

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

1

Unmatched Qualities of Software Developers and

Impacts of their Thinking on Coding

Adenugba, D.A.
Department of Physics

The Federal University of Technology, Akure
P.M.B. 704, Akure, Ondo State, Nigeria

ABSTRACT
This paper discusses uncommon qualities of Software

Developers and impacts of their thinking on coding.

Applications of Software Developers’ thinking yield a novel

code component (CC) for optical models of Snell’s law,

refractive index of a prism and Brewster’s law; and enhanced

server by the inclusion of Pontes et al. rainfall height models

in an existing class library. Software Developers(SDs) are

generous giver of comfort, speed and accuracy without racist

discrimination through CCs and software applications. The

quality of any application is a reflection of the tastes, thinking

and qualities of SDs. SDs think for others, a difficult

obligation to achieve, yet a mandatory task to perform to

prevent package crash. The optical server is exposed in a new

client application while the rain height codes are tested via an

existing application, now known as RainHeightSoft 1.0. The

accurate results computed corroborate existing facts regarding

the optical models. The Pontes et al. rain height models are

applied to twenty sites and findings depict that Pontes rainy

model (PR) varies between 3.25-4.90; and the non-rainy

model (PNR) is between 3.64-4.89. Uniformly, PR is greater

than PNR for Nigeria and Brazil sites, but the opposite is the

case for South-Africa. Rainfall height does not increase with

increasing Latitude, rather the smaller the latitude, the higher

the rain height. These useful information could be used for

communication system design. Besides, dynamically, all the

models’ workings are generated that could be utilized real-

time for teaching-learning. SDs will find our CCs useful in

their work. Physicists could seamlessly employ the resulting

package in teaching optical and rain height models.

General Terms
Latitude, Optics, Rain height, Refractive index, Software

Developer

Keywords
Pontes et al. rainfall height models, Brewster’s law,

RainHeightSoft 1.0, Snell’s law

1. INTRODUCTION
Thinking is an imperative part of life, especially during

coding and software development. Thinking is a function of

the heart, not of the stomach (Matthew 12:34-37). Generally,

each person is a product of his thinking: “For as he thinks in

his heart, so is he…” Thus, “Keep your heart with all

diligence, for out of it springs the issues of life” (Proverbs

23:7; 4:23).

Some tasks, either simple or complex, are performed swiftly

or slowly repeatedly; and some occasionally and sluggishly or

quickly. Some tasks demand absolute concentration because

life is at stake if the slightest error or mistake occurs doing it.

Tasks widely vary in nature and in timing. Whatever the

nature of the task to perform, it is expected to be carried out in

shortest possible time and with maximum comfort and

accuracy. When a chore keeps reoccurring on daily basis, it

soon becomes boring and uninteresting to an average soul.

Efficiency and health suffer greatly from it under this

repetitive task condition(s).

Indeed, monotonous tasks are generally unpleasant to an

average folks. The indisputable solution to this situation is a

flexible and accurately working software package, which

gladly handles repetitive chores with absolute accuracy

swiftly. Software applications leverage individual, group of

people and nations to achieve uncommon feats. Indeed,

national capacity building and self-reliance are anchored on

accurately functioning software packages [1].

A Software Developer (SD) uses codes to solve human

problems [1-6]. Andy (2014) [7] captures one of the

fundamental goals of code component when he said, “With

code available for our use that has already been written, tested

and debugged…, you’re almost always better off looking for

an existing solution than trying to code one yourself…You’ll

spend far less time finding an existing library and learning to

use it rather than trying to roll your own code…” The

implication of this vital statement is that Software Developers

(SDs) should not re-invest the wheel, thereby saving

invaluable time and efforts. The use of existing flexible and

accurately working class library or libraries saves

considerable time and guarantees reliability [1-2].

In this paper, we discuss the sterling qualities of SDs and how

these sway their decisions at every stage of designing, writing

of codes, developing of custom methods and non-crashable

applications. Specifically, we apply these unique qualities and

thinking of SDs to code components development for the

estimation of Snell’s law, refractive Index of prism and

Brewster’s law. A client application, OpticsSoft will be

developed using Microsoft Visual Studio, 2013 to test the

optical class library, dvOpticsCls. In addition, codes will be

written for Pontes et al. rainfall height models, which will be

exposed through an existing software application, HeightSoft.

Results will be computed for twenty sites and the Pontes et al.

rainy model(PR) will be compared with Pontes et al. non-

rainy model(PNR). In the process of these activities, SDs

thinking and nature will be exposed.

2. SOME QUALITIES AND THINKING

OF SOFTWARE DEVELOPERS
SDs have unique ability to give unique names to data,

properties, functions, procedures etc such that they will be

reminded about what the object represents, and function(s) it

performs. Good names given to objects do not only assist

code readability, but enhances code maintainability and

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

2

comprehension. A SD who fails to meaningfully name objects

in his/her codes creates confusion, chaos and problems later in

maintaining the life-cycle of the code or project. Good object-

naming is a clear manifestation, to a reasonable degree, of

good programming skill and practice. Professional SDs are

distinguished from quacks through good naming styles

employ in his/her code. “A developer”, as John (2012)[5]

aptly observed, “who lacks the ability to give good names to

concepts and data in their code is like a mute translator.”

SDs are enterprising people, full of ideas. Software

Developers possess the pipe and dictate the fine desired tone

in virtually every spheres of life. Developers are revenue

generators. Software packages are sure sources of revenue for

organizations and the nation. In 2012, India expected software

exports revenue generation is $70 billion (N10.5 trillion)

which is far above most African nations’ annual budget [8].

How much US earns every year on software could be best

measured against the 12th position of Bill Gates on the list of

the 25 richest people who ever lived on earth [9]. That Bill

Gates is the richest living American with net worth of $136

Billion is an eloquent testimony to the power of software to

earn astonishing revenue for any individual, besides

companies and nations [9]. Although software professionals

are prestigious and well-paid compared to other professions in

India, only a few women work as SDs, the ratio of men to

women being 76:24 [10].

Statistical figures provided in recent times show that software

industry is going to be leading for a long time to come in job

creation and employment. The predicted job growth for

computing professions from 2010-2020 shows that Database

Administrators is 1% ahead of Software Developers with

30%; this is followed by Network Systems Administrator with

28%; while both Web Developers and Computer Systems

Analysts have 22% each; the least of 19% goes to the

Information Research Scientists [11,12]. What this translates

to is that there will be a steady job growth in the computing

world with median pay steadily rising. To stay with the

progressives with secured job, you need to be in the

computing professions, especially software development,

thinking for others and developing application to earn living

and advance researches.

To catch up with the Superpowers, it has been correctly

observed that developing nations should fully plunge

themselves into software development and copiously invest in

it [1].

Patience, yes, perseverance, is an attribute every serious-

minded SDs should possess in order to succeed in their career.

When codes stubbornly decline to do what is required,

patience is needed; step-by-step debugging of the codes is a

must; ability to swiftly recall previous experience(s) is quite

helpful and useful to isolate the culprit areas needing

attention.

SDs think rationally and uniquely. They quest for alternatives

to achieve the most efficient algorithm to solve problems.

Therefore, SDs are not parochial; thus they explore various

avenues to achieve a task swiftly, accurately and efficiently

[4-6].

Software applications are capable to redefine things and

redirect folks outlook and thinking. Indeed, not only Science

could software redefine, but virtually all things human mind

could conceive.

SDs are lenient person who do not terminate a malfunctioning

program without providing adequate information on what

went amiss. When necessary, they ignore invalid inputs and

picks another one that is valid for use as done in the loop of

the codes in appendix A for Snell’s law computation. Please,

see the attached comments to the codes for more explanation.

SDs think for others; thus very proactive. Thinking for others

is a difficult task. Yet, SDs have to think ahead for users on

their input(s) and output(s) needs, behaviours and attitudes.

As for data input, SDs trap all likely errors user is capable of,

and likely to, commit. They extensively perform data input

checks often before releasing any package into the market.

These checks bloated the size of the codes, and they are

modularized, so as to allow other SDs; and methods and

functions to make use of them. For instance,

dvCalOpticsModels method, that is called by

dvCompSnellLaw function of appendix A to calculate a single

result of Snell’s law, accepts an enumeration class of five

members, which indicates what to calculate. This method

checks the inputs; if invalid, it returns NR (for No Result) else

it computes result and returns it. See row 2 of Table 1 when

this situation occurs due to invalid incident angle supply (dv).

When either the incident angle, i or refracted angle, r is not

supplied, NN (for Not Numeric) is returned and stored in the

output columns as seen in Table 2(2nd row).

SDs always expect the unexpected in the use of their

applications, thus they trap all humanly conceivable errors

and mistakes that could be made and rendered the applications

useless during use. They wrap the codes around error trapping

statements such as Try…Catch…End Try and On Error

….GoTo statements. This is to capture the unexpected error(s)

and report back to the calling program as can be seen in the

codes in Appendix A.

Still on data checking, SDs stoutly believe in quality of data,

hence they filter input data every time. Data manipulation is

as significant as data acquisition and transmission. Filtering of

data is one of such data manipulation that improves or

enhances the data for use. Data check is a must for all SDs

who want to succeed.

Availability of code components often motive SDs to develop

flexible and accurate software applications [1-2]. Because of

available numerous functioning code components, many are

software applications developed to meet the yearning of

people. SDs design, develop and make available code

components for the use of others. Thus, they are quite

industrious, observant and considerate.

SDs seek to stay abreast of the latest news, and swiftly learn

the latest techniques and technologies that will enhance their

productivity and skills. Thus, a membership of professional

society is a must, such as Association of Computing

Machinery (ACM) and/or IEEE(and other ones around the

globe). SDs read good and relevant books. “Most highly

skilled developers”, according to John (2009)[4], “will have a

library of books” that he/she reads and references frequently.

Three basic things are well-known to all great SDs. These

germane facts are: they always know that there is someone to

learn from, something more to learn, and they hunger to do

things the right way[4].

SDs experiment with variations and come up with patterns or

styles they enjoy most and that increase their effectiveness

[13]. In other words, applications mirror their developers’

thinking.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

3

SDs are extremely orderly and cautious to assign values to

arguments in order to avoid getting unexpected results. A

variable that is declared at form’s or server’s level and is

passed as argument before it is assigned a value has zero

value (or for object data type, it is internally assigned

Nothing) and generate wrong results or throw an exception; if

the expected value(s) is not assigned to it before use.

3. CODING
SDs cherish an item that reoccurs, since a separate function or

sub-procedure can be written for it and calls in several places

within the project and/or in another projects. For instance, the

angle in degrees gotten from the user via an overloaded

method, dvSetInputs, has to be converted to radians before

passing it to the functions that calculate prism refractive index

and Brewster’ law. The dvSetInputs property accepts one of

five inputs, depending on users’ need; then a new method was

called to convert from degrees to radians; the old method

being inadequate to generate workings. Since the previous

method has no dynamically working generator, three

additional methods were written to do the conversion and

generate workings for each computation. The inclusion of an

enumeration class to indicate if input should be zero or not is

an added benefit to filter data before use and report back if

error occurs. The old method is intact, but Overloads keyword

preceded the function keyword, so that the methods are

polymorphized. Needless to mention that these new method

will find extensive use in estimating trigonometrically

functions and produce the workings that can be used for

teaching-learning real-time.

The eight methods written for sine and tangent estimation

have the same reference outputs result (Ans) and workings

(Wkgs), but varying inputs. For both, we have this code

pattern, which makes it easy to call and maintain:

dvCalSinX or dvCalTanX

i Input1, Ans, Wkgs

ii Input1, Input2, Ans, Wkgs

iii Input1, Input2, Constant, Ans, Wkgs

iv Input1,Constant, Ans, Wkgs

The first (i) will solve for any Sin(X) or Tan(X). (ii) will solve

for any Sin(X+Y) or Tan(X+Y); (iii) will solve for any

Sin((X+Y)/C) or Tan((X+Y)/C) similar to the numerator of

the prism refractive index model and (iv) will solve for any

Sin(X/C) or Tan(X/C) identical to the denominator of the

prism refractive index model. X and Y are the object inputs;

and being object, they will conveniently accept integer and

floating data types. These methods are handy for use where

sin and tan are found in any equation. Not only will the

computed result be returned, the workings will also be

outputted.

SDs are not presumptuous but factual. They do not assume,

for instance, that what solves for X/C will do for C/X until

they have tested carefully for all the involving parameters

before arriving at informed decision(s). If the Mathematical

operator is * instead of /, then a single function will produce

the same result, else different treatments will have to be

accorded to the equations.

SDs are not dense, follow-follow type, but fast thinking folks

who make code clarity their watch word. As time progresses

with experience, SDs develop coding style(s) that give them

uncommon gratification and comfort. The quality of

Application developed reveals who a SD is; his taste for well-

blended colours, quality and thoroughness. Therefore,

“Application-building process,” according to Tim (2008)[13],

“is about much more than syntax, statements and logic.” It

exposes who the Developer really is in terms of quality and

capability to use existing and self-developed tools to produce

first class application that pragmatically addresses human

needs. Discipline, planning and ethics are three traits which

had been identified to provide a strong basis for programming

life; and deficiency in any, according to Tim (2008)[13],

results in poor and deficient application and code. These traits

make programming work so much easier, comfortable and

enjoyable; and positively impact the other areas of useful

earth life [13]. SDs are agog and delighted in assisting

“People become more productive through specialized or

general software” [13].

SDs are not angels; they do make mistakes. But when they do,

they quickly identify and debug them. Prudently they

bookmark bugs, make list of silent bugs that compiler fails to

adequately reveal. One of such stubborn mistakes is in

reference to Microsoft DataGridView Control (DGVC):

InputToUse = DGV.Item (Column, Row)

This line of code is not highlighted during coding as if it is

okay. Instead of the required value, identified by the zero-

based column and row, to be assigned to InputToUse object

variable, an alien string is obtained. This is simply because the

Value Property is inadvertently omitted. The good counsel of

John (2013)[6] is appropriate here: “Don’t be paranoid about

making mistakes and failing---fear will paralyze and destroy

your progress, much more than mistakes will, but, instead be

cautious, careful and deliberate in your actions. If you make a

mistake, learn from it”. When using DGVC, therefore, never

fail to zero-based the column and row; remember that column

precedes row and without the Value property (InputToUse =

DGV.Item (Column, Row).Value), no valid input is fetched

from the DGVC.

Another thing that characterized the thinking of SDs is to

always close opened files when done with them. All objects

such as pen, brush etc in Graphics Device Interface Plus

(GDI+), as well as database objects like DataAdapter and

Connection objects should be closed and disposed of to free

memory for other uses. Therefore, all SDs always remember

certain things during coding and before packaging. Indeed, at

design time a list of useful coding parameters should be jotted

down. This list will vary from one project to another.

However, there are certain things that are common to average

projects such as opening and closing files, which SDs never

toy with.

All rational SDs never waste functioning codes. These codes

may not have instant use, yet they keep them for later use or

for neighbour’s (other developer’s) requests and needs.

Hence, SDs have repository of codes and working

functionalities that can be summoned at any given time for

use. Because they are not selfish, SDs generously assist others

with their well-crafted working tools. Also, being not a father-

Christmas, SDs do not just throw about codes. By Inspiration

Matthew wrote, “Therefore, “Ask, and it will be given to you;

seek, and you will find; knock, and it will be opened to you”

(Matthew 7:7). Similarly, blessed are those who ask for server

methods for they shall receive working class library of them.

Blessed are those who seek for code-help for they shall

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

4

receive myriad of them. Blessed are those who knock the door

of functionalities for they shall receive uniquely working

functionalities written in well-known computer language(s).

4. DEVELOPING THE SERVER AND

PACKAGE
A class library, dvOpticsCls was developed for three optical

models: Snell’s law, refractive index of a prism and

Brewster’s law. Apart from dvSetInputs method mentioned

earlier, the overloaded dvSetDGVTitle method inserts title in

DGVC. It allows user to vary DGVC titles as seen in Tables

1-6. The dvChkDGV function checks the DGVC to be valid

for input columns. If the column(s) in the DGVC is less than

the required for data inputs, error message is given and the

program terminated. For single result computation, a single

function each is adequate to handle the models; also, three

functions for multiple result generation, but only two

methods. Where applicable, the functions call a method to

perform degree to radian conversion. The dvCalOpticsModels

method for single result accepts an enumeration class of five

members and switches to the appropriate function, which

computes results and returns it, together with the workings.

The second overload of dvCalOpticsModels method computes

multiple results, base on Enumeration Type specifies and

returns both input and result (s) in a reference DGVC.

A client application was developed with Microsoft Visual

Studio, 2013 to expose the functionalities in dvOpticsCls

library. When the Equations main menu is clicked, six

submenus are displayed. Each of them will generate the

models and combinations of the models.

The Computations main menu has seven submenus under it.

Each of the submenus has two submenus of Single Result and

Multiple Interactive Data Entry Result. The results in Tables

1-6 reflect the SDs’ thinking. The accurate results in Tables 1,

3 and 5 are enough to show the optical models results, but in

order to provide more information that could aid learning and

teaching real time, Tables 2, 4 and 6 are provided, which

display the various parts of the equations. Note that the last

columns of all the tables are identical. By showing the various

parts, we have saved a lot of time and efforts during learning

and teaching. What is displayed depends on the user’s

need(s). Here, we resolve to provide swift teaching-learning

situation, so it is appropriate to show the parts. Also, all the

times any of the optical model is computed, the equation is

shown to assist learning and teaching through a property

summoned from the dvOpticsCls library.

Table 1: Snell’s Law, n No Parts Table 2: Snell’s Law with Parts

 i r Snell Law, n i r Sini Sinr Snell Law, n

dv 30 NR

30 NN NN NN

30 52 0.63 30 52 0.5000000 0.7880108 0.63

23 40 0.61 23 40 0.3907311 0.6427876 0.61

90 12 4.81 90 12 1.0000000 0.2079117 4.81

77 83 0.98 77 83 0.9743701 0.9925462 0.98

Table 3: Prism Refractive Index, n No Parts Table 4: Prism Refractive Index, n with Parts

A D n A D Sin(A+D/2) Sin(A/2) n

70 55.00 1.5464562 70 55.00 0.887010833 0.573576436 1.5464562

43 8.45 1.1843131 43 8.45 0.434052212 0.366501227 1.1843131

33 42.00 2.1434103 33 42.00 0.608761429 0.284015345 2.1434103

27 60.00 2.9486753 27 60.00 0.688354576 0.233445364 2.9486753

80 39.23 1.3420391 80 39.23 0.862646119 0.642787610 1.3420391

Table 5: Brewster’s Law, n No Part Table 6: Brewster’s Law, n with Part

i n = tani i Radian_i n = tani

40 0.8390996 40 0.6981317 0.8390996

70 2.7474774 70 1.2217305 2.7474774

84 9.5143645 84 1.4660766 9.5143645

63 1.9626105 63 1.0995574 1.9626105

12 0.2125566 12 0.2094395 0.2125566

5. RAINFALL HEIGHT
HeightSoft is a software package for computing Ajayi-

Barbaliscia, International Union of Telecommunication Radio

group (ITUR) and Sarkar rain height models. The need to

include more rain height models in this package has been

pointed out [14]. We now include Pontes et al. rain height

models and rename the application as RainHeightSoft 1.0.

Rain height, on which slant path rain attenuation prediction

depends, is regarded as the 0oC isotherm height; beyond

which there is no rainfall, hence no rain attenuation due to the

absence of rainfall [15]. Data from three countries are used in

this work from ten Nigeria sites; five each from Brazil and

South-Africa.

Six menus for single and multiple results are added to the

package which screenshot is not shown for space, but see[14].

The models could be displayed singly and in combinations.

For instance, the AB_Pontes Models submenu produce this

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

5

result, which when compared with the models’ sources [15-

17] are faithfully reproduced.

Ajayi-Barbaliscia Northern Hemisphere

Rain Height,hfr = 4.6 - (0.084 * (Lat - 26.0))

Ajayi-Barbaliscia Southern Hemisphere

Rain Height,hfr = 4.6 - (0.1 * (Lat - 26.0))

Computing Pontes et al. Rainy Model; 0 <= Latitude < 23

Rain Height,hfr = 4.9 - (0.004 * Lat)

Computing Pontes et al. Rainy Model; Latitude >= 23

Rain Height,hfr = 7.3 - (0.115 * Lat)

Computing Pontes et al. Non-Rainy Model;

0 <= Latitude < 20

Rain Height,hfr = 4.9- (0.009 * Lat)

Computing Pontes et al. Non-Rainy Model;

Latitude >= 20

Rain Height,hfr = 6.0 - (0.067 * Lat)

Also, for Sarkar Models SM_SS_SW, we have:

Sarkar Monsoon Model (SM)

Rain Height,hfr = 4.063 + (0.146 * Lat) - (0.0935 * Lat * Lat)

+ (0.000334 * Lat * Lat * Lat)

Sarkar Summer Model (SS)

Rain Height,hfr = 3.733 + (0.309 * Lat) - (0.02 * Lat * Lat) +

(0.000566 * Lat * Lat * Lat)

Sarkar Winter Model (SW)

Rain Height,hfr = 4.579 + (0.077 * Lat) - (0.0027 * Lat * Lat)

+ (0.000098 * Lat * Lat * Lat)

Where: Lat = Latitude(deg.)

Other combinations are expected for the rest models. The

dynamically generated equations could be utilized real-time

for learning and teaching.

When the single result Pontes et al. rainfall height Rainy

model menu is clicked, a customized user interface(UI) is

displayed for latitude value entry, so also for Non-Rainy

model. For Ijebu-Igbo site in Nigeria, the results for both

models are:

Ijebu-Igbo in Nigeria

Computing Pontes et al. Rainy Model 0 <= Latitude < 23

Rain Height,hfr = 4.9 - (0.004 * Lat)

Lat=6.59

Rain Height,hfr = 4.9 - (0.004 * 6.59)

Rain Height,hfr = 4.874

Computing Pontes et al. Non-Rainy Model

0 <= Latitude < 20

Rain Height,hfr = 4.9- (0.009 * Lat)

Lat=6.59

Rain Height,hfr = 4.9- (0.009 * 6.59)

Rain Height,hfr = 4.841

For multiple interactive data entry results, the same UI is

displayed, but the customized control visible property is true

instead of false as it was for single result. Also, a Compute

main menu is enabled for calculation to take place. Up to two

thousand interactive data entry are permitted. After entering

latitude values for 19 sites and the Compute menu clicked, the

results in Table 7 are generated for both PR and PNR for nine

Nigeria, five both for Brazil and South-Africa sites. The

station names are in column1, while the input latitude (Lat)

occupies column 2; columns 3 and 4 are for the results

computed.

Table 7: Pontes et al. Rainfall Height Models Results

for Nigeria, Brazil and South-Africa

Nigeria Sites

 Station Lat PR PNR

Benin 6.19 4.875 4.844

Lokoja 7.47 4.870 4.833

Minna 9.37 4.863 4.816

Jos 9.52 4.862 4.814

Toro 10.03 4.860 4.810

Bauchi 10.17 4.859 4.808

Zaria 11.05 4.856 4.801

Potiskum 11.42 4.854 4.797

Maiduguri 11.51 4.854 4.796

BRAZIL SITES Lat PR PNR

Belem 1.23 4.895 4.889

Manaus 3.90 4.884 4.865

Fernando Noronh 3.51 4.886 4.868

Cachimbo 9.22 4.863 4.817

Vilhena 12.44 4.850 4.788

SOUTH AFRICA

SITES

Lat PR PNR

Eastern CapeBhisho 35.21 3.251 3.641

Port Elizabeth 33.57 3.439 3.751

Umthatha 31.50 3.678 3.890

Port Alfred 33.50 3.448 3.756

FreeState_Bethlehem 28.23 4.054 4.109

With single and multiple results generation along with the

workings, users are empowered with a tool for research and

education.

6. PERFORMANCE
The thinking of SDs rob off on their applications; their works

expose their tastes and qualities for such thing as colour and

images; menu and controls arrangement. What are presented

are the choices of the SDs to a large extent as could be seen in

this work. However, the clients they develop for also dictate

what they want, which the SDs should comply with. Codes

are written, gleaned and tied up to form a unit whole that

solves human problems. SDs are very conscious of speed

wherever speed matters. Application development implies a

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

6

thoughtful, dedicated and vigilant craftsmanship. Software

returns more revenue than selling pepper in the market. It

gives the peak of satisfaction as one sees his/her software

packages running accurately. Also, any nation economy can

securely depend on software application development.

It was found that our exposed functionalities in dvOpticsCls

class library produced the same results as in previous works

with additional flexibility of varying the decimal points via a

property when compared with other previous works [18-25].

The property could be set to suit users’ desire to any level of

decimal points, including scientific notation. More so, the

resulting client application used in testing the optical class

library is very flexible to use, but not yet in its final form.

The Pontes et al. rainfall height models have two components-

--Rainy(PR) and Non-rainy(PNR); the PR varies between

4.85-4.87 for Nigeria, 4.85-4.90 for Brazil and 3.25-4.05 for

South-Africa. But for PNR, we obtained respectively for

Nigeria, Brazil and South-Africa, 4.80-4.83;4.79-4.89 and

3.64-4.11. PR is greater than PNR for all the sites, except

South-Africa where the reverse is the case. Since the results

here are consistently above 4km for Nigeria and Brazil, the

effective rain height cannot be taken as approximately

practically constant at 4km at tropical and equatorial zones

[26]. Unlike Nigeria and Brazil, PNR will account for South-

Africa better than PR. Up to the rain height computed, vertical

rainfall structure is assumed uniform[15-16, 27], but this has

been found not to be totally correct in practice [28]. To

prevent unnecessary computations and results, we insert the

appropriate conditional statements in our codes to check

model limits.

When the latitude is small as in Belem of Brazil and Benin in

Nigeria, both PR and PNR are higher than when the latitude is

higher (see Vilhena and Maiduguri sites in column 1, Table

7). The higher the latitude, the smaller the rain height as

depicted for South-Africa sites. More so, during wet period in

Nigeria and Brazil, rain height is more than dry season. These

information will aid in modeling earth-satellite slant path

rainfall attenuation, which depends on rainfall height.

Instead of using DGVC, we could have used generic list

collections or Array or ArrayList, one for input and another as

output. But the use of DGVC is the author’s preference being

in form of spreadsheet that seamlessly display its contents. By

including stepwise-workings, we attract more users to our

applications and provide much-needed education package.

7. CONCLUSION
Few folks directly impact the society positively and deeply as

those who develop software applications to solve human

problems. The qualities of Software Developers (SDs) have

been discussed and how these impact on their thinking and

package development. The accurate results obtained depict

that SDs thinking sternly sway their codes and packages, and

uncover numerous nature of SDs.

SDs are sure revenue generators. Doing things in diverse ways

imply flexibility, which human nature craves for. The Pontes

et al. rainfall height methods, as well as the optical models’

dynamic link library, work accurately to specifications and the

results obtained tally with existing ones. They promise to

hasten application development. For the three sites

considered, it is in South-Africa sites that PNR is higher than

PR. The results from the sites indicate that effective rain

height cannot be taken to be constant; there is need for

adjustment based on sound experimental results.

More codes are expected to be written, and comparative

analysis of the rainfall height models will indicate which one

best suit a particular location. Additional models are required

in the servers for optics and rainfall height in order to boost

the servers capability and usefulness.

8. ACKNOWLEDGMENT
Scripture taken from the New King James Version. Copyright

© 1982 by Thomas Nelson, Inc. Used by Permission. All

rights reserved.

9. REFERENCES
[1] Adenugba, D.A. (2008). Development and Applications

of a Customized Active X Control for Data Entry. J. Res.

Sc. Mgt. 6(1) 81-90.

[2] Evangelos Petroutsos (2010). Mastering Microsoft

Visual Basic 2010. Wiley Publishing Inc. Pp. 1-1023.

[3] Adenugba, D. A. and Adelusi Temitope Isaac (2011).

Code Modularization for Swift Software Package

Development. J. Sci. & Ind. Studies. 9(1) 33-38.

[4] John Sonmez (2009). Great Developer Are Librarians.

http://simpleprogrammer.com/2009/12/08/great-

developer-are-librarians/ Accessed May, 2014.

[5] John Sonmez (2012). The 4 Most Important Skills for a

Software Developer. http://simpleprogrammer.com

/2012/12/09/the-4-most-important-skills-for-a-software-

developer/ Accessed June 2014.

[6] John Sonmez (2013). What Software Developers Can

Learn From Weiner. http://simpleprogrammer. com/

2013/07/29/what-software-developers-can-learn-from-

weiner/ Accessed July 2014.

[7] Andy Lester (2014). Seven Things You should Never

Code Yourself. http://blog.newrelic.com/ 2014/07/08/7-

things-never-code/ Accessed July 2014.

[8] Gabriel Zowan (2012). The Forces Against Reform. The

Guardian Monday October 29, 2012, Back page.

[9] www.celebritynetworth.com/articles/entertainment-

articles/25-richest-people-lived-inflation-adjusted/

[10] Asmita Bhattacharyya and Bhola Nath (2011). Women in

Information and Communications Technology. Asian J.

Science and Technology. 2(3). Pp. 006-014.

[11] CSTA Voice. Vol.8. Issue 4. September 2012 p.7.

[12] www.bls.gov/ooh/computer-and-information-

technology/home.htm

[13] Tim Patrick (2008). Programming Visual Basic 2008.

O’Reilly Media, Inc. Pp. 1-725.

[14] Adenugba, D.A, Ojo, J.S and Balogun, E.E, (2010).

Development Of A Customized Computer Software

Package For Rain Height Evaluation. J. of Inst. of

Mathematics & Computer Science (Computer Science

Ser.). 21(2). 141-152.

[15] Ajayi, G.O, Feng S, Radicella, S.M and Reddy, B.M.

(1996). Handbook On Radio Propagation Related To

http://blog.newrelic.com/
http://www.celebritynetworth.com/articles/entertainment-articles/25-richest-people-lived-inflation-adjusted/
http://www.celebritynetworth.com/articles/entertainment-articles/25-richest-people-lived-inflation-adjusted/
http://www.bls.gov/ooh/computer-and-information-technology/home.htm
http://www.bls.gov/ooh/computer-and-information-technology/home.htm

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 8– No.4, February 2015 – www.ijais.org

7

Satellite In Tropical And Subtropical Countries. Pp.3-55,

140-186.

[16] ITU-R; Recommendation ITU-R, Rain Height Model for

Prediction Methods. p. 839-3.

[17] Pontes, M.S; L.A.R Silva Mello and R.S.L Souza (1994).

Radiometric Measurements Of Effective Rain Height,

CLIMPARA, Moscow, Russia.

[18] Jay Orear (1979). Optics. In: Physics. Macmillan

Publishing Co., Inc. Collier Macmillan Publishers.

[19] Nelkon, M (1978). Optics Section In Principles of

Physics. CSS Bookshops and Hart-Davis Educational. 7th

ed. Pp. 257-335.

[20] http://en.wikipedia.org/wiki/Brewster%27s_angle.

Accessed June, 2014.

[21] http://www.princeton.edu/~achaney/tmve/wiki100k/docs

/Brewster_s_angle.html Accessed June, 2014.

[22] http://hyperphysics.phy-astr.gsu.edu/hbase/

phyopt/polref.html. Accessed July, 2014.

[23] http://vallance.chem.ox.ac.uk/pdfs/ReflectionRefraction.

pdf. Accessed July, 2014.

[24] http://www.physnet.org/modules/pdf_modules/m225.pdf.

Accessed August, 2014.

[25] Vahid Tayefeh (2013). Experiment 11: Dispersion From

a Prism and Index of Refraction.

http://www.academia.edu/5154601/Experiment_11.

Accessed August, 2014.

[26] Assis, M.S (1993). Some Remarks On The Spatial

Structure Of Rain In Tropical And Equatorial Regions.

ISRP’93, Beijing, China.

[27] ITU-R 838-2 (2003). Specific Attenuation Model For

Rain For Use In Prediction Methods. Pp.1-5.

[28] Kubista.E, I.P.V Baptista, W.L Randeu AndW.Riedler

(1990), Preliminary Evaluation Of Vertical Rain

Structure Using Frequency- Agile Dual Polarization

Radar, Rio. Pp. 137-142.

APPENDIX A
 ''' <summary>

 ''' Computes Multiple Results for Snell’s Law.

 ''' </summary>

 ''' <param name="DGVIn"></param>

 ''' <returns></returns>

 ''' <remarks>Row 1 not read being for data title, so start

reading from row 2 zero-based(2-1=1)</remarks>

 Private Function dvCompSnellLaw(ByRef DGVIn As

DataGridView, ByVal dvReportBack As Boolean) As

String

 Try

For gr As Integer = 1 To DGVIn.RowCount – 2 'Less 2: 1

for fixed Row and 1 for Title Row.

 'Read Inputs to Use. Column and Row are zero-based.

 dvValu1 = DGVIn.Item(0, gr).Value 'i

 dvValu2 = DGVIn.Item(1, gr).Value 'r

 'Checks Inputs, reject negative values. Computes Result and

Returns it.

dvResult = dvCalOpticsModels(EnumOptics.SnellLaw)

'Store Result in a reference DGVControl. dvResultColl is

gotten from the method that calls this function.

DGVIn.Item(dvResultColl, gr).Value = dvResult

Next gr

 Catch ex As Exception

‘vbCrLf = Carry Return Line Feed. Moves it to the next line

dmsg = ex.Message.ToString & vbCrLf & "Ref:...

dvCompSnellLaw"

 'Display Message on Request from user, if

 dvReportBack = true, else don’t report.

 If dvReportBack Then MsgBox

 (dmsg, MsgBoxStyle.Critical,

 "Computing Snell's Law")

 Return "NR"

 End Try

 Return dcomm 'dcomm = Okay; indicates

 that operation is successful. Author’s style.

 End Function

http://en.wikipedia.org/wiki/Brewster%27s_angle
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Brewster_s_angle.html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Brewster_s_angle.html
http://hyperphysics.phy-astr.gsu.edu/hbase/%20phyopt/polref.html
http://hyperphysics.phy-astr.gsu.edu/hbase/%20phyopt/polref.html
http://vallance.chem.ox.ac.uk/pdfs/ReflectionRefraction.pdf
http://vallance.chem.ox.ac.uk/pdfs/ReflectionRefraction.pdf
http://www.physnet.org/modules/pdf_modules/m225.pdf
http://www.academia.edu/5154601/Experiment_11

