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ABSTRACT 
The problem of creating a minimal NFA is a primal 

(fundamental) problem. Reducing the size of NFA by using 

NFA Reduction Algorithm has been shown to reduce 

importantly the search time. This paper innovate a new NFA 

reduction algorithm for the state minimization of NFA. The 

analysis of the proposed algorithm is given and also 

demonstrates the results of the numerical experiments. This 

paper conceives the problem of reducing the number of state 

and transition of Non Deterministic Finite Automata. 

Numerical experiments show that NFA reduction algorithm 

produces a minimal automation in all most condition. NFA 

reduction algorithm also resolves the complexity of Kameda-

Weiner algorithm. This paper shown empirically that these 

algorithm are effective in largely reducing the memory 

requirement of NFA minimization algorithm. 

Keywords 
Non Deterministic Finite Automata (NFA), Simplest 

Automation Matrix, Rearward Automaton Matrix, Simplified 

Functional Matrix (SFM). 

1. INTRODUCTION 
NFA Reduction algorithms exploit unique features of the 

minimized NFA to achieve high throughput. In this paper, 

inquire pertinence of NFA reduction techniques – a 

conventional algorithm to reduce the number of transitions 

and states in NFA. The paper presents NFA reduction 

techniques, with a different reduction time complexity and 

power. Our focus and main contribution is a study of NFA 

reduction techniques for creating minimal NFA. In particular, 

• Surveyed different variants of NFA reduction 

techniques. 

• Evaluated Kameda Weiner algorithm for NFA 

Reduction and provide new algorithm for NFA 

minimization. 

• Modified the Kameda Weiner algorithm for NFA 

reduction to reduce its complexity. 

The state minimization of deterministic finite automata 

(DFAs) is well-known but the state minimization of 

nondeterministic finite automata (NFAs) is more complicated. 

Finite automata (FA) are widely used in various fields and 

peculiarly reorganization of formal Languages. We provide 

some necessary definitions.  

A nondeterministic finite automaton (or NFA) can be defined 

as a 5-tuple (Q,,, T,  qD , F ) Where, 

-Q is a finite set of states.  

- is the input alphabet  

-T: Q( U )  Q is the transition function. 

   kqqqxq ,,,, 21  .  

  

                x 
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(Resulting states with following one transition with symbol x)                                      

-qD  Q is the starting state. 

-F Q represents a set of final states. 

Finite automata used to recognize and define the regular 

languages. Two automata are called equivalent if they 

recognize one and the same language. For each NFA the 

equivalent DFA may be constructed using the powerset 

construction process (each state of such DFA is a subset of 

states of the original NFA). NFAs recognize regular 

languages, and find that any string is in the language it 

represents. Consider the following regular language over the 

alphabet  = {a, b} (represented by the regular expression 

                    aa*b  

This language can be represented by the following NFA.  

                          

 

 

                                x                 y                 z 

 

The rearward word (w) of a word (w) {w=x1, x2.... xn} will be 

w= xn, xn-1… xi and if we have a language L then the rearward 

language of a language (L) will be L = {w|wЄi} for an 

automaton Z= (Q,∑,∆,I,F) the rearward automaton will be, 

Z= (Q,∑,∆,I,F). For a granted language L if DFA 

distinguishes the language and it also has the minimal 

possible no. of states then this type of automata is known as 

Orthodox Automata and for rearward language L if DFA 

recognize the rearward language L and it also has the minimal 

possible number of states then this type of automata is known 

as Rearward Orthodox Automata. The NFA state 

minimization problem can be defined as follows: find an 
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automaton which is equivalent to given NFA with minimum 

possible number of states. Note that solution of this problem 

may not be unique.  

2. RELATED WORK 
The paper by Michael Albert and Steve Linton [6] on “A 

Practical Algorithm for Reducing Non-Deterministic 

Finite State Automata” give a more efficient algorithm for 

constructing the same equivalence, together with results from 

a computer implementation”. We are inspired by the work of 

Guangming Xing [1], shown that no auxiliary states can be 

removed without violating the describing properties of 

Thompson NFA in his paper “Minimized Thompson NFA”. 

In this paper ‘Reducing the Size of NFAs by Using 

Equivalences and Preorders’ Lucian llie, Roberto Solis-Oba, 

Sheng yu clubbed the concept of Equivalences and Preorders 

for minimization of NFA. Hermann Gruber1 and Markus 

Holzer2 [8] proposed the investigation of computational 

complexity of the nondeterministic finite automaton (NFA) 

minimization problem for finite and unary regular languages, 

They show this on his paper “Computational Complexity of 

NFA Minimization for Finite and Unary Languages”. The 

paper ‘Local Search Heuristics for NFA State Minimization 

Problem* by Andrey V. Tsyganov [9] introduce new heuristic 

methods for the state minimization of nondeterministic finite 

automata. These methods are based on the classical Kameda-

Weiner algorithm joined with local search heuristics. We have 

used this concept for minimization of NFA.  The concept of 

using Hash Table for minimization of DFA is very useful 

concept for creating a minimal DFA. This concept is given by 

Vishal Garg , Anu in 2013. Yi. Liu, Taghi M. Khoshgoftaar 

[12] in DFA Minimizing State Machines Using Hash- Tables. 

. Henrik Bj¨orklunda, Wim Martens [13] have shown that no 

such significant extensions exist, under the assumption that 

PTIME 6= NP. and also proved that minimization is NP-hard 

for all finite automata classes that contain the NFAs that 

accept strings of length three. In this paper ‘NFA Reduction 

for Regular Expressions Matching Using FPGA’ Vlastimil 

Koˇsaˇr, Martin ˇZ ´adn´ık, Jan Koˇrenek [11] proposed to 

accelerate regular expression matching via mapping of a 

nondeterministic finite automaton into a circuit implemented 

in an FPGA. These algorithms exploit unique features of the 

FPGA to achieve high throughput. Paper by Manuel Vázquez 

de Parga, Pedro García, Damián López [14] proposed a 

polynomial-time deterministic finite automaton minimization 

algorithm directly derived from Brzozowski’s double reversal 

algorithm. We take into account the framework by 

Brzozowski and Tamm, to propose an atomization algorithm 

that allows us to achieve polynomial time complexity. We are 

inspired by the work of Jean Vuillemin, Nicolas Gamaon 

present a cubic time algorithm to reduce a xor-automaton A 2 

NXA to a minimal formM = MXA(A) which accepts ¤©(M) 

= ¤©(A), within the least possible number of states. It is a 

finite strong normal form SNF: ¤© (A) = ¤© (A0), MXA (A) 

= MXA (A0) and automata equivalence is efficiently decided 

through reduction to the SNF. Wojciech Wieczorek clubbed a 

Supercomputers with nfa, treated the induction of NFAs based 

on finite languages. That is constituted by the following task: 

given two disjoint finite sets S+; S- of words and an integer k 

> 0, build a k-state NFA that accepts the language S+ and 

does not accept any word from the set S�. We are inspired by 

the work of C. Hsiang Chan, R. Paigeb [10] overcome 

drawbacks of both methods with a O(r) time O(s) space 

algorithm to construct an O(s) space representation of 

McNaughton and Yamada’s NFA. Given any set V of NFA 

states, our representation can be used to compute the set U of 

states one transition away from the states in V in optimal time 

0( 1 V I+ 1 U I). McNaughton and Yamada’s NFA requires O 

(1 VI x I UI) time in the worst case. 

3. OUR FRAMEWORK 
By the help of NFA reduction algorithm we have to minimize 

the non Deterministic finite automata. If we have a NFA with 

following condition: 

-Initial state has a self loop and incoming or outgoing 

transition.  

For that type of condition we will use NFA Reduction 

Algorithm. 

Steps of NFA Reduction Algorithm: 

1. Firstly we have drawn a transition table of given 

NFA (Which satisfy the following condition). 

2. Then we construct Simplest Automaton Matrix with 

the help of transition table. 

3. Now we draw a transition graph of following NFA 

with opposite transition. 

4. Next we create a transition table of rearward NFA 

and construct the Rearward Automaton Matrix. 

5. With the help of simplest automaton and rearward 

automaton matrix, we will form a Simplified 

Functional Matrix (SFM). 

Then, for each nonempty states  pi   of B i 1,  , m 

and  q j   of 

C 

 

j  

n  the element rij   of the SFM 
is defined by the following formula  

  0, p q 
j ,  

   i   

  
r

ij 


 1, p q j .  

 

Let X be a subset of rows and Y a subset of columns of the 

SFM. 

 

6. Then we compare the values of SFM by this 

function: 

(i) (xi∩yi) → U 

(ii) (ii) (xiÙyi) - (xi∩yi)→V 

(iii)  j:U→ V 

NFA reduction algorithm exploits unique features of the 

minimization NFA to achieve high throughput. 

        

We have taken a transition graph of NFA. 

                     a, b       a, b  

                         a                         b 

Table 1: Transition Table of given Diagram 

State  Input a Input b 

1 1,2 1 
 

1 2   3 
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2  Ǿ 3 

3 3 3 

Table 2: Simplest Automation Matrix 

 

State Input a Input b 

1 1,2 1 

1,2 1,2 1,3 

1,3 1,2,3 1,3 

1,2,3 1,2,3 1,3 

 

Diagram of  NFA with opposite transition 

                    a, b                              a,b 

                             a   b 

Table 3: Transition table of rearward NFA  

State Input a Input b 

1 1 1 

2 1 Ǿ 

3 3 2,3 

 

Table 4: Rearward Automaton Matrix 

 

State Input a Input b 

1 1 1 

 

For creating SFM table we will take the state column of simplest 

automation matrix and for SFM rows we will take the state column of 

rearward automation matrix. 

 

Table 5: Simplified Functional Matrix(SFM) 

 

        xi/yi {1}  

        {1}   1 

     {1,2}   1 

     {1,3}   1 

  {1,2,3}   1 

 

The elements of the SFM is defined by the following formula 

 

   x∩y= Ǿ→ 0 

   x∩y= Ǿ→ 1 

 

7. Now we apply these steps on the SFM table 

 

Steps are: 

(i) (xi∩yi) → U 

(ii) (xiÙyi) - (xi∩yi)→V 

(iii)  j:U→ V 

 

[1].   (xi∩yi) →(1∩1) → 1=U 

         (xiÙyi) - (xi∩yi)→(1Ù1)-(1∩1) →1=V 

          U→V means 1→1 

Now we check that transition (1→1) is exist or not in the original 

NFA. We can see that transition (1→1) is  

exist, so the transition graph will be, 

 

                  a, b 

 

 

                                                                                                 

  [2].    (xi∩yi) → {(1,2) ∩(1)} →1=U 

          [(xiÙyi)- (xi∩yi)] →{[(1,2)Ù(1)]-[(1,2)∩1] →2=V 

          U→V means 1→2 

Now we check that transition (1→2) is exist or not in in the original 

NFA. We can see that transition   

(1→2) is exist, so the transition graph will be, 

 

 

                    a, b     

                      a    a 

[3].  (xi∩yi) →{(1,3) ∩(1)} →=U 

        [(xiÙyi)- (xi∩yi)] →{[(1,3)U(1)]-[(1,3)∩1]} →3=V 

        U→V means 1→3 

 

But there is no transaction between state 1 and state 3 in given NFA. 

So the minimal NFA will be same as above. 

 

[4].  (xi∩yi) →{(1,2,3) ∩(1)} →1=U 

        [(xiÙyi)-(xi∩yi)]→{[(1,2,3)U(1)]-[(1,2,3)∩(1)]}→ 

        (2,3)=V 

    

U→V  means 1→(2,3) 

We have a transition b/w state 1&2 but there is no transition between 

state 1 and state 3 in original NFA. So 

the final minimal NFA will be: 

                    a, b     

                      a   a 

 

Algorithm:  NFA Reduction Algorithm 

Require NFA X 

1. Construct Simplest Automaton Matrix and  

Rearward Automaton Matrix. 

 

2. Construct Simplified Functional Matrix (SFM). 

3. Find all the exits combination with the help  

of these function, 

(xi∩yi) → U 

               (xiÙyi) - (xi∩yi)→V 

                j:U→ V 

4. Find minimum legitimate cover(s) of  

SFM and construct minimum state NFA(s). 

Ensure: Minimum state NFA(s) equivalent to A  

1 2   3 

 1 

1  2 

1 
 2 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.3, February 2015 – www.ijais.org 

 

30 

4. CONCLUSION 
In the present paper we have considered new Reduction 

algorithms for NFA state minimization problem which is 

known to be computationally hard. These algorithms are 

widely used in combinatorial optimization. The essential 

feature of the proposed algorithm is that the most time 

consuming part of the exact algorithm is replaced with fast 

local search function. Numerical experiments have shown that 

such type of concept is much less time consuming and allows 

obtaining acceptable results. In the future we plan to 

concentrate on the other time consuming part of the Ka-meda-

Weiner algorithm, i.e. the exhaustive search for grids of the 

RAM. 
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