

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

31

Improvement in Load Balancing Technique for MongoDB

Clusters

Harpinder Kaur
Computer Science and Engineering,
Lovely Professional University, India

Janpreet Singh
Computer Science and Engineering,
Lovely Professional University, India

ABSTRACT

Now is the era of cloud computing and related buzzwords are

the virtualization, resource sharing, Big Data. With the advent

of new technologies, gadgets or simply IOT has enabled the

advanced connectivity of devices, systems, and services and

with this the data is being produced at an enormous rates from

these devices be it form sensors, GPS data, log files from

different sources etc. which is mostly unstructured data. With

the acquaintance with NoSQL technology MongoDB is

extensively used to handle all types of data because of its

various advantages as its auto-load balancing technique in

which the primary node’s read load is decreased by

distributing load to the secondary nodes, other feature of

MongoDB is its auto sharding technique which works by

reducing the load over a node by splitting up data in chunks

and migrating it over to other nodes. The present work

endeavors to study the role of MongoDB’s auto balancing

technique. In present work MongoDB balancer is introduced

to and the performance of balancer of MongoDB for

MongoDB clusters in distributed environment is examined.

General Terms

SMAC, BSON, CLI (Command Line Interface) of MongoDB,

document based database.

Keywords

Auto-Sharding, Cloud Computing, Load Balancing,

MongoDB, NoSQL.

1. INTRODUCTION
Latest years have observed a rapid burst in web applications

that are burgeoning at an astounding rate daily. As complexity

of web applications increases, their necessity for storing data

is subjected to grow exponentially. Relational DBs have

prevailed in markets for years as a solution for data storage

with many read actions and less number of write actions [1].

These let records to be kept and retrieved in tabular manner.

However, the tabular structure has restrictions on how to span

horizontally, columnar wise because of the need of huge

quantity of space for storing each row. The issue can be

solved by getting the data and dividing it into many relations

or normalization of data helps us overcoming the problem,

though, this means now the data is dispersed over the disk and

needs several read operations at diverse sectors of the drive to

regain the info [2]. As the data needed isn’t confined to a

single spot thus the query to retrieve records from relations

with zillions or billions of rows can easily start to get crashing

and take considerable amount of time to fetch back results.

Hard disk drives are yet a big restriction for I/O access and

maximum databases have need of enormous volume of space

for storage of their structures.

SMAC [3], the acronym for Social, Mobility, Analytics and

Cloud is becoming a new flavor for business reality. By 2020,

as many as hundred billion computing gadgets will be

associated with the Web and firms will be dealing fifty times

the data than they do presently [3]. Due to this digitization of

business models and processes data generation rates have

grown sharply over the years. Humongous amount of users

tend to request for same data at an instance and probably want

to write some data at the very same time. Management of this

amount of user requests is the main concern for organizations

that have large scale distributed systems and they want to

provide their clients with seamless and highly available

services with least response time [4].

In Web2.0 applications, the performance and real time access

of database is more vital than ACID properties. The resolution

for treating such problems is to use NoSQL databases. The

CAP theorem, also referred to as Brewer's theorem, tells that

it is not possible for a distributed computer system to

concurrently offer all three of the subsequent assurances [5]:

• Consistency: All nodes have the exact same data at

the same instance of time.

• Availability: The node will answer queries at all

times if possible.

• Partition tolerance: Works regardless of a network

failure so nodes can communicate amongst them.

There are numerous pros and cons for both SQL and NoSQL

databases. Developers repeatedly wonder as what database

will go with their requirements and which amongst them is

best so that they may use for their application development.

There is no best or direct solution for this query and there is

not a single database that would work well for each project.

MongoDB has both strengths and weaknesses [6], but in

general it does quite good and it doesn’t have several

constraints and restrictions as other NoSQL databases.

The performance of database is predominantly determined by

the strategies for allocation of data and the condition of load

over system for the reason that uniformly spread workload

can largely help to optimize resource consumption, maximize

throughput and reduce potent overload over system.

Nevertheless, considering other aspect, most load-balancing

algorithm and solutions for NoSQL are not that established or

are having less adaptableness since it is still new to market as

compared to solutions for load-balancing in traditional

systems and also the prevailing load-balancing methods are

not applicable for NoSQL databases[7] [8]. Thus need of the

hour is to develop new strategy for balancing of load over

clusters that is more effective, complaint with NoSQL

solutions and is applicable easily.

This report reviews the background research for the topic. In

order to explore the association between prevailing load-

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

32

balancing algorithm and MongoDB cluster’s load-balancing,

it is supposed to primarily study the both fields individually.

So the second and the third sections of this report correspond

to the examination of load-balancing algorithm and

MongoDB individually and finally improvement in MongoDB

Cluster’s balancer method using custom algorithm. Even

though both fields have numerous diverse uses in themselves,

it is tried to emphasize on the central ideas and the readings

are thought would be valuable for current task. This report

might seem to be quite broad-spectrum. Next part defines and

reviews some readings about MongoDB, what are the current

research completed with respect to improvement of

MongoDB clusters, emerging better algorithms for load-

balancing and MongoDB balancing technique.

2. LITERATURE REVIEW
Devoid of load-balancing, cloud computing management

would become very hard. With the managed redirection, a

central unreliable system can be made reliable through the

gains offered by load-balancing in terms of fault tolerance

together with failover mechanism. [9]. In spite of the amount

of study that has been carried out with the expectation of

better comprehension about the development of MongoDB’s

load-balancing concept or auto scaling mechanisms as

autosharding, studies have shown various aspects to be

considered for developing a better load-balancing technique

[9].

Research process started with reading books, articles, and

research papers dealing with the new and upcoming

technology-NoSQL to get understandings of the technology

and understand it. The relational databases have conquered

the market for so long. Neither they were intended to face the

scaling challenges which current applications have to deal

with, nor were they developed to get advantage of the

inexpensive storage and processing power. The following

literature reviews aim to establish the same fact about load-

balancing for MongoDB clusters.

In the first paper, Nyati S.S., Pawar S, Ingle R. [10] have very

carefully elucidated few NoSQL unstructured databases and

further performance examination of these considered

databases was presented which was done on basis of several

benchmarks as querying database, performance time,

contrasting the time necessary for inserting data in different

databases and also examining them with different number of

entries. Diverse kinds of NoSQL DB types were discussed.

Amongst all of them Nyati et al chose MongoDB as best

option for their evaluation purpose because it is able to handle

less data along with large data proficiently. The comparison is

made between MongoDB and MySQL over various

benchmark and the results showed MongoDB is very quicker

in inserting the data as well as quicker in searching.

Brust A. [12]: In this article writers threw some light upon a

verdict for NoSQL by a RDBMS prodigy of IBM and Oracle

named Janan Dash. With the swarming of terms like Big Data,

NoSQL, Database Appliance, NewSQL etc. offers various

issues for traditional relational database management system

(RDBMS) operators around the globe. Now is the time of

dynamic schema in which updating of records must to be

reflected daily, if not done on per hour basis, to meet the ever

changing requirements of new data model. If an association is

dealing with these types of concerns, then according to the

writer they must make an intelligent choice switch over to

NoSQL technologies, because most of them were specifically

developed and designed to undertake these issues regarding

scale-in (horizontal scaling) or scale-out (vertical scaling).

NoSQL proposes ranges of solutions of firm to relaxed

consistency which are essential to be considered as on a case-

by-case basis. IBM has implemented the MongoDB API, data

illustration, query semantic and wire protocol, thus forming a

path for mobile and several other new applications to link

with enterprise DBs such as IBM's DB2 relational DB and the

grid WebSphere eXtreme Scale data grid. Performance and

other features will continue to advance and develop over time

for NoSQL databases. [12].

Kaur K, Rani R’s [13] present work explained about modeling

data in NoSQL DBs and way to query them. Authors

elaborated different classes of NoSQL DBs briefly. Four

classes of NoSQL databases were explained out of which two

were taken under consideration i.e. a graph DB-Neo4j and a

document DB- MongoDB. The contrast was presented

between them, how they were able to work with variety and

volume of data and how query semantics and syntaxes differ

from one another. MongoDB, document database, is used to

store, retrieve and handle semi-structured data, which is kept

in the form of documents. It has no provision for joins but was

designed specifically to work with growing data storage

needs. On the contrary graph databases models the entire

database as a network structure swarming with associations

between nodes. Objects were stored in nodes and edges

linking nodes work as entities and relationships, equivalent to

relational database architecture. It is ACID compliant, has the

capability of storing semi-structured information and also

hierarchical data can be best denoted in graph databases.

MongoDB has its own query language. Cypher is a

declarative graph query language used to query Neo4j graph

database. The further query formats are explained with the

help of examples.

In their paper, Aggarwal R, Arora R [14] , have vividly

described query execution and data modeling in MongoDB

NoSQL database and demonstrate it with the help of class

diagrams and also one more feature is illustrated i.e. no JOIN

support. For illustrating modeling of schema of the database,

class diagram and JSON format was used. Process of storing

data in the denormalized form in MongoDB is known as

embedding of document which means related data is stored in

a single document that are JSON-style format made of key-

and-value pairs. Rules for making collections and documents

were explained further in the study. Using some sample

collections, query format was elucidated carefully by giving

corresponding queries in MySQL for better apprehension and

understanding.

Next study was based on comparing two types of databases

NoSQL document oriented database management system and

relational DB [15]. The authors Alexandru B., Florin R.,

Laura I. A. compared Oracle Database and MongoDB.

Different parameters were taken under consideration out of

those were theoretical alterations, query and insertion times,

structures, constraints, integrity, architecture, distribution and

system requirements.

According to Alexandru et al., MongoDB focuses to four

things: power, flexibility, ease of use and speed. It provisions

features as indexing and replicated servers and it has support

for multiple programming language as drivers are provided

them. NoSQL’s MongoDB is schema-less database model

whereas Oracle is relational database model. The MongoDB

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

33

can take humongous amount of data of extreme magnitude of

16 MB in contrast to Oracle Database which has extreme

magnitude of merely only 4 KB. The main difficulty with the

Oracle Database was the replication that wasn’t in case of

other database under consideration i.e. MongoDB. Also the

Oracle DB is way sluggish in contrast to MongoDB. The

conclusion that can be drawn out of this was that if you

require a database to be fast and flexible, MongoDB is the

answer. On the contrary, if you require relations amongst

tables then without any concern or worrying about quickness

you can trust the standard solution, relational database, Oracle

Database.

Coe, B [16]: This article offered a basic comprehension of

MongoDB. According to the author, MongoDB has schema

less data-representation and is devoid of joins- these two

features mark an imperative difference between it and other

SQL-based technologies that were already ruling the field. For

this non-relational document DB, collections and documents

are respectively equivalent to tables and rows for relational

DBs. The author has explained some details regarding

concepts related to MongoDB. He elucidated that a in

MongoDB collection, two documents can have different

fields, and also the same field may have various data types.

MongoDB's CLI is driven by JavaScript.

Queries can be done inside inner documents and inner arrays.

Further MongoDB's built-in sharding support was explained

as one of its most flaunted features. Much like indexing a

column in SQL table, MongoDB allows us to index fields

within documents. Replication means having a sole parent

MongoDB server, with one or more child servers related with

it. At conceptual level author discusses, sharding technique.

Finally the article was concluded with some use cases for

MongoDB primarily emphasizing upon Craigslist,

Foursquare, and Bit.ly as great examples for MongoDB being

used by them to carry out queries on a solo gigantic dataset

and the faster results being produced by the NoSQL solution

being discussed.

Arora R [17]: This paper proposed an algorithm for

transforming relational data (here considered for MySQL

data) to a document based non-relational data (here

considered for MongoDB’s document based structure).

According to author, with the popularity of benefits of

NoSQL technologies, many businesses and consumers want to

migrate to NoSQL solutions. Henceforth, there is an ardent

requirement for transformation of data from relational form to

NoSQL databases’ form. The proposed process for conversion

of data was developed using NetBeans and Pentaho. The

algorithm converted the datasets from relational form to

document based NoSQL class. The algorithm first created link

with MySQL server after that user chose the desired DB from

listed relational DBs whose data was desired to be converted

into MongoDB’s document model. This resulted in documents

within documents known as embedded documents. Text files

were created in structure compatible with Pentaho DI tool. It

received text files as input and produced the resultant

MongoDB collection. As a future scope author suggested to

extend the capability of converting data from relational form

to other distributions of NoSQL solutions available in market.

Banker K [1]: Chapters 1-6 dealt with MongoDB's

background, policies and scenarios where MongoDB is

deployed, what makes MongoDB unique, compared it with

other NoSQL DBs evolving. Primarily developed for

scalability requirements of present internet applications,

MongoDB supports dynamic queries and secondary indexes;

quicker atomic updates and complex aggregations; and

provisioning sharding for scaling horizontally along with

replication with automatic failover. Rest of the chapters taught

application development in MongoDB using its JS shell, basic

CRUD operations and aggregation queries.

Chodorow K [2] in her book explained what is sharding and

its principles. The author explains shard as one or more

servers inside a cluster which are liable for some dataset. A

MongoDB cluster fundamentally comprises of three kinds of

processes: the mongos processes for directing requests

towards the desired data, the shards for essentially storage of

data, and the config servers for observing the cluster's

condition. The author also demonstrates the setting up of

cluster and how to use a shard key on basis of which data will

be divided and distributed to different shards. And last chapter

describes administration of MongoDB clusters.

Liu Y, Wang Y, and Jin Y [7]: In this paper, firstly authors

presented the ideologies and deployment approaches of auto-

sharding in MongoDB, and then put forward an enhanced

form of their algorithm to resolute the difficulty of jagged

distribution of data in auto sharding based on occurrence of

data operations. The upgraded balancing scheme successfully

equilibriums the data amongst shards, and increases the

cluster's simultaneous writing and reading performance.

Contrast between the suggested algorithm and auto sharding

technique is done with the help of testing simultaneous read

and write execution of the cluster. Initially, a test was

executed to assess the simultaneous writing performance of

the cluster. Ten million records were inserted and parallel

reading behavior was also evaluated by keeping the amount of

records unaltered. Enhanced results were shown and validated

with the graph. Proposed data balancing strategy based on

occurrence of data operation gave better results and its

efficiency was proved with the help of conducting

experiments. The synchronized writing and reading

performance of the auto sharding cluster is considerably

enhanced.

Zugic G [18]: This article provided insight of what was

horizontal scaling and vertical scaling .Then the important

thing that this article talked about was the sharding keys and

how to select the best shard key for data. A comprehensive

explanation for sharding key selection criteria is well

explained. If the application is less write scalable but query

isolation is important then range shard key is used, if it is

highly write scalable but query isolation is not required then

hashed shard key is used.

Huang, Chao-Wen; Hu, Wan-Hsun; Shih CC;Lin BT;Cheng

CW [8]: In this study, the use of on-request characteristics of

cloud computing and sharding characteristics of MongoDB

were explained to offer a solution for virtualized auto-scaling

database that would meet the SLA requirements. In the

beginning, the author used auto-scaling mechanism of route

server in MongoDB system. The experimental results

exhibited that the average response time of auto-scaling DB

solution was 4.3 seconds and non-scaling DB solution was 7.1

seconds. Secondly, they also prototyped a shard data transfer

algorithm that resulted in reduced impact while migrating data

to new virtual machine. The auto-scaling DB solution used the

algorithm to determine how many VM to be further added and

what data to be moved to those newly added VM.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

34

Wang XL, Chen H, and Wang Z [19]: This paper highlighted

the inclination towards MongoDB for its proficiency in

automatic load-balancing system and the auto sharding

method. Automatic load-balancing comprised of dispersion of

read load from primary to secondary node for reduced of load

of primary node while auto sharding was implemented for

decrease load on a specific node by spontaneous division of

data into chunks and later which is migrated to some of other

nodes. The authors have concentrated on the mechanism of

automatic load-balancing of MongoDB and suggested a

dynamic load-balancing technique based on heat diffusion

from cluster with much less cost. They arranged an

experimental setup for their planned algorithm and presented

their enhanced outcomes. Final conclusion that can be made is

that traditional data amount-based load-balancing method was

not adequate enough to efficiently equilibrate the data among

shards so the suggested dynamic load-balancing algorithm

based on heat diffusion is significant for improved results.

3. CONCLUSION
The load-balancing of servers is vital for storage applications

that are mostly read intensive. Traditional balancing methods

cannot be relied upon for distributed environment. So an

efficient solution for balancing load over distributed

MongoDB clusters will be developed and eventually increase

their performance when huge amount of load arises. The

results shall be verified by algorithm implementation. The

algorithm will initially monitoring all the shards whether they

are balanced or under loaded or overloaded. Then if a shard is

monitored to be overloaded then according to improvised

version of algorithm the load is redistributed till the shards are

balanced. And few more aspects can be examined, such as

migration threshold value of documents so that network traffic

is not hampered, for future consideration.

4. ACKNOWLEDGEMENTS
I owe my gratitude to all those persons who have helped in

making this study possible so far. Primarily I offer my

genuine gratitude to my mentor, Mr. Janpreet Singh, who has

supported me throughout my study process with his

persistence and knowledge while permitting me the area to

work in my own way. One simply could not wish for a better

or approachable mentor.

I am thankful to Mr. Nitin Kumar for his inspiration and

practical advice. I am also grateful to him for reading my

reports, commenting on my views and helping me understand

and enrich my ideas.

I would like to acknowledge Mr. Rohit Dhand for numerous

discussions and talks on associated topics that aided me

advance my knowledge in the area.

Many friends have helped me stay sound through these

difficult months. Their support and care helped me overcome

obstacles and stay concentrated and motivated towards my

study. I prominently value their bond and I deeply appreciate

their belief in me. Most notably, not a bit of this would have

been imaginable deprived of the love and perseverance of my

family. My family has been an endless source of affection,

concern, care and strength all these months. I would like to

express my genuine gratitude to my family.

5. REFERENCES
[1] Banker K (2012).MongoDB in Action. Shelter Island,

NY: Manning Publications Co. pp. 3-126.

[2] Chodorow K. (2011) Scaling MongoDB. L. M, Ed.,

Sebastopol, CA: O’Reilly Media, Inc. pp. 1-45.

[3] http://www.tutorialspoint.com/mongodb/mongodb_adva

ntages.htm. (n.d.). Retrieved from

http://www.tutorialspoint.com.

[4] H. C., Z. W. XiaoLin Wang (2013). Research on

Improvement of Dynamic Load Balancing in MongoDB.

Dependable, Autonomic and Secure Computing (DASC).

IEEE 11th International Conference.

[5] CAP Theorem, FoundationDB.

https://foundationdb.com/key-value-store/white-

papers/the-cap-theorem. Retrieved from

https://foundationdb.com.

[6] http://www.databaseskill.com/3091951/. Retrieved from

http://www.databaseskill.com

[7] Liu Y, Wang Y, Jin Y (2012). Research on the

improvement of MongoDB Auto-Sharding in cloud

environment. In The 7th International Conference on

Computer Science & Education, Melbourne, VIC.

[8] Huang, Chao-Wen; Hu, Wan-Hsun; Shih CC; Lin BT;

Cheng CW (2013). The improvement of auto-scaling

mechanism for distributed database: A case study for

MongoDB. Network Operations and Management

Symposium (APNOMS), 15th Asia-Pacific,

Hiroshima, Japan.

[9] Sosinsky B. (2011). Cloud Computing Bible.

Indianapolis, Indiana: Wiley Publishing, Inc.

[10] Nyati S.S., Pawar S, Ingle R. (2013). Performance

Evaluation of Unstructured NoSQL data. In International

Conference on Advances in Computing,

Communications and Informatics (ICACCI), Mysore.

[11] NOSQL DATABASES EXPLAINED.

http://www.mongodb.com/nosql-explained. Retrieved

from http://www.mongodb.com

[12] Brust A., Dash J. RDBMS vs. NoSQL: How do you

pick? http://www.zdnet.com/rdbms-vs-nosql-how-do-

you-pick-7000020803/. Retrieved from

http://www.zdnet.com/

[13] Kaur K, Rani R. (2013).Modeling and querying data in

NoSQL databases. In IEEE International Conference on

Big Data, Silicon Valley, CA.

[14] Aggarwal R, Arora R (July 2013). Modeling and

Querying Data in MongoDB. In International Journal of

Scientific & Engineering Research, vol. Volume 4, no.

Issue 7, pp. 141-145.

[15] Alexandru B., Florin R., Laura I. A. (2012). MongoDB

vs. Oracle - database comparison. In Third International

Conference on Emerging Intelligent Data and Web

Technologies, Bucharest.

[16] Coe, B. To MongoDB, or Not to MongoDB.

http://www.codemag.com/Article/1309051. Retrieved

form http://www.codemag.com

[17] A. R. Arora R (2013). An Algorithm for Transformation

of Data from MySQL to NoSQL (MongoDB).

International Journal of Advanced Studies in Computer

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

35

Science and Engineering (IJASCSE), vol. 2, no. 1, pp. 6-

12.

[18] Zugic G, Selecting a MongoDB Shard Key (29 May

2014). https://goranzugic.wordpress.com/2014/05

/29/selecting-a-mongodb-shard-key/. Retrieved from

https://goranzugic.wordpress.com.

[19] Wang XL, Chen H, Wang Z (2013). Research on

Improvement of Dynamic Load Balancing in MongoDB.

Dependable, Autonomic and Secure Computing (DASC),

2013 IEEE 11th International Conference Chengdu.

