

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

36

Plagiarism Index Estimation Algorithm: A Quantitative

Approach

Monday O. Eze
Department of Computer Science/Maths/Informatics

Federal Univ. Ndufu-Alike, Ikwo (FUNAI), Ebonyi
State, Nigeria

Shakeel A. Kamboh
Dept. of Maths & Statistics

Quaid-e-Awam University of Engineering, Science
and Technology, Pakistan

ABSTRACT

Plagiarism has remained a serious setback especially in the

academia. It is a major source of intellectual theft since it

gives credits for scientific innovations to those who do not

merit them. A number of efforts have been made by

researchers to tackle plagiarism. However, one perceived

research gap is the need to evolve verifiable computational

techniques for detecting and quantifying the degree of

plagiarism in digitized documents. This current research

tackles this problem through a specialized plagiarism

detection and quantification algorithm. It begins with a bi-

partitioned search operation known as F-Search. This is

followed by a purge operation which excludes the plagiarized

sections discovered during the initial pass, thus giving rise to

a fresh search space. The resulting search space is passed

through a more thorough search operation known as T-Search.

At this stage, the algorithm deals with specific plagiarism

hiding tricks termed as whitespace flooding. The final output

is a statistic known as the Plagiarism Index, which is a

numeric value in the range [0, 1] for estimating the degree of

plagiarism. The scope of this research covers the text domain.

Each experimental dataset is made up of a set of two

documents designed in such a way that one is assumed as the

original document, while the second as a plagiarized copy.

The system is designed and implemented in MATLAB.

General Terms

Pattern Recognition, Search Algorithms, String Manipulation,

System Workflow, Software Implementation.

Keywords

Plagiarism Index, Cell Array, Plagiarism Quantification, Bi-

Partition.

1. INTRODUCTION
The term plagiarism refers to the act of reproducing other

people’s intellectual work, without appropriate citations. In

other words, plagiarism is a form of intellectual crime [1],

through which people steal or withhold the credit, which

ought to have gone to the actual owner(s) of an intellectual

work [2]. The Cambridge Advanced Learners Dictionary [3]

defines plagiarism as the use of other persons’ idea or part of

their work, while pretending that it is one’s own. Because of

the importance of plagiarism to the academia and the

productive society at large, a lot of research interests have

been devoted to plagiarism detection in the recent time [4].

Unfortunately, manual plagiarism detection has been

described as very difficult and time consuming [5], thus the

need to develop appropriate computational techniques to deal

with the anomaly.

Studies on plagiarism in schools [6] have revealed two

important categories of students’ plagiarism. The first one is

known as deliberate plagiarism, where someone is very much

aware of the meaning and implications of plagiarism, but

decided to indulge in it. The second one is known as

accidental plagiarism [7], where people are ignorant of the

fact that they were committing the act. Thus there is an urgent

need to educate the researchers on how to avoid accidental

plagiarism. It has been widely suggested that the advent of

Internet has fueled widespread occurrences of plagiarism.

Some of the authors that share this view are [8], [9] and [10].

Thus, cyber-plagiarism [11] refers to the practice of cutting

and pasting information from the Internet into a formal

writing without appropriate citations. The aim of this research

is to develop a computational strategy for detecting and

quantifying the degree of plagiarism in the text domain. A

new statistic known as Plagiarism Index is used to achieve

this objective. Some of the related works, the proposed

algorithm and the experimental results will be presented in

further details.

2. RELATED RESEARCH
A survey on plagiarism detection [12] outlined the application

of attribute counting techniques based on average line length,

file size, and average number of commas per line to derive file

fingerprints. The resulting fingerprint is then used to estimate

the degree of plagiarism. However, [13] has described this

method as unreliable. A broad-based introduction to

plagiarism detection, and its application, especially in the field

of online journalism has been done by [14]. The research

classified plagiarism detection into five categories namely

external, intrinsic, cross-lingual, near-duplicate and partial-

duplicate plagiarism detection. The earlier works such as [15]

and [16] were cited as building blocks to this classification

system. A natural language processing-based plagiarism

detection technique using set theory has been proposed by

[17]. It involves a series of steps, such as tokenization, string

normalization and chunking. One of the weaknesses of this

algorithm is that it fails considerably when the input

documents contain texts in more than one language. Source

code plagiarism detection [18] is an evolving application area

aimed at preventing incidences of software theft at the coding

level. A research in this regard by [19] attempts to detect

source code plagiarism using an information retrieval

technique known as latent semantic analysis by deriving

semantic information from source-code files. The application

of plagiarism detection as a fundamental part of conference

paper review has been proposed by [20]. The work focused on

the use of similarity algorithms such as Cosine, Manhattan

and Euclidian techniques to search for evidences of

plagiarism. The major challenge with this method is that it is

characterized by serious tradeoffs between system accuracy

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

37

and performance. A comparative research [21] has applied

practical tests on four variants of a plagiarism detection

technique known as chunking. The aim was to scientifically

determine the application areas that best fits each of these

variants. It was reported that the first variant is best suited for

database plagiarism solutions, and the second for quoted texts

plagiarism solutions. Furthermore, the third variant which is

known as hashed breakpoint chunking is best suited for large

set of documents, while the fourth is said be the most

appropriate when high degree of reliability is of utmost

priority. Apart from several English Language-based

implementations, researchers have also attempted to build

plagiarism detectors in a number of other languages. For

instance, the Hangul Plagiarism Detection System (HPDS)

detects plagiarism in the Korean Language [22], while the

APlag System [23] detects plagiarism in Arabic documents.

Plagiarism detection has also been attempted in multi-media.

For instance, a typical research on plagiarism detection in

music is the work done by [24]. Based on an extensive

literature review, there are a number of issues that impede

plagiarism solutions. As corroborated by [25], [26] & [27],

three of such thorny issues are plagiarism detection,

plagiarism quantification and multi-lingual plagiarism. The

aim of the current research is to tackle the problem of

plagiarism detection and quantification. The proposed

algorithm attempts to detect cases of copying lines of a given

document into another one without appropriate citations. It

also detects cases of attempts to fool the plagiarism detector

through the use of whitespaces, a technique which has been

termed in this research as whitespace flooding. A major

outcome of this research is its ability to estimate the degree of

plagiarism using a numeric statistic termed as plagiarism

index.

3. THE PROPOSED ALGORITHM
The aim of this section is to present the methodology of the

current research. Fig. 1F is the workflow of the proposed

plagiarism detection and quantification algorithm. It is made

up of five compartments namely the Input, F-Search, Bi-

Partition, T-Search, and the Index Quantifier. As shown in the

workflow, the Input compartment accepts the two input

documents represented with generic names Doc1 and Doc2.

During the actual implementation, a standard nomenclature is

adopted for these inputs. The aim of the algorithm is to

computationally detect the existence of plagiarism between

the input datasets, and to quantify the level of plagiarism

involved. The F-Search engine performs a first level

plagiarism search while the T-Search engine does a second

level search. The letter ‘T’ stands for ‘thorough’. Thus at the

T-Search stage, the system performs a more thorough

plagiarism search on the suspected search space. As shown in

the workflow, the formation of the ‘VAB’ and ‘SUS’

partitions precedes the T-Search operation. The VAB-

Partition represents the search space confirmed to be 100%

plagiarized, line by line. The prefix ‘VAB’ therefore stands

for ‘verbatim’. In other words, this partition contains the area

of the original document computationally confirmed to have

been copied (plagiarized) verbatim into the second document.

The SUS-Partition on the other hand, is the suspected

partition. The prefix ‘SUS’ therefore stands for ‘suspect’. It is

made up the content of Doc 1 which is suspected to have been

plagiarized into Doc2, but requires further proof or

confirmation. It is the SUS-Partition that is usually passed

through a thorough search. Finally, the results of the two

search operations are combined to obtain the cumulative

plagiarism index. This is done at the plagiarism index

quantification stage.

4. SYSTEM IMPLEMENTATION
The system workflow in Fig. 1F was implemented using a

number of steps as will be outlined in this section. Fig. 2F is

the component diagram for the program modules. MATLAB

was used for system implementation, thus, each module ends

with the file extension ‘m’. The data modules are listed in Fig.

3F. As shown in the diagram, the implementation data can be

classified into three - the text files (with extension txt), the

program output file (with extension out) and the

implementation tables (with no extension). These will be

explained in more details.

Fig. 1F: Plagiarism Detection & Quantification Algorithm

F-Search

T-Search

Index

Quantifier

 Input

Doc 1

Doc2

 Bi-Partition

VAB-Partition

SUS-Partition

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

38

4.1 The Pre-Processing Operation
The preparation of the dataset involves the extraction of the

input documents to be passed through the plagiarism detection

and quantification system. Though the system can analyze as

many files as possible, it however accepts only two at a given

time. The input files are in text format with standard names

Origf.txt and Plagf.txt for Doc1 and Doc2 respectively. The

choice of the standard nomenclature stems from the fact that

the first file is assumed as the original while the second as the

plagiarized copy. The aim of the current system is to

computationally analyze the two files and search for traces of

plagiarism. The input files are placed in the same directory of

the computer system housing the executable program. The

program module implemented to handle preprocessing is

known as preprocess.m. It takes the two input files, and gives

the output known as ‘Twopartif.out’. The sample of this

output file resulting from the experimental run is shown in

Fig. 4F

4.2 The F-Search Operation
As the name suggests, this is the first level plagiarism search

section of the system. As shown in the main workflow, it

follows the data acquisition stage. The F-Search is

implemented using the PlagSearch1.m program module,

which was designed using the flowcharts in Fig. 11F and Fig.

12F in Appendix A. The following set of transformation

equations summarizes one of significant steps in the search

operation,

where the symbol ‘ .’ represents a line by line data

extraction of the right hand side (RHS) file to populate the left

hand side (LHS) table.

The six output tables shown in the data module diagram in

Fig. 3F are cell arrays. A cell array is an array of diverse data

structures. The choice of cell arrays in the system

implementation is based on the fact that they support fast.

string search operations, thus making them appropriate for

plagiarism search. The program module popabtab.m populates

the system tables aatab and bbtab with the contents of the two

input files, while the program module popggtab.m populates

the global table ggtab with the content of the partition file

shown in Fig.4F.

Fig. 2F: System Program Modules Diagram.

Fig. 3F: System Data Modules Diagram.

PreProcess.m Popggtab.m

Popabtab.m

PlagSearch1.m

SysPurge.m
PlagSearch2.m

PlagIndexCalc.m

System
Modules

Origf.txt

Plagf.txt

aatab

Twopartif.out

aanew

ggtab bbtab

bbnew

ggnew

Data Model

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

39

During the F-Search, each record in ggtab is computationally

examined by the plagiarism search algorithm. The record

structure of the global table is shown in Table T1.

Table T1: Standard Structure of ggtab

LLN
LeftSide

Data
CentralSymbol

RighSide

Data
RLN

==================131==================

In the ggtab table structure, LLN and RLN are line numbers

known as ‘Left Line Number’ and ‘Right Line Number’

respectively. The LLN keeps track of the position of the data

acquired from aatab, known as ‘Left Side Data’ while RLN

keeps the corresponding position of ‘Right Side Data’

acquired from bbtab. Thus, the significance of ggtab is that it

matches the contents of aatab and bbtab side by side in an

initial plagiarism search. In the implementation dataset, the

size of each ggtab record is 131. The 66th character which

marks the center of ggtab records forms what is termed the

Central Symbol. There are four characters that constitute the

central symbols. These are ‘<’, ‘>’, ‘x’, and ‘.’ respectively.

The central symbols are very important in the plagiarism F-

Search, especially in the formation of bi-partitions.

4.3 Plagiarism Search Bi-Partition
As already explained at the workflow section, the plagiarism

search space records are broken into two logical partitions.

These are the VAB and SUS partitions respectively as shown

in Fig. 5F. The formation of the logical partitions stems from

a physical partition based on the four central symbols as

demonstrated in Table T1. Thus, the search space records with

central symbol ‘dot’ make up the VAB-Partition. These are

records confirmed to be 100% plagiarized by copying the

contents of one input document (Origf.txt) into the second one

(Plagf.txt). Similarly, the search space records having the

other three central symbols form the SUS-Partition. It is the

SUS-Partition that undergoes a further search process called

T-Search (or thorough search). The formation of the SUS-

Partition is implemented through a process termed as system

purge using a program module known as ‘Syspurge.m’ as

indicated in Fig. 2F. The following set of transformation

equations summarizes the purge operation.

where the symbol ‘ ’ represents a line by line data extraction

of the right hand side (RHS) table to populate the left hand

table (LHS) table.

Fig. 4F: The Preprocessing Output File known as TwoPartif.out

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

40

In summary, the purge operation ensures that the VAB-

Partition data which are in the three tables aatab, bbtab and

ggtab are excluded in the search space used for the T-Search

operation. A precaution is taken to preserve the original data.

Thus, instead of totally wiping out the unwanted data, a work-

around step is taken to preserve the original data. This is by

creating a set of mirror tables aanew, bbnew and ggnew based

on equation (2).

Fig. 5F: Central Symbols for Bi-Partition Formation

4.4 The T-Search Operation
The two tables - aanew and bbnew resulting from the purge

operation are used as inputs into the T-Search (thorough

search) operations. One of the discoveries made during

systems implementation is that a plagiarism detection

algorithm could be ‘fooled’ through the use of whitespaces.

For instance, suppose S1 is a typical string in a digital

document D1. Suppose S1 is plagiarized verbatim to form the

new strings S2 and S3 in the documents D2 and D3

respectively as shown in Fig. 6F.

Fig. 6F: White Space Flooding in Documents

It is possible for a plagiarism detection system to erroneously

assume that the strings S1, S2 and S3 are entirely different,

even when they are exactly the same except for differences in

the positions of whitespaces. In order to deal with this

anomaly termed in this research as whitespace flooding, the

algorithm performs whitespaces exclusion operation. Thus

before performing strings comparisons with S1, S2 and S3,

the algorithm first transforms them into the formats shown in

Fig. 7F

Fig. 7F: Outcome of Whitespace Exclusion Operation

The T-Search searches for plagiarism occurrences by

comparing the contents of the two input files. The number of

matches detected is then used to calculate the plagiarism

index. The program module for the implementation of T-

Search is known as PlagSearch2.m, with flowcharts shown in

Fig. 13F and 14F in Appendix A.

4.5 The Plagiarism Index Quantifier
The plagiarism index of the system is the sum of the indices

arising from both the F-Search and the T-Search operations.

The Plagiarism Index for F-Search is given by equation (3).

where dtC = number of lines having ‘.’ as the central symbol,

xsC = number of lines having ‘x’ as the central symbol, ldC=

number of lines having ‘<’ as the central symbol, and gtC=

number of lines having ‘>’ as the central symbol after bi-

partition operation.

The Plagiarism Index for T-Search is given by equation (4).

where mtCount = number of plagiarism matches found during

T-Search, DocSize1 and DocSize2 are the sizes of the first and

second documents in terms of number of lines.

5. RESULTS AND DISCUSSION
Two documents were used as inputs to the plagiarism

detecting system. The first one is a brief essay constructed in

text format, while the second was generated by deliberately

plagiarizing the first one. Thus, a number of lines of the

original document were lifted verbatim and used to build the

new document. The two input documents were given the

standard input names. The first document (Origf.txt) and the

second one (Plagf.txt) are shown in Fig. 8F and Fig 9F

respectively.

Fig 8F: The First Input Dataset (Origf.txt)

 VAB-Partition SUS-Partition

Symbol ‘.’ Symbols ‘<’,

‘>’, ‘x’

String Information Doc

S1 Thank you so much for the book. D1

S2 Thank you so much for the book. D2

S3 Thank you so much for the book. D3

White Spaces

String Information Doc

S1 Thankyousomuchforthebook. D1

S2 Thankyousomuchforthebook. D2

S3 Thankyousomuchforthebook. D3

White Spaces Entirely Removed

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

41

Fig 9F: The Second Input Dataset (Plagf.txt)

The experimental result is shown in Fig. 10F. As shown in the

screen capture, the values calculated for PlagIndexF and

PlagIndexT are 0.09375 and 0.11538 respectively. These are

the plagiarism indices during the F-Search and T-Search

operations respectively. The overall index is the sum of the

two indices which is 0.2091. The major validation analysis

done on the result is to perform a manual check to confirm

that system detected all occurrences of plagiarisms, done by

deliberately copying the contents of one input document into

another. Thus, all the lines copied verbatim, as well as the

ones carefully manipulated through whitespace flooding were

all detected and listed by the system.

6. CONCLUSION/FUTURE RESEARCH
The importance of plagiarism detection cannot be

overemphasized. As already stated in the research scope

statement, this work is designed to operate in the text domain.

Further efforts to extend the capability of this plagiarism

detection and quantification algorithm will consider other

specialized file formats such as binary files, image files, video

files, and so on. Again, the system inputs are files accessed by

the system from an archive location at run time. Further

system improvements will consider the possibility of picking

the input files from a network rather than a stand-alone

system. Another area identified for future research is the

development of a visualization algorithm which will display

the results of the plagiarism search in a graphical spreadsheet

format. This is expected to be a positive deviation from the

current text-oriented output format.

Fig 10F: Plagiarism Search Result

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

42

7. REFERENCES
[1] Green, S. P. 2002. Plagiarism, Norms, and the Limits of

Theft Law: Some Observations on the Use of Criminal

Sanctions in Enforcing Intellectual Property Rights.

Hastings Law Journal, Vol. 54, No. 1.

[2] Ashish,M. & Sasmita,M. 2012. Student Plagiarism in

Higher Education: An Enigma or An Intellectual Crime,

Vol 1, Issue 1, p90-100.

[3] Cambridge Univ. Press. 2008. Cambridge Advanced

Learner's Dictionary, Cambridge University Press, The

Edinburgh Building, Cambridge UK.

[4] Tri Le, A.C., Judy, S., Margot, S., Michael, D. and

Chris, J. 2013. Educating Computer Programming

Students about Plagiarism through Use of a Code

Similarity Detection Tool. LATICE, 2013, Learning and

Teaching in Computing and Engineering (LaTiCE), pp.

98-105.

[5] Poongodi , D. and Tholkkappia, G.A. 2013. An

Automatic Method for Statement Level Plagiarism

Detection in Source Code Using Abstract Syntax Tree.

Int. J. of Adv. Research in Comp. & Comm.

Engineering., Vol. 2, Issue 4, pp 1923-1938

[6] Kashkur, M., Parshutin,S. & Arkady, B. 2010. Research

into Plagiarism Cases and Plagiarism Detection Methods.

Scientific Journal of Riga Tech. Univ., Vol 44,

p139-144.

[7] Mason, P.R. 2009. Plagiarism in Scientific Publications,

J Infect Developing Countries, Vol. 3(1), p1-4.

[8] Bradley,T. 2010. Student Plagiarism and the Use of

Plagiarism Detection Tool by Community College

Faculty (a PhD Dissertation), Department of Educational

Leadership, Indiana State University, Indiana.

[9] Batane, T. 2010. Turning to Turnitin to Fight Plagiarism

among University Students. Educational Technology &

Society, 13 (2), p1-12

[10] Howard, R.M. 2007. Understanding Internet plagiarism,

Computers and Composition, Vol. 24, p3–15.

[11] Melton, T.D., and Carmen, L.M. 2008. Plagiarism,

Encyclopedia of the Social and Cultural Foundations of

Education. Thousand Oaks, CA: SAGE 2008. p590-91

[12] Bin-Habtoor, A.S and Zaher, M.A. 2012. A Survey on

Plagiarism Detection Systems. Int. Journal of Comp.

Theory and Eng. Vol. 4, No. 2, p185-188

[13] Verco, K.L. and Wise, M.J. 2005. A comparison of

automated systems for detecting suspected plagiarism,

The Computer Journal.

[14] Efstathios, S. 2011. Plagiarism Detection Based on

Structural Information, Dept. of Inf. and Communication

Systems Eng., Univ. of the Aegean, Greece.

[15] Potthast, M., Barrón-Cedeño, A., Eiselt, A., Stein, B.,

and Rosso, P. 2010. Overview of the 2nd international

competition on plagiarism detection. In Proceedings of

the 4th Workshop on Uncovering Plagiarism,

Authorship, and Social Software Misuse.

[16] Schleimer, S., Wilkerson, D.S., and Aiken, A. 2003.

Winnowing: Local algorithms for document

fingerprinting. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, 76-85.

[17] Kupers, R., & Conrad, S. 2012. A Set-Based Approach

to Plagiarism Detection. Notebook for PAN at CLEF

2012

[18] Hage, J., Rademaker, P. and Vugt, N. 2010. A

comparison of plagiarism detection tools. Technical

Report UU-CS-2010-015, Department of Information

and Computing Sciences Utrecht University, Utrecht,

The Netherlands.

[19] Cosma, G. 2008. An Approach to Source-Code

Plagiarism Detection and Investigation Using Latent

Semantic Analysis (a PhD Thesis), University of

Warwick, Department of Computer Science.

[20] Izzat, A., and Zakaria, I.S. 2012. Documents Similarities

Algorithms for Research Papers Authenticity.

Proceedings of Int. Conf. on Com. & Info Tech (ICCIT

2012) Hammamet, Tunisia. June 26-28, 2012, p210-214

[21] Pataki, M. 2003. Plagiarism Detection and Document

Chunking Methods. Computer and Automation Research

Institute, Hungarian Academy of Sciences

[22] Won, K.J., Choi, K., Yo, S. and Kim. J. 2013. A Study of

Design and Implementation of Korean Plagiarism

Detection System. International Journal of

Software Eng. & Its Appl., Vol.7, No. 1, p211-220

[23] Mohamed, E.B.M. 2012. Detection of Plagiarism in

Arabic Documents, Int.J. Inf Tech & Computer Science,

p80-89,

[24] Jeong-II, P., Sang-Wook, K. and Miyoung, S. 2005.

Music Plagiarism Detection Using Melody Databases.,

Knowledge- based intelligent info and eng systems

lecture notes in comp science, Vol 3683, p684-693

[25] Asako, O. and Hajime, M. 2011. A Two-Step In-Class

Source Code Plagiarism Detection Method Utilizing

Improved CM Algorithm and SIM. International Journal

of Innov. Computing, Info. & Control, Vol 7, No 8, Aug

2011, p4729-4739

[26] Salha, A., Naomie, S., and Ajith, A. 2012. Understanding

Plagiarism Linguistic Patterns, Textual Features, and

Detection Methods., IEEE Transactions on Systems,

Man, and Cybernetics – Part C: Applications and

Reviews, Vol. 42, No. 2, p133-149.

[27] Leilei, K., Zhimao, L., Haoliang, Q., and Zhongyuan, H.

2014. Detecting High Obfuscation Plagiarism:

Exploring Multi-Features Fusion via Machine Learning.,

Int. Journal of U & E-Service, Sc & Tech., Vol.7, No.4.

pp.385-396.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

43

8. APPENDIX A

Flowchart for Program Module PlagSearch1.m

Fig 11F: Flowchart for F-Search -1

 if ‘x’ if ‘>’ if ‘<’ if ‘.’

START -1

Perform Mid-Character Extraction Operation. First get the

size of columns for the global table gg

Get the value of the Central Position where for mid

character should be positioned.

Calculate Dimensions of the whole Cell Array gg

Perform the four standard classifications as follows:

Number of 'x' = xscount, '>' as gtcount, '<' as lscount,

'.' as dtcount

Initialize as follows: xscount=0; gtcount=0; lscount=0;
dtcount=0;

LOOP for W = 1 to dmRow

Mark the first character in the

matrix f=gg{w,1}

What is the Mid Character?

xscount ++ gtcount++ lscount++ dtcount++

LOOP END C1

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

44

Flowchart Continuation

Fig 12F: Flowchart for F-Search -2

C1

 Output F-Search Standard Display

Screen Documentation

Display Document B-Partition Length after

Num2String Conversions.

Display Document B-Partition Lines Count after

Num2String Conversions.

Display Central Symbol Position after Num2String

Conversions.

Display xscount after Number2String Conversions.

Display gtcount after Num2String Conversions.

Display lscount after Num2String Conversions.

Display dtcount after Num2String Conversions.

Calculate Plagiarism Index for F-Search:
PlagIndexF= dtcount/

(2*(xscount+dtcount)+lscount+gtcount);

Display PlagIndexF

after Num2String

Conversions.

STOP

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

45

Flowchart for Program Module PlagSearch2.m

Fig 13F: Flowchart for T-Search -1

 NO

 YES

 NO

 NO YES

YES

START-3

Display Narration on Search Engine 2

Initialize Pmatch for Counting plagiarism matches:

Pmatch=0

Program takes arrays aanew and

bbnew as input parameters.

LOOP from x=1 to Max Size
of (aanew)

Get sizes of array aanew and bbnew

LOOP from y=1 to Max
Size of (aanew)

hh= aanew{x,1}, cc= bbnew{y,1}

Replaces all Gaps in hh with

NIL and assign output to h1.

Replaces all Gaps in cc with

NIL and assign output to c1

if h1 matches c1

Pmatch=Pmatch+1

Inner LOOP Done?

Outer LOOP Done? C2

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

46

Flowchart Continuation

Fig 14F: Flowchart for T-Search -2

C2

Output T-Search Standard Display Screen

Display Number of Plagiarism Matches Found PMatch after

Num2String Conversions.

Calculate and Display Size of First Document being

length(aanew)

Calculate and Display Size of First Document being

length(bbnew)

Calculate Cumulative Document Size as

CumDocSize = length(aanew)+ length(bbnew);

Display Cumulative Document Size as

CumDocSize in Standard Format

Calculate Plagiarism Index for T-Search as follows:
PlagIndexT= (Pmatch/CumDocSize);

Format and Display PlagIndexT

STOP

