases, one is pre-silicon and other is post silicon validation. 

Pre-silicon verification techniques are mainly simulation, 

emulation and formal verification tools are limited in scope 

and volume. The main drawback of pre-silicon verification is, 

the current pre-silicon verification technologies and tools are 

not sufficient for full system functional verification. So Post-

silicon validation is a necessary step in a full system 

functional validation process [3]. Pre-silicon verification 

models such as simulation and emulation are having excellent 

controllability, repeatability and observability and hence easy 

to debug. It is not sufficient to get more functional coverage 

of system. Post-silicon validation has insufficient 

controllability and observability due to limited access to 

internal signals and hence difficult to debug, but it gives 

system level functional coverage. 

Post silicon validation is not a new innovation or idea and it is 

being used in many industry system validation areas for many 

years. Post silicon validation is mainly focuses on detecting 

and fixing the functional bugs of systems after manufacture. 

Due to high design complexity it is impossible to detect all 

these functional bugs before manufacture, which are those 

escaped in pre-silicon verification [4]. Post silicon validation 

goes through four steps. The validation of server processor is 

carried for the power management features provided by 

advanced configuration and power interface (ACPI). 1. 

Initially detecting the problem by running the test suites 

containing combinations of these features, on server or system 

under test (SUT), for a long time until a system failure occurs. 

2. According to problem, need to localize the system failure to 

a small region of the system. 3. Have to identify the root cause 

of the problem. 5. According to the root cause, need to fix or 

bypass the problem through patching and circuit editing etc. 

[5]. 

Pseudo random multi master concurrency is the method used 

in post silicon server validation. A master is anything, which 

can have the capability to generate some form of system 

traffic. Typical masters are Central Processing Unit (CPU), a 

Peripheral Component Interconnect (PCI) device or a 

Universal Serial Bus (USB) device. These masters can 

interact with others through register and/or memory, write and 

read operations. In a computer system, there are infinite 

number of bus transactions and logic states. It’s an unsolvable 

problem to execute each and every transaction. In order to 

make the task more efficient, and to cover the validation space 

more, tests are generated randomly. This is not only random 

but it’s a pseudo random generation, which is to be needed in 

a situation to reproduce a particular failure again on demand. 

This is highly desirable in a debug situation, where a 

particular set of tests results in failure. If there are several 

masters, each of which can be programmed to generate 

pseudo random traffic on its respective interface, system 

stress is maximized by executing all of that traffic 
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simultaneously (concurrency). After maximizing the system 

stress, some functional bugs will come. These failures need to 

debug and fix them in subsequent product families. 

2. POWER MANAGEMENT FEATURES 
System power management is a global feature, which is built 

around a standard specification called advanced configuration 

and power interface specification (ACPI). The main purpose 

of system power management is to switch the systems into 

lower-power state when inactive. The main reasons behind to 

use power management in computing devices is to reduce 

overall power consumption, cooling requirements and to 

increase battery life and performance [6]. The power 

management of computing systems is done in two levels, one 

is in processor level and the other is in operating system (OS) 

level. In the OS level, when system is in hibernate mode it 

moves the contents of RAM into hard disk and completely 

switches off the system to save the power. In the processor 

level, CPU core voltage and clock rate are the two important 

parameters of processor are altered in real time to decrease the 

power consumption at the cost of lowering the performance. 

These two variations are called dynamic frequency and 

voltage scaling [7]. 

ACPI is an interface specification, which is comprised of both 

software and hardware elements. As ACPI document states 

that “The Advanced Configuration and Power Interface 

(ACPI) specification was developed to establish industry 

common interfaces enabling robust operating system (OS)-

directed motherboard device configuration and power 

management of both devices and entire systems”. This 

interface specification is suitable to all computing devices 

including mobile, desktop, workstation and server machines. 

ACPI includes global system states, device power states, 

processor performance states (pstates), processor power states 

(cstates) and thermal states [8]. 

Global system states:  

These states apply to the entire system and these are visible to 

the users. G0 is the working state, where the processor and all 

peripheral devices are in running state and consumes more 

power. G1 is the sleeping state where computer consumes less 

power and most of the system context is saved by the 

hardware and software. G2 is the soft off state where 

computer consumes minimal amount of power and no context 

is saved by the hardware. G3 is the mechanical off state where 

no electrical current passed through circuitry and power 

consumption is zero except for real time clock. OS restart is 

required for G2 and G3 states, not required for G0 and G1 [9]. 

Processor power states (Cxstates):  

These are the processor power consumption states within the 

global system state G0 (working state). When CPU is idle, it 

enters into one of the below power saving modes. C0 is the 

operating state of CPU, where it executes instructions. C1 is 

the halt state where it stops CPU main internal clocks by 

software and not executes any instructions. C1E is the 

enhanced halt state where in addition to stopping CPU clock 

and reduces CPU voltage for lower power consumption. C2 is 

the stop clock state, where it stops the CPU main internal and 

external clocks by hardware.C3 is the sleep state where in 

addition of stopping clocks and core PLL (phase locked 

loops), even core cache are flushed. C6 is a deep power down 

state, where core PLL are off, core cache is flushed and CPU 

voltage is reduced to 0v [10]. 

These core cstates are extending up to C10 in modern server 

processors. When all the cores are in a particular cstate, then it 

is called package cstate like PC3 (package C3 state) and PC6 

(package C6 state), are the examples of package cstates. So 

C0 to C6 are the processor power states, where each of these 

states consumes less power by cutting CPU clock and reduces 

the voltage [11]. 

Processor performance states (pstates):  

In the modern day servers the power consumption of intel 

processor is approximately 30 % of total power dissipation. In 

order to save power when system is in working state (G0), and 

the processor is in operating state (C0) intel develops a new 

technology called Enhanced speed step technology, also 

called as demand based switching or GV3(Geyserville) 

technology [12]. By using dynamic voltage and frequency 

scaling concepts operating system alters the voltage and 

frequency to trade-off the power and performance constraints. 

So operating system continuously monitor’s CPU utilization, 

it reduces the CPU speed when it is in idle state and 

increasing the speed whenever load increases. Processor 

performance states or pstates are a pre-defined set of voltage 

and frequency combinations at which a CPU can run for 

optimum power and performance. Pstates are in the order of 

P0, P1, P2 ….Pn. P0 is the highest frequency and consumes 

more power, Pn is the lowest frequency and consumes very 

less power. These frequency variations are altered by OS 

depends on work load by using model specific register’s 

(MSR). The register IA32_PERF_CTL is used for changing 

the frequency of CPU by writing a pstate value to the lower 

16bits of register. And to monitor the CPU frequency, OS 

reads the lower 16 bits of IA32_PERF_STATUS register. 

Table 1 is the example of how pstates combinations are looks 

like, for optimum power and performance levels. Where 

power dissipation is the product of squared voltage and 

frequency [13]. 

PαV2F  where P-power, V-voltage and F-frequency. 

Table 1. Pstate table. 

Processor 

pstate 
Voltage Frequency 

Power 

dissipated 

P0 1.5V 2.6GHz 86 watts 

P1 1.4V 2.3GHz 75 watts 

P2 1.3V 2.0GHz 68 watts 

P3 1.2V 1.7Ghz 54 watts 

P4 1.0V 1.5Ghz 45 watts 

 

Thermal states: 

Thermal states are defined as the different operating 

temperatures within the surrounding thermal zones of the 

system. Each system has one or more thermal zones. A 

thermal zone is the amount of space occupied by the 

temperature sensing device. In general for Intel processor’s 

there are two types of independent thermal sensor’s present in 

the entire system, one is the temperature sensor mainly used 

for thermal monitor and the other is on-die thermal diode for 
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the thermal management. These two are independent and 

isolated temperature sensors. The thermal diode is mainly 

monitor’s processor temperature, and help in asserting 

PROCHOT signal when processor reached its maximum 

operating temperature. Once PROCHOT signal is asserted 

thermal control circuit is enabled, which controls the CPU 

temperature by clock modulation. IA32_THERM_STATUS is 

the architectural MSR used for measuring the CPU 

temperature. If CPU temperature reaches the catastrophic 

point, the THERMTRIP signal is asserted and when 

THERMTRIP is active, the processor will catastrophically 

shut down [14-16]. 

3. CURRENT VALIDATION 

METHODOLOGY 
The current validation methodology is shown in Figure 1.  

Results
Apply 

Test

System Under 

Test(SUT)

Figure 1. Current validation methodology 

 Procedure is applying test case to server or SUT. 

 Get the results. 

 Manually verifying the results and test status pass or fail. 

 Have to identify the root cause of the issue.  

 Need to Fix or bypass the problem by patching and 

circuit editing etc. 

But in real time, the test is failed due to many variables. If the 

test is failed due to original functionality it is called actual 

failure. If the test is failed due to any other variables it is 

called false failure. In real time execution there are high 

number of tests are applied to SUT. Going through each & 

every failure is also difficult. So introduced the machine 

learning   in current validation methodology to simplify the 

validation & debug framework and to reduce man power and 

resource requirements. The validation environment that learns 

from the previous validation experience. 

Machine learning –is a concept in which it models a particular 

problem through the use of set of input and output data sets, 

instead of using the underlying actual system responses and 

equation’s etc, because in real time most of the real world 

problems knowing the system dynamic’s and building the 

ideal system model is not an easy task. In such cases machine 

learning techniques eases the modelling task [17-18]. In the 

current validation, input test cases and possible output results 

are known. In the next section it contains proposed validation 

framework, which is modelled using these input test cases and 

possible test results. And the algorithm is suitable for 

validation and reduce the time to triage and to debug the 

failures. The algorithm is adaptive to previous validation data 

of server processor’s. 

Many of the machine learning algorithms are inspired directly 

from the nature. Fuzzy logic uses the human vague thinking, 

Artificial neural networks uses the brains massive parallelism, 

Simulated Annealing uses the slow cooling process in 

metallurgy, Genetic algorithms adopted the survival of fittest 

concept etc. So machine learning algorithms are also known 

as soft computing methods [19]. 

Machine learning algorithms are classified into many forms 

based on how the algorithm treated the inputs. Those are 

supervised learning and unsupervised learning, etc. Nowadays 

machine learning algorithms are used in many areas like data 

mining, medical diagnosis, stock market analysis, OCR, 

computer vision, search engines [20]. The post silicon system 

validation field has been slower to adopt the modern machine 

learning techniques as compared to the degree seen in other 

fields. 

4. PROPOSED VALIDATION 

FRAMEWORK 
The current validation methodology has many drawbacks 

those are discussed in the last section. In order to simplify the 

debug and validation framework, the proposed validation 

framework introduced the machine learning in current 

validation. That means validation methodology learns from 

the previous validation learnings. The proposed validation 

framework is developed based on the Venn diagram described 

on figure 2. 

Universal test 

cases

A :learning set for 

known valid device.

B : new set of test 

cases to validate a 

future generation 

device.

Actual failure

False failure

PASS

(B)

Learning Set

(A)

FAIL

(B)

Figure 2. Test cases Organization 

The Venn diagram contains test cases organization. Universal 

test cases are the total tests independent of the system and 

result. In order to validate server processor power 

management features there needs to be more number of tests 

have to be applied. These large number of tests results in more 

failures due to some feature bugs, script failures, and false 

failures. In order to automate validation the above Venn 

diagram plays a crucial role.  

The validation of server processor is going through two 

phases. In the first phase need to prepare a learning set which 

is a set of test cases being passed from a known valid server 

processor (A) i.e that device was already validated. In the 

second phase validation of current or future generation server 

processor (B) is done through the use of previously generated 

learning set. Phase one is only for generating learning set, 

which is the initial requirement for the validation framework. 

The proposed validation framework defined in the second 

phase is used continuously for future generation server 

products. While validating this current or future generation 

server product need to update the learning set in parallel. This 

updated learning set is useful in validating the further future 

generation products. 
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4.1 Preparation of learning set for a known 

valid server processor (A) 
The block diagram for the learning set preparation is shown in 

Figure 3. 

Steps for preparing learning set: 

 Select a known valid server processor (A) or SUT, which 

was already validated. 

 Apply a test for specified duration, obtain the result and 

log the result. 

 Prepare the learning set depends on the result. 

 Learning set is a dictionary which contains pairs of tests 

and results. 

 If the test passes add it to the learning set. 

 If it fails, test is not a valid one because device (A) is 

valid. Apply another test. 

 Repeat the above procedure until all the test features are 

over. 

 

 

Known device(A)

Is result 

pass?

Test Result

Learning set

Change test

pass

     fail

 Figure 3. Learning set preparation for a known valid 

device (A) 

Test feature command line is pm_test_suit.py --

xmlFile=pm_test.xml --iteration=5 --time=6 --

test=@program_feature 

Pseudo code for developing learning set: 

for i=0 to M 

Feature (F) =L[i] 

Command line: [pm_test_suit.py -

xmlFile=pm_test.xml --iteration=5 --time=6 --   

test=@program_feature (F)] 

System (command line) 

If Result: Pass 

Learning set R {feature: [F, Result]} 

Else 

Continue  

Where L=list of features, R=learning set i.e. dictionary, 

F=feature to be tested, and pm_test.xml file contains program 

sections each section denotes what combination of features 

want to test.  

So by using the above procedure learning set for a known 

valid device (A) is prepared, which will be used in the second 

phase for validation of future server products. 

4.2 Proposed Algorithm for validating 

server processor or SUT 
Proposed framework for system validation is shown in Figure 

4. By the use of previously generated learning set for a known 

valid server (A), will validate future generation server 

processor (B). This proposed algorithm is mainly 

implemented from the Venn diagram shown in figure 2 which 

describes the test cases organization. Steps for system 

validation are 

SUT
Apply 

test
Result

Update 

learning set

Is result 

pass

If test is in 

learning set

If test is a 

new feature

pass

fail

Actual 

failure

yesno

Change 

test

yes

no

False failure

Debug 

and root 

cause

Work 

around it
 

Figure 4. Algorithm for validating server processor (B) or 

SUT and for updating learning set. 

 Select a future generation server processor (B) for 

validation. 

 Apply test to server processor (B) or SUT 

 If test is passed, then update it on the learning set 

 Else if it fails then check whether the test is in the 

learning set or not. 

 If the test is in the learning set, that means the failure is 

called “actual failure” 

 Else if it is not in the learning set, check for feature or 

functionality. 
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 If the test is a new feature then update it on the learning 

set, else if it is not a new feature then the failure is called 

“false failure”. 

 Actual failures need to debug and root cause the problem 

 If the root cause of the problem is identified, work 

around for the problem and fix it 

 False failures are not a valid failures. Those failures can 

leave and rerun the test with necessary steps. 

 Repeat the above process until all the test features are 

over. 

Figure 5 contains the pseudo code for proposed validation 

algorithm.  Where command line for feature execution is 

[pm_test_suit.py --    xmlFile=pm_test.xml --iteration=5 --

time=6 --test=@program_feature (F)] Where L=list of 

features, R=learning set i.e. dictionary, F=feature to be tested, 

and pm_test.xml file contains program sections each section 

denotes what combination of features want to test.  

Pseudo code for proposed algorithm: 

For i=0 to m 

          Feature (F) =L[i] 

              Command line: 

          System (command line) 

          If Result: Pass 

                   Learning set R {feature: [F, Result]} 

          Else if feature (F) not in the learning set R: 

                   Learning set R {feature: F} 

          Else if feature (F) in learning set R: 

                    #actual failure section 

                   Case A: functional failure 

                                Feature (F) Actual failure 

                                Debug ( ); //manual debugging 

                                Break; 

                  #false failure section 

                   Case B: false failure variables //Refer Table 2 

                              Feature (F) False failure 

                              Continue; 

 

Figure 5. Pseudo code for proposed validation algorithm 

The above algorithm each time it updates new input data 

features and their corresponding results. And also it gives 

failure signature and whether it is an actual failure or false 

failure. While validating this server product (B), updated the 

learning set. So updated learning set is useful for validation of 

future server products. So each time, validation framework do 

the validation through the use of previous validation 

learnings.  

5. RESULTS AND DISCUSSIONS 
By using the above proposed validation framework did the 

validation of server processor mainly for power management 

features of ACPI. Those features include processor power 

states (cstates), processor performance states (pstates), device 

power states, link states and thermal states are explained in 

power management features section. These features are global 

features and there are many other features in component level 

are validated by using the above validation framework.  

Example features of power management are shown in below. 

Figures 6-9 shows pstates (processor performance states) 

feature. Pstates feature nothing but running the CPU with 

different pstates (or frequencies) to reduce power 

consumption. By continuously writing the random pstates to 

the IA32_PERF_CTL MSR fields, the CPU will run with 

corresponding frequencies specified by the datasheet. The 

Intel’s CPU core frequency is measured by using 

IA32_PERF_STATUS architectural model specific register 

(MSR) fields. Figures 6-9, these all plots are CPU frequency 

plots measured when testing pstates feature on a Xeon-D 

server system having 8 cores i.e. 16 CPU’s (each core having 

two threads). On all 16 CPU’s frequencies are measured. Four 

of the frequency plots shown in figure 6-9. These plots covers 

the pstates coverage and help in showing the pstate 

transitions. This coverage plots help in debugging the 

functional failures.  

Table 2 is the pstate table for Xeon-D server system. Where 

[P0-P1] Turbo frequency range-[2600-2000] and [P1-Pn] 

Non Turbo frequency range-[2000-800]. In all the four 

frequency plots processor transition between turbo frequency 

clips as well as non-turbo frequency range for optimum power 

and performance levels [21].  

In all the frequency plots (Figure 6-9) 

Range 1Turbo frequency clips [2600-2000] 

Range 2 Non-turbo frequency range [2000-800]. 

These transitions indicate pstates feature is functionally 

covered. 

Table 2. Xeon D Processor Pstate table 

Processor Pstate Frequency (MHz) 

P0 2600 

P1 2000 

P2 1900 

P3 1800 

P4 1700 

Pk ….. 

Pm ….. 

Pn 800 

 

 

Figure 6. CPU 0 instantaneous frequency 
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Figure 7. CPU 1 instantaneous frequency 

 

Figure 8. CPU 2 instantaneous frequency 

Figure 9. CPU 3 instantaneous frequency 

 

Figure 10. Thermal states feature 

Similarly thermal states means different operating 

environment temperatures near the CPU. The CPU 

temperature is measured using 

IA32_PACKAGE_THERM_STATUS architectural MSR 

fields. When running some CPU load, the CPU temperature 

variation is shown in Figure 10. The CPU temperature 

variation with respect to frequency when running load on 

CPU is shown in Figure 11. In region 1: Running load on 

CPUmaximum frequencytemperature increases. In region 

2: No load on CPUfrequency fluctuationtemperature 

decreases to room temperature. But both plots (Figure 10-11) 

will tell us how thermal management works on Intel server 

platforms. These plots provide thermal states or Tstates 

coverage.
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Region 2 Region 1 Region 2

temperaturefrequency  

Figure 11. CPU temperature vs frequency 

 

Figure 12. CPU Package Cxstates 

One more example feature called CPU Cxstates (processor 

power states). To test this feature, need to vary the cstates 

continuously from C0 state to C6 state. Figure 12 describes 

the amount of time that CPU spend in that package cstate 

when varying cstates feature. To calculate the percent of time 

in CX state= MSR_PKG__CX_Residency/TSC. Where TSC 

is Time Stamp counter MSR (0x10H) and 

MSR_PKG_CX_RESIDENCY is a MSR which gives 

residence counter of CX states since last reset of CPU. 

For example to Calculate the percent of time in PC6: 

%PC6_time = MSR_PKG_C6_RESIDENCY /TSC. 

The graph (Figure 12) plotted for 9 sample instants with 

sampling time of 10 seconds. So in each 10 second duration 

calculated the amount of time that CPU spend in that Cstate. 

This data will clearly tell us CPU will take more time to enter 

and exiting the PC6 state and will take less time to enter and 

exiting of PC2 state. This will help in whether PC6, PC3 and 

PC2 are happening or not. This will cover processor power 

states (cstates) coverage. These features are tested by using 

randomization and multithreading algorithms. After running 

those random features and combination of features in parallel, 

test failures are categorized as actual and false failures. Those 

failures and their failure signatures are shown in Table 3 and 

Table 4. 
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Table 3. Some tested features and their corresponding 

“Actual Failure” signatures 

Test feature Failure signature 

Core Cstate test Cstates are not happening 

Pstate test 
Requested frequency ratios are not 

achieved 

Temperature 

test 
CPU temperature is not changing 

Link states test Link is busy 

GV Test Not able to achieve the ratio 

Turbo test Turbo frequency not achieved 

Core C and P 

states test 

Package cstate (PC-6) is not 

happening 

Device state test 
Not able to attend the device state, 

as device is busy 

Hardware 

power management 

Hardware is not able to do power 

management 

 

Table 4. Some false failure signatures 

False failure signature’s 

Not a new feature of ACPI 

CPU is locked 

Insufficient memory 

Wrong command line was picked up 

 

Actual failures are mainly due to functional failures. 

Functional failures may be because of script failures, silicon 

bugs or software bugs. These functional failures need to 

debug and root cause the problem. Fixing the issue is final 

step in validation. False failures are due to so many variables, 

these failures are any failures other than actual failures. The 

algorithm is adaptive to the previous validation learnings. 

Each time if a future generation server processor is needs to 

validate, learning set plays a crucial role, then 

correspondingly the algorithm is suitable for validation, to 

triage the failures and reduce the time to debug. 

6. CONCLUSIONS 
So this paper contains validation framework that is suitable 

for post silicon server validation, and also validation is mainly 

carried out for power management features provided by 

Advanced Configuration and Power Interface specification 

(ACPI). Proposed and implemented the feature functional 

coverage for important power management features. Feature 

functional coverage is mainly implemented for processor 

power states (package cstates), processor performance states 

(pstates) and thermal states. The algorithms for functional 

coverage implementation is provided. Feature functional 

coverage analysis is provided through graphical plots. These 

plots will clearly explain whether these features are 

functionally covered or not. These functional coverage plots 

are taken when testing the features in real time execution 

environment.  
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