

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.6, April 2015 – www.ijais.org

1

LR Rotation Rule for Creating Minimal NFA

Himanshu Pandey
M.Tech

Department of Computer
Science, BBD University,

Lucknow, India.

V. K Singh, Ph.D.
HOD

 Department of Information
Technology, BBDNITM,

Lucknow, India.

 Neeraj Kumar Verma
Department of Computer

Science, SVNIET,
Lucknow, India.

ABSTRACT
The problem of creating a minimal NFA is a primal

(fundamental) problem. Reducing the size of NFA by using

LR rotation rule has been shown to reduce importantly the

search time. In [1] Ilie and Yu describe a construction of a

right invariant equivalence relation on the states of a non-

deterministic finite state automaton. We give a more efficient

LR Rotation rule for constructing the minimal NFA. In this

paper we represent new LR Rotation rule for the state

minimization of NFA. The description of the proposed

methods is given and we also shown the results of the

numerical experiments.

We conceive the problem of reducing the number of state and

transition of Non Deterministic Finite Automata. Numerical

experiments show that NFA reduction algorithm produces a

minimal automation in all most cases. NFA reduction

algorithm also reduces the complexity of Kameda-Weiner

algorithm. We have shown empirically that these algorithms

are effective in largely reducing the memory requirement of

NFA minimization algorithm and algorithm minimization of

the number of rules for NFA grows each year.

Keywords
NFA, Algorithm

1. INTRODUCTION
A refined phenomenon offer rules to efficiently solve typical

problems by mapping them to regular expression, then getting

NFA that recognize them and finally constructing

Deterministic Finite Automata. LR Rotation Rule exploits

unique features of the minimized NFA to achieve high

throughput. By merging states many complex problem has

been efficiently solved. A more challenging alternative is

directly minimizing the NFA before changing it into a DFA.

This has the advantage of working over a much smaller

structure (of size polynomial in the length of the regular

expression) and of building the smaller DFA without the need

to go through a larger one first. However, the NFA state

minimization problem is hard. In this paper, we inquire

pertinence a formal LR Rotation rule to reduce the number of

states and transitions in NFA. The paper presents a LR

Rotation rule, with a different reduction power and time

complexity. The idea of reducing the size of NFAs by

merging states was first introduced by Ilie and Yu [12] who

used left and right equivalence relations. Later, Champarnaud

and Coulon [2] modified the idea to work for preorders. An

algorithm to compute the equivalences in O(m log n) time on

an NFA with n states and m transitions and an O(mn)

algorithm. Our focus and main contribution is a study of LR

rotation techniques for creating minimal NFA. In particular,

the state minimization of deterministic finite automata (DFAs)

is well-known but the state minimization of nondeterministic

finite automata (NFAs) is more complicated. Finite automata

(FA) are widely used in various fields and peculiarly

reorganization of formal Languages. We provide some

necessary definitions.

A nondeterministic finite automaton (or NFA) can be formally

defined as a 5-tuple (Q,,, T, qD , F) Where,

-Q is a finite set of states.

- is the alphabet (defining what set of input strings the

automaton operates on).

-T: Q( U )  Q is the transition function.

    kqqqxq ,,,, 21  .

(Resulting states with following one transition with symbol x)

-qD  Q is the starting state.

-F Q is a set of final (or accepting states).

Finite automata may be used to recognize and define the

regular languages. Two automata are called equivalent if they

recognize one and the same language. For each NFA the

equivalent DFA may be constructed using the powerset

construction process (each state of such DFA is a subset of

states of the original NFA).

NFAs represent regular languages, and can be used to test

whether any string is in the language it represents.

The above mentioned algorithms identify sets of states that

could be merged without modifying the language accepted by

the automaton. The number of states of the resulting NFA

depends on the order in which the states are merged.

Randomly choosing the order in which these mergings take

place, as used so far, does not guarantee that the smallest

NFAs that can be built with these techniques are produced.

In this paper we investigate optimal ways to use the

information in equivalences and preorders to reduce NFAs.

We first give an efficient algorithm for optimally combining

the left and right equivalences for achieving the maximum

reduction in the size of an NFA. We show that the same

problem for preorders, however, is NP-hard. Since,

potentially, preorders could produce a better reduction, a

number of open problems remain, such as looking for

alternative ways, e.g., approximation algorithms, to reduce

NFAs using preorders.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.6, April 2015 – www.ijais.org

2

2. RELATED WORK
The paper by Michael Albert and Steve Linton [6] on “A

Practical Algorithm for Reducing Non-Deterministic

Finite State Automata” give a more efficient algorithm for

constructing the same equivalence, together with results from

a computer implementation”. We are inspired by the work of

Guangming Xing [1], highlights that no auxiliary states can be

eliminated without violating the defining properties of

Thompson NFA in his paper “Minimized Thompson NFA”.

In this paper ‘Reducing the Size of NFAs by Using

Equivalences and Preorders’ Lucian lie, Roberto Solis-Oba,

Sheng yu clubbed the concept of Equivalences and Preorders

for minimization of NFA. Hermann Gruber and Markus

Holzer [8] proposed the investigation of computational

complexity of the nondeterministic finite automaton (NFA)

minimization problem for finite and unary regular languages;

they show this on his paper “Computational Complexity of

NFA Minimization for Finite and Unary Languages”. The

paper ‘Local Search Heuristics for NFA State Minimization

Problem* by Andrey V. Tsyganov [9] introduce new heuristic

methods for the state minimization of nondeterministic finite

automata. These methods are based on the classical Kameda-

Weiner algorithm joined with local search heuristics. We have

used this concept for minimization of NFA. The concept of

using Hash Table for minimization of DFA is very useful

concept for creating a minimal DFA. This concept is given by

Vishal Garg, Anu in 2013. Yi Liu, Taghi M. Khoshgoftaar

[12] in DFA Minimizing State Machines Using Hash- Tables.

Henrik Bj orklunda, Wim Martens [13] have shown that no

such significant extensions exist, under the assumption that

PTIME 6= NP. and also proved that minimization is NP-hard

for all finite automata classes that contain the NFAs that

accept strings of length three. In this paper ‘NFA Reduction

for Regular Expressions Matching Using FPGA’ Vlastimil

Koˇsaˇr, Martin ˇZ ´adn´ık, Jan Koˇrenek [11] proposed to

accelerate regular expression matching via mapping of a

nondeterministic finite automaton into a circuit implemented

in an FPGA. These algorithms exploit unique features of the

FPGA to achieve high throughput. Paper by Manuel Vázquez

de Parga, Pedro García, Damián López [14] proposed a

polynomial-time deterministic finite automaton minimization

algorithm directly derived from Brzozowski’s double reversal

algorithm. We take into account the framework by

Brzozowski and Tamm, to propose an atomization algorithm

that allows us to achieve polynomial time complexity. We are

inspired by the work of Jean Vuillemin, Nicolas Gamaon

present a cubic time algorithm to reduce a xor-automaton A 2

NXA to a minimal form M = MXA(A) which accepts ¤©(M)

= ¤©(A), within the least possible number of states. It is a

finite strong normal form SNF: ¤© (A) = ¤© (A0), MXA (A)

= MXA (A0) and automata equivalence is efficiently decided

through reduction to the SNF. Wojciech Wieczorek clubbed a

Supercomputers with NFA, treated the induction of NFAs

based on finite languages. That is constituted by the following

task: given two disjoint finite sets S+; S of words and an

integer k > 0, build a k-state NFA that accepts the language

S+ and does not accept any word from the set S�. We are

inspired by the work of C. Hsiang Chan, R. Paigeb [10]

overcome drawbacks of both methods with a O(r) time O(s)

space algorithm to construct an O(s) space representation of

McNaughton and Yamada’s NFA. Given any set V of NFA

states, our representation can be used to compute the set U of

states one transition away from the states in V in optimal time

0(1 V I+ 1 U I). McNaughton and Yamada’s NFA requires O

(1 VI x I UI) time in the worst case.

3. OUR ALGORITHM
By the help of L-R Rule we have to minimize the non

Deterministic finite automata. If we have a NFA with

following condition:

‘p’ and ‘q’ are two states of any NFA. Such that p, q Є Q

(non empty finite set of states).

There must be no edges between two adjacent (p, q) states.

For that type of condition we will use L-R rule for creating

minimal NFA.

LR rule is based on merging two states ‘p’ and ‘q’ (having no

edges between them) on the basis of following rule.

LR (p) ⊆ LR (q) or LR (q) ⊆ LR (p)

L (p, p) and L (q, q) = Ǿ or same string

 p and q can be merged.

LL (p) ⊆ LL (q) or LL (q) ⊆ LL (p),

L (p, p) and L (q, q) = Ǿ or same string

 p and q can be merged.

LR (p) ⊄ LR (q) and LL (q) ⊄ LL (p)

L (p, p) and L (q, q) ≠ Ǿ or same string

p and q can be merged.

LR= right side input of incoming or outgoing transition of any

state.

LL= left side input of incoming or outgoing transition of any

state.

We can merge two states p and q as soon as any of the above

condition is met.

If any one of these conditions will applicable on any given

NFA, states (p, q) can be merged but there must be no edge

between ‘p’ and ‘q’.

 (1). for condition 1, find the right side input of incoming or

outgoing transition of state ‘p’ and ‘q’ and then check for-

LR (p) ⊆ LR (q) or LR (q) ⊆ LR (p)

If these condition exist in given NFA, then

Check for, L (p, p) and L (q, q) = Ǿ or

 L (p, p) and L (q, q) = {string}

If condition 1 satisfied then ‘p’ and ‘q’ can be merged for

given NFA.

If condition 1 will not satisfy, we will check condition 2.

For condition 2, find the left side input of incoming or

outgoing transition of state of ‘p’ and ‘q’ and check for-

LL (p) ⊆ LL (q) or LL (q) ⊆ LL (p), if its exist, then

Check for, L (p, p) and L (q, q) = Ǿ or

 L (p, p) and L (q, q) = {string}

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.6, April 2015 – www.ijais.org

3

If condition 2 is satisfied then ‘p’ and ‘q’ can be merged.

If condition 2 is not satisfied, check for condition 3.

For condition 3, find both right and left side input of incoming

or outgoing transition of state ‘p’ and ‘q’ and then check for-

LR (p) ⊄ LR (q) and LL (q) ⊄ LL (p), if its exist then check for,

L (p, p) and L (q, q) ≠ Ǿ or

L (p, p) and L (q, q) = {string}

If condition 3 is satisfied then ‘p’ and ‘q’ can be merged.

 a c

 A d D

 a e

 b C

 f

 a

Figure 1: Transition Graph of NFA

Reduction of given NFA using LR rule-

By LR rule, we try to reduce NFA by merging the states. In

this rule we have taken two states that do not have any edge

between them.

In given NFA ‘B’ and ‘C’ are two states which have not

consist any edge between them. Now we will check all the

condition for the states B and C,

Condition1: Firstly we will find the right side input of

incoming or outgoing transition of state ‘ B’ and ’C’ as LR

(B) and LR (C).

LR (B) ={c} and LR (C) = {e}

But, LR (B) ⊊ LR (c)

 {c} ⊊ {e}

Condition is not satisfied so state B and C cannot be merged.

Now we will go for condition 2.

Condition 2: In this condition we will find the left side input

of incoming or outgoing transition of state of ‘B’ and ‘C’ as

LL (B) and LL (C).

LL (B) = {a}

LL (C) = {a}

Check for LL (p) ⊆ LL (q)

 LL (B) ⊆ LL (C)

 {a} ⊆ {a}

, condition exists then. Check for L (B, B) and L(C, C) =Ǿ

There is no self loop on the state B and C.

Condition satisfied. So ‘B’ and ’C’ can be merged. We need

not to verify condition 3.

 a c

 a f d e

 b

 a

Figure 2: Reduced NFA having merge states B and C

In above transition graph of NFA states B and C have been

merged.

In the following transition graph there are two transitions (c.

e) between the states D and (B, C). By using LR rule of state

transition, we can merge the both transition in single one.

 a

 c, e

 b a f, d

 a

Figure 3: Reduced NFA having merged transition c and e

In the given NFA, there are another two states (D and E)

having no edge between them. In States ‘D’ and ‘E’ has only

left side input of incoming or outgoing transition. So

condition one cannot be applied.

Check for condition 2.

Condition 2: left side input of state ‘D’ and ‘E’ will be,

LL (D) = {c, e}, LL (E) = {f, d}

Check for condition-

LL (p) ⊆ LL (q)

LL (D) ⊄ LL (E) {D is not subset of E}

{c, e} ⊄ {f, d} so condition is not satisfied.

Check for condition 3.

Condition 3: Left and right side input of state ‘D’ and ‘E’

LL (D) = {c, e} LL (E) = {d, f}

Right side input is not available for the state D and E. so,

 LL (D) ⊄ LL (E)

Now, check for L (D, D) and L (E, E) =Ǿ

There is no self loop on state D and E

So ‘D’ and ‘E’ cannot be merged.

 B

 F E

F
E

B,C

D
A

E
F

B,C

D

 A A

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.6, April 2015 – www.ijais.org

4

4. CONCLUSION
In the present paper we have represent the LR Rotation rule

for NFA state minimization problem which is known to be

computationally hard. We wish to point out that our algorithm

for computing the reduced NFA only finds the best way of

merging states with respect to the LR Rotation rule. It is

possible to reduce the size of an NFA by first merging some

equivalent states. That type of algorithm is widely used in

combinatorial optimization. The essential feature of the

proposed algorithm is that the most time consuming part of

the exact algorithm is replaced with LR Rotation rule.

Numerical experiments have shown that such type of concept

is much less time consuming and allows obtaining acceptable

results. In the future we plan to concentrate on the other time

consuming part of preorder concept. Therefore, reductions

with LR Rotation Rule, potentially more powerful than those

with equivalences, might be too expensive to compute. This

opens a new research topic: designing efficient approximation

algorithms for using LR Rotation Rule in reducing NFAs, and

testing their performance in practice.

5. REFERENCES
[1] L. llie, Roberto Solis-Oba, Sheng yu: 2005,“Reducing

the Size of NFAs by Using Equivalences and

Preorders”, Lecture Notes in Computer Science, Volume

3537, 2005, pp 310-321 in Springer.

[2] M. Albert and Steve Linton: July 2014, “A Practical

Algorithm for Reducing Non-Deterministic Finite

State Automata”, Elsevier Science.

[3] A V. Tsyganov: September 2012, “Local Search

Heuristics for NFA State Minimization Problem”, Int. J.

Communications, Network and System Sciences, 2012, 5,

638-643.

[4] H. Gruber and M. Holzer: “Computational Complexity of

NFA Minimization for Finite and Unary

Languages”,Institut f¨ur Informatik, Ludwig-

Maximilians-Universit¨at M¨unchen, Oettingenstraße 67,

D-80538 M¨unchen, Germany.

[5] H. Bj¨orklunda, Wim Martens: April 2011, “The

Tractability Frontier for NFA Minimization”,

International Colloquium on Automata, Languages and

Programming 2008.

[6] Y. Zhou Yuliu Chen, “The QFD-based Decision-making

Approach for Strategic BPR” Beijing 100084, P. R.

China.

[7] G. Xing, August 20-22, 2007 “Minimized Thompson

NFA”, Western Kentucky University, Bowling Green,

KY 42101.

[8] V. Garg, Anu: June 2013, “DFA Minimizing State

Machines Using Hash- Tables”, International Journal of

Engineering Trends and Technology (IJETT) - Volume4

Issue6- June 2013.

[9] V. Koˇsaˇr, Martin ˇZ ´adn´ık, Jan Koˇrenek, 2007 “NFA

Reduction for Regular Expressions Matching Using

FPGA”, MSM 0021630528, the IT4Innovations Centre

of Excellence CZ.1.05/1.1.00/02.0070 and the grant BUT

FIT-S-11-1.

[10] M. Vázquez de Parga, P. García, Damián López, 2013

“A polynomial double reversal minimization algorithm

for deterministic finite automata”, Theoretical Computer

Science 487 (2013) 17–22.

[11] J. Vuillemin, N. Gama: Dec 2009, “Efficient Equivalence

and Minimization for Non Deterministic Xor Automata”,

[Research Report] 2010, pp.25. <Inria-00487031>.

[12] W. Wieczorek: 2012, “Induction of Non-Deterministic

Finite Automata on Supercomputers”, JMLR: Workshop

and Conference Proceedings 21:237{242, 2012. The 11th

ICGI.

[13] M. Mohri, F. Pereira and M. Riley, “AT&T General-

Purpose Finite-State Machine Software Tools,” 1997.

http://www.research.att.com/sw/tools/fsm

[14] S. Lombardy, R. Poss, Y. Régis-Gianas and J. Sa-

karovitch, “Introducing VAUCANSON,” In: O. H. Ibarra

and Z. Dang, Eds., Implementation and Application of

Automata, CIAA 2003, Santa Barbara, 16-18 July 2003,

pp. 96-107.

[15] S. H. Rodger, “JFLAP: An Interactive Formal Languages

and Automata Package,” Jones and Bartlett Publishers,

Inc., USA, 2006.

[16] T. Kameda and P. Weiner, “On the State Minimization of

Nondeterministic Finite Automata,” IEEE Transactions

on Computers, Vol. C-19, No. 7, 1970, pp. 617-627.

doi:10.1109/T-C.1970.222994

[17] J. Hromkovic, “Algorithmics for Hard Problems—Intro-

duction to Combinatorial Optimization, Randomization,

Approximation, and Heuristics,” Springer, Berlin, 2001.

[18] F. Glover and G. A. Kohenberger, “Handbook of Meta-

heuristics,” Kluwer Academic Publishers, Boston, 2003.

[19] V. Kell, A. Maier, A. Potthoff, W. Thomas and U. Wer-

muth, “AMORE: A System for Computing Automata,

Monoids and Regular Expressions,” Proceedings of the

6th Annual Symposium on Theoretical Aspects of Com-

puter Science on STACS 89, Springer-Verlag, New

York,

http://link.springer.com/bookseries/558

