

3-Total Super Sum Cordial Labeling for Union of Some Graphs

Abha Tenguria Professor Department of Mathematics, Govt. MLB P.G. Girls Autonomus College, Bhopal

ABSTRACT

In this paper we investigate 3-total super sum cordial labeling for union of some graphs. Suppose G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). A vertex labeling $f: V(G) \to \{0,1,2\}$. For each edge uv assign the label(f(u) + f(v)) mod 3. The map f is called a 3-total super sum cordial labeling if $|f(i) - f(j)| \le 1$ for *i*, *j* ε {0,1,2} where f(x) denotes the total number of vertices and edges labeled with $x = \{0,1,2\}$ and for each edge $uv, |f(u) - f(v)| \le 1$. Any graph which satisfies 3-total super sum cordial labeling is called 3-total super sum cordial graphs. Here we prove some graphs like $P_m \cup P_n, C_m \cup$ $C_n, k_1, m \cup k_1, n$ are 3-total super sum cordial graphs.

Keywords

3-total super sum cordial labeling, 3-total super sum cordial graphs.

1. INTRODUCTION

The graphs considered here are finite, undirected an simple. The vertex set and edge set of a graph G are denoted by V(G)and E(G) respectively. Graphs G_1 and G_2 have disjoint point set V_1 and V_2 and edge sets E_1 and E_2 respectively. The union of G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. The concept of sum cordial labeling of graph was introduced in [5] and that of k-sum cordial labeling in [4]. The concept of 3total sum cordial labeling of a graph was introduced in [6].

Definition 1.1.:Let G be a graph. Let f be a map from V(G) to $\{0,1,2\}$. For each edge uv assign the label (f(u) +fv(mod 3). Then the map f is called 3-total sum cordial labeling of G, if $|f(i) - f(j)| \le 1$: $i, j \in \{0, 1, 2\}$ where f(x)denotes the total number of vertices and edges labeled with $x = \{0, 1, 2\}.$

Definition 1.2.: A 3-total sum cordial labeling of a graph *G* is called 3-total super sum cordial labeling if for each edge $uv |f(u) - f(v)| \le 1$. A graph G is 3-total super sum cordial if it admits 3-total super sum cordial labeling.

2. PRELIMINARIES

Theorem 2.1.: $P_m \cup P_n$ is 3-total super sum cordial.

Proof: Let P_m be the path $u_1, u_2, ..., u_m$ and P_n be the path v_1,v_2,\ldots,v_n

Case I: $m \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$

Let m = 3p and n = 3t

Assign

Rinku Verma Assistant Professor Department of Mathematics, Medicaps Institute of Science and Technology, Indore

$$f(u_1) = 0$$

 $f(u_2) = 1$
 $f(u_3) = 2$

Define

$$f(u_{3i+4}) = 1; \quad 0 \le i < p-1$$

$$f(u_{3i+5}) = 1; \quad 0 \le i < p-1$$

$$f(u_{3i+6}) = 2; \quad 0 \le i < p-1$$

1

Assign

 $f(v_n) = 1$ $f(v_{n-1}) = 1$ $f(v_{n-2}) = 2$

Define

$$\begin{split} f(v_{3i+1}) &= 2; \quad 0 \leq i < t-1 \\ f(v_{3i+2}) &= 1; \quad 0 \leq i < t-1 \\ f(v_{3i+3}) &= 2; \quad 0 \leq i < t-1 \end{split}$$

Hence f is 3-total super sum cordial

Case II: $m \equiv 0 \pmod{3}$ and $n \equiv 1 \pmod{3}$

Let m = 3p and n = 3t + 1

Define

$$f(u_{3i+1}) = 2; \quad 0 \le i < p$$

$$f(u_{3i+2}) = 2; \quad 0 \le i < p$$

$$f(u_{3i+3}) = 1; \quad 0 \le i < p$$

 $f(v_n) = 1$

Assign;

Define

 $f(v_{3i+1}) = 2; \quad 0 \le i < t$ $f(v_{3i+2}) = 1; \quad 0 \le i < t$ $f(v_{3i+3}) = 2; \quad 0 \le i < t$

Hence f is 3-total super sum cordial.

Case III: $m \equiv 0 \pmod{3}$ and $n \equiv 2 \pmod{3}$

Let m = 3p and n = 3t + 2

Define:

$$f(u_{3i+1}) = 2; \quad 0 \le i < p$$

$$f(u_{3i+2}) = 1; \quad 0 \le i < p$$

$$f(u_{3i+3}) = 2; \quad 0 \le i < p$$

Assign:

$$f(v_n) = 1$$

 $(v_{n-1}) = 2$

Define:

 $f(v_{3i+1}) = 2; \quad 0 \le i \le t-1$ $f(v_{3i+2}) = 1; \quad 0 \le i \le t - 1$ $f(v_{3i+3}) = 2; \quad 0 \le i \le t-1$

f

Hence f is 3-total super sum cordial.

Case IV: $m \equiv 1 \pmod{3}$ and $n \equiv 0 \pmod{3}$ Let m = 3p + 1 and n = 3t

Assign:

$$f(u_m) = 1$$

Define:

$f(u_{3i+1}) = 2;$	$0 \le i < p$
$f(u_{3i+2}) = 1;$	$0 \le i < p$
$f(u_{3i+3}) = 2;$	$0 \le i < p$

Define:

 $f(v_{3i+1}) = 2; \quad 0 \le i < t$ $f(v_{3i+2}) = 2; \quad 0 \le i < t$ $f(v_{3i+3}) = 1; \quad 0 \le i < t$

Hence f is 3-total super sum cordial labeling. **Case V:** $m \equiv 1 \pmod{3}$ and $n \equiv 1 \pmod{3}$ Let m = 3p + 1 and n = 3t + 1

Assign:

 $f(u_m) = 2$

Define

 $f(u_{3i+1}) = 2; \quad 0 \le i < p$ $f(u_{3i+2}) = 1; \quad 0 \le i < p$ $f(u_{3i+3}) = 2; \quad 0 \le i < p$

Assign:

$$f(v_n) = 1$$

Define:

 $f(v_{3i+1}) = 2; \quad 0 \le i < t$ $f(v_{3i+2}) = 1; \quad 0 \le i < t$ $f(v_{3i+3}) = 2; \quad 0 \le i < t$

Hence f is 3-total super sum cordial labeling.

Case VI:
$$m \equiv 1 \pmod{3}$$
 and $n \equiv 2 \pmod{3}$

Let m = 3p + 1 and n = 3t + 2

Assign:

$$f(u_m) = 1$$

Define:

$$\begin{array}{ll} f(u_{3i+1}) &=& 2; \quad 0 \leq i$$

Assign:

$$f(v_n) = 1$$

$$f(v_{n-1}) = 2$$

2

Define:

$$\begin{aligned} f(v_{3i+1}) &= 2; & 0 \le i < t \\ f(v_{3i+2}) &= 1; & 0 \le i < t \\ f(v_{3i+3}) &= 2; & 0 \le i < t \end{aligned}$$

Hence f is 3-total super sum cordial labeling.

Case VII: $m \equiv 2 \pmod{3}$ and $n \equiv 0 \pmod{3}$

Let m = 3p + 2 and n = 3t

Assign:

$$f(u_m) = 1$$

$$f(u_{m-1}) = 2$$

Define:

$$\begin{array}{lll} f(u_{3i+1}) = & 2; & 0 \leq i \leq p-1 \\ f(u_{3i+2}) = & 1; & 0 \leq i \leq p-1 \\ f(u_{3i+3}) = & 2; & 0 \leq i \leq p-1 \end{array}$$

Define:

$$\begin{array}{ll} f(v_{3i+1}) = & 2; & 0 \leq i < t \\ f(v_{3i+2}) = & 1; & 0 \leq i < t \\ f(v_{3i+3}) = & 2; & 0 \leq i < t \end{array}$$

Hence f is 3-total super sum cordial labeling.

Case VIII: $m \equiv 2 \pmod{3}$ and $n \equiv 1 \pmod{3}$

Let m = 3p + 2 and n = 3t + 1

Assign

$$f(u_m) = 1$$

$$f(u_{m-1}) = 2$$

Define

$$\begin{array}{ll} f(u_{3i+1}) = & 2; & 0 \leq i \leq p-1 \\ f(u_{3i+2}) = & 1; & 0 \leq i \leq p-1 \\ f(u_{3i+3}) = & 2; & 0 \leq i \leq p-1 \end{array}$$

Assign

$$f(v_n) = 1$$

Define

$$\begin{array}{ll} f(v_{3i+1}) = & 2; & 0 \leq i < t \\ f(v_{3i+2}) = & 1; & 0 \leq i < t \\ f(v_{3i+3}) = & 2; & 0 \leq i < t \end{array}$$

Hence f is 3-total super sum cordial labeling.

Case IX: $m \equiv 2 \pmod{3}, n \equiv 2 \pmod{3}$

Let m = 3p + 2 and n = 3t + 2

Assign

$$f(u_m) = f(v_n) = 1f(u_{m-1}) = f(v_{n-1}) = 2$$

Define:

$$\begin{aligned} f(u_{3i+1}) &= 2; & 0 \le i$$

Define:

$$f(v_{3i+1}) = 2; \quad 0 \le i < t$$

$$f(v_{3i+2}) = 1; \quad 0 \le i < t$$

$$f(v_{3i+3}) = 2; \quad 0 \le i < t$$

Hence f is 3-total super sum cordial labeling.

Table 1: Vertex and edge conditions for 3-Total super sum cordial labeling of $p_m \cup p_n$

Case	Vertex Condition	Edge Condition	$f(i) = v_f(i) + e_f(i)$
m=3p & n=3t	$v_f(0) = 1$ $v_f(1) = 2p + t$ $v_f(2) = p + 2t - 1$	$e_f(0) = 2p + 2t - 2$ $e_f(1) = t$ $e_f(2) = p + 1$	f(0) = 2p + 2t - 1 f(1) = 2p + 2t f(2) = 2p + 2t
(m=3p & n=3t+1) or (m=3p+1 & n=3t)	$v_f(0) = 0$ $v_f(1) = p + t + 1$ $v_f(2) = 2p + 2t$	$e_f(0) = 2p + 2t$ $e_f(1) = p + t - 1$ $e_f(2) = 0$	f(0) = 2p + 2t f(1) = 2p + 2t f(2) = 2p + 2t
(m=3p & n=3t+2)or (m=3p+2 & n=3t)	$v_f(0) = 0$ $v_f(1) = p + t + 1$ $v_f(2) = 2p + 2t + 1$	$e_f(0) = 2p + 2t + 1$ $e_f(1) = p + t - 1$ $e_f(2) = 0$	f(0) = 2p + 2t + 1f(1) = 2p + 2tf(2) = 2p + 2t + 1
m=3p+1 & n=3t+1	$v_f(0) = 0$ $v_f(1) = p + t + 1$ $v_f(2) = 2p + 2t + 1$	$e_f(0) = 2p + 2t + 1$ $e_f(1) = p + t - 1$ $e_f(2) = 0$	f(0) = 2p + 2t + 1f(1) = 2p + 2tf(2) = 2p + 2t + 1
(m=3p+1 & n=3t+2)or (m=3p+2 & n=3t+1)	$v_f(0) = 0$ $v_f(1) = p + t + 2$ $v_f(2) = 2p + 2t + 1$	$e_f(0) = 2p + 2t + 2$ $e_f(1) = p + t - 1$ $e_f(2) = 0$	f(0) = 2p + 2t + 2f(1) = 2p + 2t + 1f(2) = 2p + 2t + 1
m=3p+2 & n=3t+2	$v_f(0) = 0$ $v_f(1) = p + t + 2$ $v_f(2) = 2p + 2t + 2$	$e_f(0) = 2p + 2t + 2$ $e_f(1) = p + t$ $e_f(2) = 0$	f(0) = 2p + 2t + 2f(1) = 2p + 2t + 2f(2) = 2p + 2t + 2

Example 2.2.: A 3-Total super sum cordial labeling of $P_6 \cup P_7$

1	0	0	1	0			1			
		2			•- 2		2			

Figure 1 : $P_6 \cup P_7$

Theorem 2.3.: $k_1, m \cup k_1, n$ is 3-total super sum cordial.

Proof: Let $V(k_1, m) = \{u, u_i: 1 \le i \le m\}$ and $E(k_1, m) = \{uu_i: 1 \le i \le m\}$ and $V(k_1, n) = \{v, v_i: 1 \le i \le n\}$ and $E(k_1, n) = \{vv_i: 1 \le i \le n\}$

Case I: $m \equiv 0 \pmod{3}$, $n \equiv 0 \pmod{3}$

f(u) = 1

Let m = 3p and n = 3t

Assign

Define

$$\begin{aligned} f(u_{3i+1}) &= 2; \quad 0 \leq i$$

Assign

$$f(v) = 1; f(v_{n-2}) = 1$$

 $f(v_n) = f(v_{n-1}) = 2$

Define:

 $\begin{aligned} f(v_{3i+1}) &= 2; & 0 \leq i < t-1 \\ f(v_{3i+2}) &= 0; & 0 \leq i < t-1 \\ f(v_{3i+3}) &= 1; & 0 \leq i < t-1 \end{aligned}$

Hence f is 3-total super sum cordial labeling.

Case II: $m \equiv 0 \pmod{3}$, $n \equiv 1 \pmod{3}$

Let m = 3p and n = 3t + 1

Assign

$$f(u) = 1$$

Define

$$\begin{array}{ll} f(u_{3i+1}) = & 2; & 0 \leq i$$

f(v) = 1 $f(v_n) = 2$

Assign

$$\begin{array}{rll} f(v_{3i+1}) = & 2; & 0 \leq i < t \\ f(v_{3i+2}) = & 0; & 0 \leq i < t \\ f(v_{3i+3}) = & 1; & 0 \leq i < t \end{array}$$

Hence f is 3-total super sum cordial labeling.

Case III: $m \equiv 0 \pmod{3}$, $n \equiv 2 \pmod{3}$

f(u) = 1

Let
$$m = 3p$$
 and $n = 3t + 2$

Assign

Define

$$f(u_{3i+1}) = 2; \quad 0 \le i < p$$

$$f(u_{3i+2}) = 0; \quad 0 \le i < p$$

$$f(u_{3i+3}) = 1; \quad 0 \le i < p$$

Assign

$$f(v) = 1$$

 $f(v_n) = f(v_{n-1}) = 2$

Define:

$$\begin{aligned} f(v_{3i+1}) &= 2; & 0 \leq i < t \\ f(v_{3i+2}) &= 0; & 0 \leq i < t \\ f(v_{3i+3}) &= 1; & 0 \leq i < t \end{aligned}$$

Hence f is 3-total super sum cordial labeling.

Case IV: $m \equiv 1 \pmod{3}$, $n \equiv 0 \pmod{3}$

Label k_1 , m as k_1 , n is labeled in case II and label k_1 , n as k_1 , m is labeled in case II.

Hence f is 3-total super sum cordial labeling.

Case V: $m \equiv 1 \pmod{3}, n \equiv 1 \pmod{3}$

Let
$$m = 3p + 1$$
 and $n = 3t + 1$

Assign

$$\begin{array}{rcl} f(u) &=& 1\\ f(u_m) &=& 2 \end{array}$$

Define

$$f(u_{3i+1}) = 2; \quad 0 \le i < p$$

$$f(u_{3i+2}) = 0; \quad 0 \le i < p$$

$$f(u_{3i+3}) = 1; \quad 0 \le i < p$$

Assign

$$f(v) = 1$$

$$f(v_n) = 2$$

Define

$$\begin{aligned} &(v_{3i+1}) = 2; & 0 \le i < t \\ &f(v_{3i+2}) = 0; & 0 \le i < t \\ &f(v_{3i+3}) = 1; & 0 \le i < t \end{aligned}$$

Hence f is 3-total super sum cordial labeling.

Case VI: $m \equiv 1 \pmod{3}, n \equiv 2 \pmod{3}$

Let
$$m = 3p + 1$$
 and $n = 3t + 2$

Assign

Define

$$f(u) = 1$$

$$f(u_m) = 2$$

$$f(u_{3i+1}) = 2; \quad 0 \le i < p$$

$$f(u_{3i+2}) = 0; \quad 0 \le i < p$$

$$f(u_{3i+3}) = 1; \quad 0 \le i < p$$

Assign

$$f(v) = 1$$

 $f(v_n) = 2$
 $f(v_{n-1}) = 0$

Define

$$\begin{aligned} f(v_{3i+1}) &= 2; & 0 \le i < t \\ f(v_{3i+2}) &= 0; & 0 \le i < t \\ f(v_{3i+3}) &= 1; & 0 \le i < t \end{aligned}$$

Hence f is 3-total super sum cordial labeling.

Case VII: $m \equiv 2 \pmod{3}, n \equiv 0 \pmod{3}$

Label k_1 , m as k_1 , n is labeled in case III and label k_1 , n as k_1 , m is labeled in case III.

Hence f is 3-total super sum cordial labeling.

Case VIII: $m \equiv 2 \pmod{3}, n \equiv 1 \pmod{3}$

Label k_1 , m as k_1 , n is labeled in case VI and label k_1 , n as k_1 , m is labeled in case VI.

Hence f is 3-total super sum cordial labeling.

Case IX: $m \equiv 2 \pmod{3}$, $n \equiv 2 \pmod{3}$

Let
$$m = 3p + 2$$
 and $n = 3t + 2$

Assign

$$f(u) = 1$$

$$f(u_m) = 2$$

$$f(u_{m-1}) = 0$$

Define

$$f(u_{3i+1}) = 2; \quad 0 \le i < p$$

$$f(u_{3i+2}) = 0; \quad 0 \le i$$

Assign

Define

$$\begin{array}{ll} f(v_{3i+1}) = & 2; & 0 \leq i < t \\ f(v_{3i+2}) = & 0; & 0 \leq i < t \\ f(v_{3i+3}) = & 1; & 0 \leq i < t \end{array}$$

Hence f is 3-total super sum cordial labeling.

Table 2: Vertex and edge conditions for 3-Total super sum cordial labeling of $k_1, m \cup k_1, n$

f(v) = 1 $f(v_n) = 2$ $f(v_{n-1}) = 1$

Case	Vertex Condition	Edge Condition	$f(i) = v_f(i) + e_f(i)$
m=3p & n=3t	$v_f(0) = p + t - 1$ $v_f(1) = p + t + 2$ $v_f(2) = p + t + 1$	$e_f(0) = p + t + 1$ $e_f(1) = p + t - 1$ $e_f(2) = p + t$	f(0) = 2p + 2t f(1) = 2p + 2t + 1 f(2) = 2p + 2t + 1
(m=3p & n=3t+1) or (m=3p+1 & n=3t)	$v_f(0) = p + t$ $v_f(1) = p + t + 2$ $v_f(2) = p + t + 1$	$e_f(0) = p + t + 1$ $e_f(1) = p + t$ $e_f(2) = p + t$	f(0) = 2p + 2t + 1 f(1) = 2p + 2t + 2 f(2) = 2p + 2t + 1
(m=3p & n=3t+2) or (m=3p+2 & n=3t)	$v_f(0) = p + t$ $v_f(1) = p + t + 2$ $v_f(2) = p + t + 2$	$e_f(0) = p + t + 2$ $e_f(1) = p + t$ $e_f(2) = p + t$	f(0) = 2p + 2t + 2f(1) = 2p + 2t + 2f(2) = 2p + 2t + 2
m=3p+1 & n=3t+1	$v_f(0) = p + t$ $v_f(1) = p + t + 2$ $v_f(2) = p + t + 2$	$e_f(0) = p + t + 2$ $e_f(1) = p + t$ $e_f(2) = p + t$	f(0) = 2p + 2t + 2 f(1) = 2p + 2t + 2 f(2) = 2p + 2t + 2
(m=3p+1 & n=3t+2) or (m=3p+2 & n=3t+1)	$v_f(0) = p + t + 1$ $v_f(1) = p + t + 2$ $v_f(2) = p + t + 2$	$e_f(0) = p + t + 2$ $e_f(1) = p + t + 1$ $e_f(2) = p + t$	f(0) = 2p + 2t + 3f(1) = 2p + 2t + 3f(2) = 2p + 2t + 2
m=3p+2 & n=3t+2	$v_f(0) = p + t + 1$ $v_f(1) = p + t + 3$ $v_f(2) = p + t + 2$	$e_f(0) = p + t + 2$ $e_f(1) = p + t + 1$ $e_f(2) = p + t + 1$	f(0) = 2p + 2t + 3f(1) = 2p + 2t + 4f(2) = 2p + 2t + 3

Example 2.4.: A 3-total super sum cordial labeling of $k_1, 5 \cup k_1, 9$.

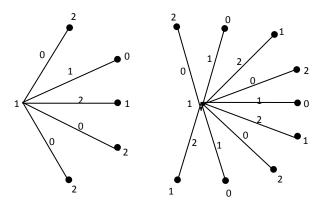


Figure 2: $\mathbf{k}_1, \mathbf{5} \cup \mathbf{k}_1, \mathbf{9}$

Theorem 2.5.: $c_m \cup c_n$ is 3-total super sum cordial.

Proof: Let c_m be the cycle $u_1, u_2, \dots, u_m, u_1$ and c_n be the cycle $v_1, v_2, \dots, v_n, v_1$

Case I: $m \equiv 0 \pmod{3}$, $n \equiv 0 \pmod{3}$

Let m = 3p and n = 3t

Define

$$f(u_{3i+1}) = 2; \quad 0 \le i < p$$

$$\begin{array}{lll} f(u_{3i+2}) = 2; & 0 \leq i$$

Hence f is 3-total super sum cordial labeling.

Case II:
$$m \equiv 0 \pmod{3}, n \equiv 1 \pmod{3}$$

Let m = 3p and n = 3t + 1

Define

$f(u_{3i+1}) = 2;$	$0 \le i < p$
$f(u_{3i+2}) = 2;$	$0 \le i < p$
$f(u_{3i+3}) = 1;$	$0 \le i < p$

Assign

$$f(v_n) = 1$$

Define

$$f(v_{3i+1}) = 2; \quad 0 \le i < t$$

$$f(v_{3i+2}) = 2; \quad 0 \le i < t$$

$$f(v_{3i+3}) = 1; \quad 0 \le i < t$$

Hence f is 3-total super sum cordial labeling.

Case III: $m \equiv 0 \pmod{3}$, $n \equiv 2 \pmod{3}$

Let m = 3p and n = 3t + 2

Define

$$\begin{aligned} f(u_{3i+1}) &= 2; & 0 \le i$$

Assign

$$f(v_n) = 1$$

$$f(v_{n-1}) = 2$$

Define

$$\begin{array}{ll} f(v_{3i+1}) = & 2; & 0 \leq i < t \\ f(v_{3i+2}) = & 1; & 0 \leq i < t \\ f(v_{3i+3}) = & 2; & 0 \leq i < t \end{array}$$

Hence f is 3-total super sum cordial labeling.

Case IV: $m \equiv 1 \pmod{3}$ and $n \equiv 0 \pmod{3}$

Let m = 3p + 1 and n = 3t

Label c_m as c_n is labeled in case II and Label c_n as c_m is labeled in case II

Hence f is 3-total super sum cordial labeling.

Case V: $m \equiv 1 \pmod{3}$ and $n \equiv 1 \pmod{3}$

Let m = 3p + 1 and n = 3t + 1

Assign

$$f(u_m) = 1$$

Define

$$\begin{array}{ll} f(u_{3i+1}) = & 2; & 0 \leq i$$

Assign

Define

$f(v_{3i+1}) = 2;$	$0 \le i < t$
$f(v_{3i+2}) = 1;$	$0 \le i < t$
$f(v_{3i+3}) = 2;$	$0 \le i < t$

 $f(v_n) = 1$

Hence f is 3-total super sum cordial labeling.

Case VI:
$$m \equiv 1 \pmod{3}$$
 and $n \equiv 2 \pmod{3}$

Let m = 3p + 1 and n = 3t + 2

Assign

Define

$$\begin{array}{rll} f(u_{3i+1}) = & 2; & 0 \leq i$$

 $f(u_m) = 1$

Assign

$$f(v_n) = 1$$

$$f(v_{n-1}) = 2$$

Define

$$\begin{array}{ll} f(v_{3i+1}) = & 2; & 0 \leq i < t \\ f(v_{3i+2}) = & 1; & 0 \leq i < t \\ f(v_{3i+3}) = & 2; & 0 \leq i < t \end{array}$$

Hence f is 3-total super sum cordial labeling.

Case VII: $m \equiv 2 \pmod{3}$, $n \equiv 0 \pmod{3}$

Let m = 3p + 2 and n = 3t

Label c_m as c_n is labeled in case III and Label c_n as c_m is labeled in case III

Hence f is 3-total super sum cordial labeling.

Case VIII: $m \equiv 2 \pmod{3}, n \equiv 1 \pmod{3}$

Let m = 3p + 2 and n = 3t + 1

Label c_m as c_n is labeled in case VI and Label c_n as c_m is labeled in case VI

Hence f is 3-total super sum cordial labeling.

Case IX: $m \equiv 2 \pmod{3}$, $n \equiv 2 \pmod{3}$

Let m = 3p + 2 and n = 3t + 2

Assign

$$\begin{array}{rcl} f(u_m) &=& 1\\ f(u_{m-1}) &=& 2 \end{array}$$

Define

$$\begin{array}{ll} f(u_{3i+1}) = & 2; & 0 \leq i$$

Assign

$$f(v_n) = 2$$
$$f(v_{n-1}) = 2$$

Define

 $\begin{aligned} f(v_{3i+1}) &= 2; & 0 \le i < t \\ f(v_{3i+2}) &= 2; & 0 \le i < t \\ f(v_{3i+3}) &= 1; & 0 \le i < t \end{aligned}$

Hence f is 3-total super sum cordial labeling.

Table 3: Vertex and edge conditions for 3-Total super sum cordial labeling of $c_m \cup c_n$

Case	Vertex Condition	Edge Condition	$f(i) = v_f(i) + e_f(i)$
m=3p & n=3t	$v_f(0) = 0$ $v_f(1) = p + t$ $v_f(2) = 2p + 2t$	$e_f(0) = 2p + 2t$ $e_f(1) = p + t$ $e_f(2) = 0$	f(0) = 2p + 2t f(1) = 2p + 2t f(2) = 2p + 2t
(m=3p & n=3t+1) or (m=3p+1 & n=3t)	$v_f(0) = 0$ $v_f(1) = p + t + 1$ $v_f(2) = 2p + 2t$	$e_f(0) = 2p + 2t$ $e_f(1) = p + t$ $e_f(2) = 1$	f(0) = 2p + 2t f(1) = 2p + 2t + 1 f(2) = 2p + 2t + 1
(m=3p & n=3t+2)or (m=3p+2 & n=3t)	$v_f(0) = 0$ $v_f(1) = p + t + 1$ $v_f(2) = 2p + 2t + 1$	$e_f(0) = 2p + 2t + 2$ $e_f(1) = p + t$ $e_f(2) = 0$	f(0) = 2p + 2t + 2f(1) = 2p + 2t + 1f(2) = 2p + 2t + 1
m=3p+1 & n=3t+1	$v_f(0) = 0$ $v_f(1) = p + t + 2$ $v_f(2) = 2p + 2t$	$e_f(0) = 2p + 2t + 2$ $e_f(1) = p + t - 1$ $e_f(2) = 1$	f(0) = 2p + 2t + 2f(1) = 2p + 2t + 1f(2) = 2p + 2t + 1
(m=3p+1 & n=3t+2)or (m=3p+2 & n=3t+1)	$v_f(0) = 0$ $v_f(1) = p + t + 2$ $v_f(2) = 2p + 2t + 1$	$e_f(0) = 2p + 2t + 2$ $e_f(1) = p + t$ $e_f(2) = 1$	f(0) = 2p + 2t + 2f(1) = 2p + 2t + 2f(2) = 2p + 2t + 2
m=3p+2 & n=3t+2	$v_f(0) = 0$ $v_f(1) = p + t + 1$ $v_f(2) = 2p + 2t + 3$	$e_f(0) = 2p + 2t + 2$ $e_f(1) = p + t + 2$ $e_f(2) = 0$	f(0) = 2p + 2t + 2f(1) = 2p + 2t + 3f(2) = 2p + 2t + 3

Example 2.6.: A 3-total super sum cordial labeling $c_7 \cup c_5$

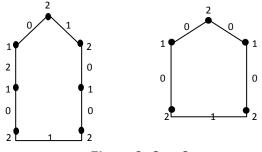


Figure 3 : $C_7 \cup C_5$

3. CONCLUSION

If $G_1 \cup G_2$ is 2-total sum cordial graph then it is 2-total super sum cordial graph, as for each edge $uv |f(u) - f(v)| \le 1$.

4. **REFERENCES**

- Cahit, I. "Cordial graphs: A weaker version of graceful and harmonious graphs" Ars combinatorial 23 201-207 1987.
- [2] Gallian, J. A., "A dynamic survey of graph labeling" the Electronic Journal of Combinatorics, 17(2010) DS6.
- [3] Harrary Frank, Graph Theory, Narosa Publishing House (2001).

- [4] Pethanachi Selvam S. and Lathamaheshwari G., "k sum cordial labelingfor some graphs", IJMA-4(3), March-2013.
- [5] Shiama J., "Sum cordial labeling for some graphs", IJMA-3(a), sept-2012.
- [6] Tenguria Abha and Verma Rinku, "3-Total super sum cordial labeling for some graphs" accepted for publication IJMA, 5 (12) Dec-2014.
- [7] Ponraj R., Sivakumar M. & Sundaram M., "3-Total product cordial labeling of union of some graphs", Journal of Indian Acad. Math. 34(2) 2012 511-530.
- [8] Vaidya S.K., Ghodasara G.V., Srivastav Sweta & Kaneria V.J., Some new cordial graphs, Int. J. of Math & Math. Sci. 4(2) 2008 81-92.
- [9] Bloom G.S. & Golomb S.W., "Application of numbered undirected graphs", Proceedings of IEEE, 165(4) 1977 562-570.
- [10] David M. Burton, Elementary Number Theory, Second edition, Wm. C. Brown Company Publisher, 1980.
- [11] Shee S.C., Ho Y.S., "The cordiality of path union of n copies of a graph", Discrete Math, 151(1916) 221-229.
- [12] Vaidya S.K., Ghodasara G.V., Srivastav S. & Kaneria V.J.," Cordial labeling for two cycle related graphs", The mathematics student, 76(2007) 237-246.
- [13] Vaidya S.K., Ghodasara G.V., Srivastav Sweta & Kaneria V.J., "Cordial and 3-equitable labeling of star of a cycle", Math. today, 24(2008) 54-64.
- [14] Vaidya S.K., Ghodasara G.V., Srivastav Sweta & Kaneria V.J., "Cordial labeling for cycle with one chord & its related graphs", Indian J. Math Science, 49(2008) 146-146.
- [15] Ghodasara G.V. & Rokad A.H., "Cordial labeling of $k_{n,n}$ related graphs", International Journal of Science and Research (IJSR), India Online 2(5), May 2013.
- [16] Ponraj R., Siva Kumar M., Sundaram M., "k-product cordial labeling of graphs", Int. J. Conteemp. Math. Sciences, 7(2012) 15 733-742.
- [17] Sundaram M., Ponraj R. & Somasundaram S.," Product cordial labeling of graphs", Bull. Pure and Applied Sciences (Mathematics and Statistics) 23E 155-163 (2004).
- [18] Sundaram M., Ponraj R. & Somasundaram S., "Total product cordial labeling of graphs", Bulletin of pure and applied sciences, 25E 199-203.
- [19] Ponraj R., Sivakumar M. & Sundaram M., "On 3-total product cordial graphs", International Mathematical forum, 7(31) 1537-1546.