

Artificial Bee Colony Algorithm with Adaptive Explorations and Exploitations: A Novel Approach for Continuous Optimization

Mohammad Shafiul Alam Department of Computer Science and Engineering Ahsanullah University of Science and Technology Dhaka-1208, Bangladesh Md. Monirul Islam Department of Computer Science and Engineering Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh Kazuyuki Murase Department of Human and Artificial Intelligence Systems University of Fukui Fukui 910-8507, Japan

ABSTRACT

A proper balance between global explorations and local exploitations is often considered necessary for complex, high dimensional optimization problems to avoid local optima and to find a good near optimum solution with sufficient convergence speed. This paper introduces Artificial Bee Colony algorithm with Adaptive eXplorations and eXploitations (ABC- AX^2), a novel algorithm that improves over the basic Artificial Bee Colony (ABC) algorithm. ABC-AX² augments each candidate solution with three control parameters that control the perturbation rate, magnitude of perturbations and proportion of explorative and exploitative perturbations. Together, all the control parameters try to adapt the degree of global explorations and local exploitations around each candidate solution by affecting how new trial solutions are produced from the existing ones. The control parameters are automatically adapted at the individual solution level, separately for each candidate solution. ABC-AX² is tested on a number of benchmark problems of continuous optimization and compared with the basic ABC algorithm and several other recent variants of ABC algorithm. Results show that the performance of ABC-AX² is often better than most other algorithms in comparison, in terms of both convergence speed and final solution quality.

Keywords

Artificial bee colony algorithm; Exploration and exploitation; Continuous optimization; Meta-heuristic optimization.

1. INTRODUCTION

The Artificial Bee Colony (ABC) algorithm is a recently introduced [1] swarm intelligence algorithm that tries to mimic the intelligent food foraging behavior of honey bees. Since its advent, the ABC algorithm has been successfully applied to wide and diverse range of problems, such as continuous optimization [2], discrete optimization [3], constrained optimization [4], multi-objective optimization [5], design optimization [6], training neural network [7], design of digital IIR filter [8], PID controller [9], parameterizing of milling processes [10] and so on [11]. ABC is simple in concept, easy to implement and requires fewer control parameters [12]. ABC shows very competitive and often better performance in comparison to many other existing evolutionary and swarm intelligence algorithms [2], such as genetic algorithm (GA), differential evolution (DE) and particle swarm optimization (PSO).

Similar to other population based meta-heuristic algorithms, ABC also has its own challenges and limitations. For example, ABC can prematurely converge to local optima, especially for complex high dimensional multimodal problems [2,13]. Also, the convergence speed of ABC is usually slower than some other meta-heuristic algorithms, such as DE and PSO, especially on unimodal problems [2]. Another problem that may occur with ABC is fitness stagnation [14], where the entire population of solutions stops improving, even without converging to some local optima, because the fitness based selection scheme fails to find new, better trial solutions that can enter the population by replacing the existing solutions. All these problems originate from a lack of balance between global explorations and local exploitations during the optimization procedure. ABC drives its search towards global optimum with two operators perturbation and selection. The perturbation operation is responsible for explorations by random variations of existing solutions, while the fitness based selection operation performs exploitations of the search regions explored so far. However, both these operations are more aligned towards exploitations than explorations. The perturbation operation of ABC perturbs a single parameter of an existing solution and thus produces the new trial solution in the neighborhood of the original solution, which is exploitative. The selection operation of ABC can accept only the better solutions, which is exploitative too. This paper introduces ABC with Adaptive eXplorations and eXploitations (ABC-A X^2), a novel improvement over the basic ABC algorithm that tries to automatically adapt the degree of explorations and exploitations, separately for every candidate solution of the population. ABC AX² augments each candidate solution x_i with three control parameters– p_i , q_i and η_i , each of which affects the perturbation operations on xi to control the degree of explorations and exploitations around x_i . The values of p_i , q_i and η_i are automatically adjusted, cycle (i.e., iteration) by cycle, using adaptive and self-adaptive techniques to increase the likelihood of producing more effective perturbations on x_i . ABC-AX² is tested on a benchmark suite of 30 continuous functions of different complexity. Results are compared with the basic ABC [2] and several other recent variants of ABC (e.g., [15]–[21]), which show that ABC-AX² often performs better than most other ABC-variants in comparison.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 8– No.2, January 2015 – www.ijais.org

2. THE ABC ALGORITHM

Honey bees in nature have to forage over a vast area in search of good sources of nectar. After an initial exploration stage, more bees are employed to collect honey from more profitable food sources whereas fewer bees are assigned to the less worthy sources. After returning the hive, each bee goes to the 'dance floor' and performs a special dance known as the 'waggle dance' to share the information of the food source it has found. The 'onlooker' bees, waiting around the dance floor, observe the waggle dances of the 'employed' bees and pick any of them to follow and collect nectar from the vicinity of its food source. Some scout bees are also assigned for random explorations of the search space to find new food sources. The basic ABC algorithm [1,2] mimics the food foraging behavior of honey bees with the same three groups of bees - employed, onlooker and scout bees. A bee working to forage a particular food source (i.e., candidate solution) and searching only around its vicinity is called an employed bee. Onlooker bees randomly pick and follow any of the employed bees. The probability of picking an employed bee is proportional to the quality of its food source. Scout bees can perform random explorations of the search space to find new food sources. If the employed and onlooker bees, even after limit attempts, fail to find a better food position around a particular food x_i , then x_i is abandoned and replaced by initiating a scout bee and its food source is placed uniformly at random across the search space. In the original implementation of the ABC algorithm, half of the colony is employed bees, the other half is onlooker bees, and scout bees are created on demand only when a food source fails to improve with several attempts. Fig. 1 presents the pseudocode for the basic ABC algorithm. Each cycle (i.e., iteration) of ABC consists of foraging by the employed bees (steps 4-5, Fig. 1), then foraging by the onlookers (steps 7-9), followed by placement of the scout bees (step 10). Each of these stages is described below.

Foraging by employed bees: Suppose, an employed bee is currently positioned at a food source position x_i . During this stage, each employed bee searches in the vicinity of its current position x_i to produce new trial food source v_i using (1), where $j \in \{1, 2, ..., D\}$ and $k \in \{1, 2, ..., SN\}$ are randomly picked indices, *D* is dimensionality of the problem, *SN* is the number of food positions and φ_{ij} is a uniform random value ~ [-1, 1].

$$v_{ij} = x_{ij} + \varphi_{ij} \left(x_{kj} - x_{ij} \right) \tag{1}$$

Thus, the new solution v_i is produced from x_i by perturbing its randomly picked *j*-th parameter and using the information of x_i and another randomly picked solution x_k . If v_i has better 'fitness' than the old food position x_i , then x_i is replaced by v_i . For the problem of function optimization, where *f* is the function to be minimized, ABC computes the 'fitness' of a candidate solution x_i using (2).

$$fitness(\boldsymbol{x}_{i}) = \begin{cases} \frac{1}{1+f(\boldsymbol{x}_{i})}; & \text{if } f(\boldsymbol{x}_{i}) \ge 0\\ 1+|f(\boldsymbol{x}_{i})| & \text{otherwise} \end{cases}$$
(2)

Foraging by onlooker bees: During this stage, each onlooker bee randomly picks an employed bee to follow and forages only around the vicinity of its food source. The probability w_i that the employed bee with food source x_i would be picked by

an onlooker bee is computed using (3), which makes the probability w_i to be proportional to fitness(x_i).

$$w_{i} = \frac{fitness(x_{i})}{\sum_{n=1}^{SN} fitness(x_{n})}$$
(3)

Like the employed bees, each onlooker bee also employs (1) to produce trial food source v_i in the vicinity of its current food source position x_i . If v_i has better fitness than x_i , then x_i is replaced by v_i . Otherwise, v_i is discarded.

Placement of Scout bees: A scout bee is created only when a particular food source x_i failed to be improved over the last *'limit'* iterations. The bee employed to x_i now becomes a scout bee and its food source is positioned at random across the search space using (4), where j = 1, 2, ..., D and $[min_j, max_i]$ is the search space along the *j*-th dimension.

$$x_{ii} = min_i + rand (0,1) * (max_j - min_j)$$
(4)

3. EXISTING VARIANTS OF ABC ALGORITHM

There exist a number of recent studies (e.g., [15]-[24]) that try to alter the explorative and/or exploitative properties of the basic ABC algorithm. For example, ABC with self-adaptive mutation (ABC-SAM) [15] introduces an adaptive mutation scaling factor SF_i for every candidate solution x_i and tries to ensure both explorations and exploitations by periodically adjusting the value of SF_i using two different distributions one explorative and the other exploitative. The SF_i values can be randomly re initialized, if necessary, to perform more explorations. The cooperative ABC (CABC) [16] tries to enforce more explorations by decomposing the search space into multiple subspaces and by employing multiple bee colonies to explore through different subspaces. ABC with diversity strategy (DABC) [17] tries to maintain sufficient level of population diversity for conducting more explorations by alternating between two different perturbation schemes. Chaotic ABC (ChABC) [18] tries to improve the explorative characteristics of ABC by employing chaotic dynamics instead of random number generators. The Gbest-guided ABC (GABC) [20] tries to improve the exploitations and convergence speed of ABC by altering its perturbation operation using the information of the global best solution found so far. Hooke Jeeves ABC (HJABC) [21-22] is a hybrid ABC-variant that intensifies the exploitative operations by hybridizing ABC with a local search technique (i.e., the Hooke Jeeves pattern search). The Elitist ABC (EABC) [24] is another exploitative ABC variant that hybridizes ABC with two different local search operators to intensify the degree of exploitations around the best candidate solution found so far. Thus, most existing ABC-variants try to improve either the exploitative (e.g., [20]-[24]) or the explorative ([15]-[19]) characteristics of the basic ABC algorithm. The exploitative improvements are usually based on intensifying the search around the best solution(s) found so far (e.g., [20], [21], [24]) and hybridizing efficient local search operators with ABC (e.g., [21], [23], [24]), while the explorative improvements can be based on more population diversity (e.g., [16], [17]) and more explorative selection and/or perturbation operations ([15], [18], [19]). But none of these algorithms considers the individual explorative/exploitative requirements of each

candidate solution separately; rather they employ some population-wide global strategy, identically for all candidate solutions, which is significantly improved in the proposed algorithm — $ABC-AX^2$, as described in the following section.

Algorithm: Artificial Bee Colony (ABC) Algorithm

- 1: Initialize a population of SN food source positions (candidate solutions) \mathbf{x}_i , for i = 1, 2, ..., SN. Each \mathbf{x}_i is a vector of D parameters: $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{iD}]^T$
- 2: Evaluate the fitness of each food source position using (2).
- 3: repeat
- 4: For each employed bee, perturb its food source position x_i to produce a new food position v_i using (1).
- 5: Evaluate each new solution v_i by (2). If v_i has higher fitness than x_i , then accept v_i to replace x_i . Else, discard v_i .
- 6. Calculate the probability w_i associated with each food source position x_i using (3).
- 7: For each onlooker bee, assign it to a food source x_i , proportionally based on the probability w_i .
- 8: For each onlooker bee, perturb its food source position x_i to produce a new food position v_i using (1).
- 9: Evaluate each new solution v_i using (2). If v_i is better than x_i , then accept v_i to replace x_i . Else, discard v_i .
- 10: If a food source has not improved during the last *limit* cycles, then abandon it and replace it with a new randomly placed scout bee with its food source x_i produced by (4).
- 11: Memorize the best food source position found so far
- 12: Set cycle counter C=C+1
- 13: **until** *C* = Maximum cycle number (*MCN*)

14: return the best food source position (i.e., candidate solution) found so far

Fig. 1: Algorithm for the basic Artificial Bee Colony (ABC) algorithm

4. THE PROPOSED ALGORITHM — ABC-AX²

ABC-AX² tries to improve over the basic ABC algorithm by adapting and customizing the degree of explorations and exploitations at the individual solution level, i.e., separately for every candidate solution. ABC-AX² includes three control parameters $-p_i$, q_i and η_i within each candidate solution x_i . The control parameter p_i controls the proportion of explorative and exploitative perturbations; q_i controls the perturbation rate to produce v_i from x_i ; $\eta_i = [\eta_{i1}, \eta_{i2}, ..., \eta_{iD}]^T$ is a vector with D components, each one (say, η_{ij}) of which controls the distribution of the scaling factor values (i.e., φ_{ii} values in (1)) during perturbations along the corresponding (i.e., *j*-th) dimension. Each control parameter is gradually adapted to achieve higher rate of 'successful' perturbations. A perturbation is considered 'successful' only if the new trial solution v_i has higher fitness value than the original solution x_i . A detailed description of the role of each control parameter, how it affects explorations and exploitations in perturbations and how it is gradually adapted by ABC-AX² are presented in the following paragraphs.

A. Control parameter p_i for adaptive proportion of explorations and exploitations: The basic ABC algorithm uses the single perturbation scheme (1), with no attempt to differentiate between explorative or exploitative perturbations. In contrast, ABC-AX² employs two different perturbation schemes — one for explorations, the other for exploitations. Both the perturbation schemes are based on the same expression (1), but they differ in how x_i selects its supporting candidate solution x_k in (1). For explorative perturbations, x_k is picked by three-tier explorative tournament selection (3T-ER-TS), while the exploitative perturbations use two-tier

exploitative tournament selection (2T-ET-TS) procedure. Both the selection procedures are introduced in Fig. 2.

Explorative perturbation:

$$v_{ii} = x_{ii} + \varphi_{ij} (x_{kj} - x_{ij})$$
, where $x_k \sim 3\text{T-ER-TS}(x_i)$ (5)

Exploitative perturbation:

$$v_{ij} = x_{ij} + \varphi_{ij} (x_{kj} - x_{ij})$$
, where $\boldsymbol{x}_k \sim 2\text{T-ET-TS}(\boldsymbol{x}_i)$ (6)

The explorative 3T-ER-TS scheme tries to pick a candidate solution x_k that is not only fit, but also dissimilar (from the current solution x_i) and diverse (from the other solutions of the population). Dissimilarity of x_k from x_i is measured as their Euclidean distance (ED), while diversity of x_k is estimated as its ED from the centroid of population of solutions. High dissimilarity of x_k from x_i ensures a large $|x_{kj} - x_{ij}|$ in (5) to make a large, explorative perturbation on x_i , while the high diversity of x_k tries to pull x_i away from the population centroid to promote more diversity and to avoid being trapped around local optima. In contrast, the exploitative 2T-ET-TS scheme tries to pick an x_k that is both fit and has high degree of similarity to x_i . This tries to ensure a small $|x_{kj} - x_{ij}|$ in (6) to make small, exploitative steps towards the better regions of the search space.

But how does ABC-AX² decide on whether to perform explorative or exploitative perturbation on x_i ? This is done probabilistically — the current values of p_i and $1-p_i$ denote the probability of exploitative and explorative perturbations on x_i , respectively. The value of p_i is automatically adapted using the incremental learning experience of x_i , which includes the number of successes and failures by explorative and exploitative perturbations on x_i during the last τ_1 cycles (learning period). Initially, p_i is set to 0.5 for every solution x_i ,

which makes exploitative and explorative perturbations equally desired. After the initial learning period of τ_1 cycles, ABC-AX² starts adjusting the p_i value for each x_i . To do this, ABC-AX² keeps record of the number of successes and failures by exploitative and explorative perturbations on x_i over the last τ_1 cycles. Suppose ns_{ER} and nf_{ER} (ns_{ET} and nf_{ET}) are the number of successes and failures, respectively by the explorative (exploitative) perturbations on x_i during the last τ_1 cycles. Then, success ratios of explorative perturbation (SR_{FR}) and exploitative perturbation (SR_{ET}) on x_i are computed as: $SR_{ER} = (ns_{ER}) / (ns_{ER} + nf_{ER})$ and $SR_{ET} = (ns_{ET}) / (ns_{ET} + nf_{ET})$. Now, the adjusted probability of exploitative perturbation on x_i (i.e., the adjusted value of p_i) is computed using (7), which also ensures $0.1 \le p_i \le 0.9$ to avoid the complete domination by either mode of perturbations. Once the value of p_i for each candidate solution x_i is computed by ABC-AX² using (7), it is kept unchanged for the next τ_2 cycles ($\tau_2 < \tau_1$), which allows some time for the adjusted value of p_i to produce both successes and failures by each type of perturbation. ABC-AX² regularly adjusts the value of p_i for each candidate solution x_i using (7), periodically after each τ_2 cycles, using the recorded values of number of successes and failures by each type of perturbation on x_i over the last τ_1 cycles. After some initial experiments, these parameters are set as τ_1 =50 and τ_2 =10.

$$p_i = \min\left(0.9, \max\left(0.1, \frac{SR_{ET}}{SR_{ER} + SR_{ET}}\right)\right)$$
(7)

 q_i for **B.** Control parameter self-adaptive perturbation rate: The basic ABC algorithm perturbs only a single, random parameter of x_i using (1). This usually produces the trial solution v_i in the neighbourhood of the original solution x_i , which is exploitative. Perturbing a single parameter allows search along a single dimension at a time. This may work well for separable problems, but not suitable for non-separable problems where the parameters are not independent. Fig. 3 shows an example using a 2D search space. Allowing perturbation of both the parameters (i.e., x_{i1} and x_{i2} can produce v_i along any possible direction from x_i . This is more efficient than perturbing either x_{i1} or x_{i2} , one at a time, as is done by the basic ABC algorithm that allows search along axis directions only. In contrast, ABC-AX² tries to perform search along any possible direction from x_i by maintaining and automatically adapting a control parameter q_i , separately for every candidate solution x_i , that controls the perturbation rate during producing the trial solution v_i from x_i . When ABC-AX² wants to perturb a solution x_i to produce v_i , the value of q_i is perturbed first, with probability= u_1 using (8), before perturbing any other parameter of x_i . This perturbed value of q_i is inherited by v_i , which is henceforth referred as v_i , q and is used as the probability of perturbing the parameters of x_i during producing v_i from x_i . A more appropriate value of v_i , q is likely to produce fitter new solutions, which are supposed to survive better than x_i and produce better, newer solutions and hence, propagate the better value of the perturbation probability. Thus a gradual self-adaptation towards better, more effective q_i values takes place, allowing a self-adaptive and appropriate perturbation rate for the candidate solutions across the population.

$$\mathbf{v}_{i.q} = \begin{cases} q_{min} + \operatorname{rand}(0,1) * (q_{max} - q_{min}); \text{ if } \operatorname{rand}(0,1) \le u_{1} \\ q_{i} & \text{otherwise} \end{cases}$$
(8)

Here, u_1 is the probability that the perturbation probability q_i itself is perturbed before perturbing the parameters of x_i . In ABC-AX² implementation, these parameters have been set as $u_1=0.10$, $q_{max}=1.0$ and $q_{min}=1/D$.

C. Control parameter η_i for self-adaptive perturbation scaling factors: The basic ABC algorithm draws the φ_{ij} values in (1) uniformly at random from [-1, 1], without any attempt to perform adaptation of the φ_{ij} values for more effective perturbations on x_i . In contrast, ABC-AX² produces φ_{ij} values from a Gaussian distribution with mean=0 and standard deviation= η_{ij} , where $\eta_i = [\eta_{i1}, \eta_{i2}, ..., \eta_{iD}]^T$ is a control parameter vector that is maintained separately for each candidate solution x_i and is gradually self-adapted using (9) and (10). Although this procedure is similar to the self-adaptation strategy adopted in some other previous evolutionary algorithms [25], it has not yet been employed and tested with the ABC algorithm.

for
$$j = 1, 2, ..., D$$

 $\eta'_{ij} = \eta_{ij} \exp(\tau' N(0,1) + \tau N_j(0,1))$ (9)
 $(\eta'_i \text{ if } rand(0,1) \le u_2$ (10)

$$\boldsymbol{v}_{i}.\boldsymbol{\eta} = \begin{cases} \boldsymbol{\eta}_{i} & \text{if } rand(0,1) \leq \boldsymbol{u}_{2} \\ \boldsymbol{\eta}_{i} & \text{otherwise} \end{cases}$$
(10)

Here u_2 is the probability that the new trial solution v_i gets a control parameter v_i , η that is different from η_i of the original solution x_i . ABC-AX² uses u_2 =0.5. The N(0,1) and $N_j(0,1)$ are random numbers produced from the Normal distribution with mean=0 and standard deviation=1. The subscript j in $N_j(0,1)$ indicates that the random number is generated anew for each value of j. The τ and τ' are called learning rates and are set as suggested in [25]. ABC-AX² maintains a separate η_i for every solution x_i , which enables each x_i to customize its own degree of explorations and exploitations, separately along the D different axis directions of the search space, using the components of $\eta_i = [\eta_{i1}, \eta_{i2}, ..., \eta_{iD}]^T$. An effective value for v_i . η is likely to produce better, fitter new solutions that should survive better than x_i and thus a gradual self-adaptation towards better, more effective η_i values can take place, cycle by cycle, across the population.

5. EXPERIMENTAL STUDIES

To evaluate the performance of ABC-AX² and to compare it with the basic ABC [2] and some other recent ABC-variants (e.g., [15]–[21]), this paper uses a set of benchmark problems which has 30 standard functions, including 18 scalable high dimensional functions with dimensionality D=30, 60, as well as 12 low dimensional multimodal functions with $D \le 10$. The suite contains both unimodal (i.e., f_1 – f_9) and multimodal (i.e., f_{10} – f_{30}), separable (e.g., f_1, f_3, f_8) and non-separable (e.g., $f_2, f_4,$ f_5), high (i.e., f_1 – f_{18}) and low (i.e., f_{19} – f_{30}) dimensional functions. These functions have been widely used with many other evolutionary and swarm intelligence algorithms (e.g., [2], [15]–[18], [26]–[28]). Each function is briefly presented in Table 1. More details can be found in [2], [21], [28].

5.1 ABC-AX² on Standard Benchmark Functions

Based on their properties, the benchmark functions (Table 1) can be divided into three groups – functions with no local minima (i.e., unimodal functions f_1 – f_9), large number of local

minima (i.e., high dimensional multimodal functions f_{10} - f_{18}) and only a few local minima (i.e., low dimensional multimodal functions f_{19} - f_{30}). To minimize a multimodal function, the optimization algorithm should have both explorative and exploitative capabilities, because it has to avoid being trapped around the locally minimal points and continue both explorations and exploitations until it locates the neighbourhood of a global minimum. Some of the multimodal functions can have tens or even hundreds of local minima, even with just two dimensions (e.g., Rastrigin

```
Algorithm: Three Tier Explorative Tournament Selection(x_i)
  global P: Population of candidate solutions
  global t_1, t_2, t_3: Tournament sizes for the dissimilarity,
    diversity and fitness based tournaments, respectively
  return Tier3_Dissimilarity_Tournament(x_i)
procedure Tier3_Dissimilarity_Tournament(x_i)
    best ← Tier2 Diversity Tournament()
    for i from 2 to t_3 do
          next \leftarrow Tier2 Diversity Tournament()
          if distance(next, x_i) > distance(best, x_i) then
               best \leftarrow next
    return best
procedure Tier2_Diversity_Tournament()
    best ← Tier1a Fitness Tournament()
    for i from 2 to t<sub>2</sub> do
          next \leftarrow Tier1a Fitness Tournament()
          if diversity(next) > diversity(best) then
               best \leftarrow next
    return best
procedure Tier1a_Fitness_Tournament()
   best \leftarrow a solution picked at random from P
   for i from 2 to t_1 do
       next \leftarrow a solution picked at random from P
       if fitness(next) > fitness(best) then
           best \leftarrow next
   return best
```

function f_{10}). The number of local minima can increase exponentially with the number of dimensions, which makes the optimization extremely difficult.

Table 2 presents the results of $ABC-AX^2$ on the 30 standard benchmark functions and compares the results with the basic ABC [2] and ABC with self-adaptive mutation (ABC-SAM) [15]. All the algorithms have made 50 independent runs on each function and the mean and standard deviation of the best found solutions are presented in Table 2.

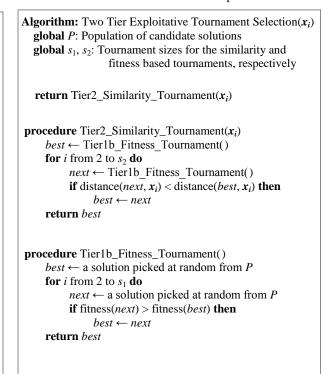


Fig. 2: Pseudocode for three-tier explorative tournament selection (on the left) and two-tier exploitative tournament selection (on the right) for ABC-AX²

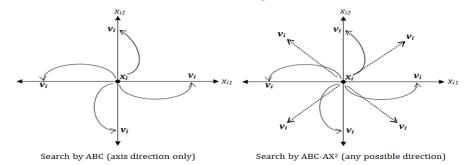


Fig. 3: Search direction by ABC (on the left) and ABC-AX² (on the right) in 2D search space

These algorithms have three parameters in common, which are population size *SN*, maximum cycle number *MCN* and *limit*. For functions f_1 – f_{18} with *D*=30, ABC-AX² used *SN*=100, *MCN*=1000 and *limit*=100. For the larger variants with *D*=60, the value of *SN* is kept the same (i.e., 100), but *limit* and *MCN* are set to 200 and 2000, respectively. For the low dimensional f_{19} – f_{30} , ABC-AX² sets *SN*=100, *MCN*=100 and *limit*=10 * *D*. The other parameters of ABC-AX² are set as: τ_1 =50, τ_2 =10,

 $u_1=0.1$, $u_2=0.5$, $q_{min}=1/D$, $q_{max}=1.0$. Tournament sizes for 3T-ETS and 2T-ETS selection schemes (Fig. 2) are set as: $t_1=t_2=6$, $t_3=4$, and $s_1=6$, $s_2=4$. During initializations, control parameter p_i of each solution x_i is set to 0.5, and the q_i and η_{ij} values are initialized to random values from $[q_{min}, q_{max}]$ and [-1, 1], respectively. These values are chosen with some initial experiments and not meant for optimum. The results in Table 2 are summarized in the following points.

• **ABC vs. ABC-AX²:** Out of the 18 high dimensional functions f_1 - f_{18} , ABC-AX² outperforms ABC on as many as 16 functions, shows similar performance on one (f_8), while ABC manages to perform better only on one function (f_7). Each time, the difference is statistically

significant, as measured by *t*-test with 99% confidence interval. For the low dimensional functions f_{19} - f_{30} , both ABC and ABC-AX² perform equally well on eight functions, while ABC-AX² performs better on other four.

Table 1. Benchmark functions for experimental study. D: dimensionality of the function, S: search space,
f_{min} : function value at global minimum, C: function characteristics with values — U: Unimodal,
M: Multimodal, S: Separable and N: Non-Separable.

No	Function	D	S	С	f _{min}
f_1	Sphere	30 and 60	$[-100, 100]^{D}$	US	0
f_2	Schwefel 2.22	30 and 60	$[-10, 10]^{D}$	UN	0
f_3	Schwefel 2.21	30 and 60	[-10, 10] ^D	US	0
f_4	Schwefel 1.2	30 and 60	$[-100, 100]^{D}$	UN	0
f_5	Powell	24	$[-4, 5]^{D}$	UN	0
f_6	Dixon-Price	30 and 60	[-10, 10] ^D	UN	0
f_7	Rosenbrock	30 and 60	$[-30, 30]^D$	UN	0
f_8	Step	30 and 60	$[-100, 100]^{D}$	US	0
f_9	Quartic	30 and 60	$[-1.28, 1.28]^D$	US	0
f_{10}	Rastrigin	30 and 60	$[-5.12, 5.12]^D$	MS	0
f_{11}	Non-continuous Rastrigin	30 and 60	[-5.12, 5.12] ^D	MS	0
f_{12}	Schwefel	30 and 60	$[-500, 500]^D$	MS	0
f_{13}	Ackley	30 and 60	$[-32, 32]^{D}$	MN	0
f_{14}	Griewank	30 and 60	$[-600, 600]^D$	MN	0
f_{15}	Alpine	30 and 60	$[-10, 10]^D$	MS	0
f_{16}	Weierstrass	30 and 60	$[-0.5, 0.5]^D$	MS	0
f_{17}	Penalized	30 and 60	$[-50, 50]^D$	MN	0
f_{18}	Penalized2	30 and 60	$[-50, 50]^D$	MN	0
f_{19}	Foxholes	2	[-65.536, 65.536] ^D	MS	1
f_{20}	Kowalik	4	[-5, 5] ^D	MN	3.07e-04
f_{21}	Six Hump Camel Back	2	[-5, 5] ^D	MN	-1.0316
f_{22}	Branin	2	[-5, 10] x [0, 15]	MS	0.398
f_{23}	Hartman3	3	$[0, 1]^D$	MN	-3.86
f_{24}	Hartman6	6	$[0, 1]^D$	MN	-3.32
<i>f</i> ₂₅	Shekel5	4	$[0, 10]^D$	MN	-10.15
f_{26}	Shekel7	4	$[0, 10]^D$	MN	-10.40
<i>f</i> ₂₇	Shekel10	4	$[0, 10]^{D}$	MN	-10.55

f_{28}	Fletcher Powell	10	$\left[-\pi, \pi ight]^D$	MN	0
f_{29}	Michalewicz	10	$[0,\pi]^D$	MS	-9.66015
f_{30}	Langerman	10	$[0, 10]^D$	MN	-1.4

 Table 2. Comparison of ABC-AX² with basic ABC [2] and ABC-SAM [15] on the standard benchmark suite functions. Best results are marked with boldface font; if not other algorithms produce similar results.

NT	c	D	G	AI	BC	ABC-SAM		ABC-AX ²	
No	No f_{min}	D	G	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
		30	1000	2.45e-11	7.72e-12	4.18e-14	5.37e-15	5.51e-24	3.73e-25
f_1	0	60	2000	3.75e-10	2.01e-11	6.09e-13	7.24e-13	9.43e-28	7.26e-29
		30	1000	5.05e-07	1.74e-07	2.47e-08	2.35e-09	4.23e-15	3.54e-16
f_2	0	60	2000	5.58e-06	1.17e-06	5.06e-07	2.97e-07	2.98e-17	1.07e-17
		30	1000	4.18e+01	5.90	1.69e+01	1.43	6.60e-02	5.21e-03
f_3	0	60	2000	7.31e+01	6.88	3.10e+01	5.12	2.78	0.77
		30	1000	8.32e-10	9.75e-11	3.95e-12	5.77e-13	3.42e-16	8.83e-18
f_4	0	60	2000	4.50e-09	5.64e-10	7.54e-11	2.14e-11	8.84e-20	5.45e-21
f_5	0	24	1000	6.61e+00	1.07e+00	9.24e-01	2.08e-01	2.23e-02	3.75e-03
		30	1000	6.67e–01	1.21e-08	2.16e-03	6.37e-04	5.91e-05	5.67e-06
f_6	0	60	2000	6.66e-01	1.05e-07	7.76e-02	1.63e-02	8.33e-05	1.71e-05
		30	1000	4.25e-01	1.18e-01	2.28e+01	3.75	2.39e+01	3.66
f_7	0	60	2000	2.02e-01	6.92e-02	4.96e+01	7.80	5.15e+01	7.69
		30	1000	0	0	0	0	0	0
f_8	0	60	2000	0	0	0	0	0	0
		30	1000	8.60e-13	8.32e-13	3.66e-16	1.44e-17	8.87e-34	6.78e-35
f_9	0	60	2000	9.31e-12	7.17e-12	4.76e-15	5.32e-16	6.31e-32	2.16e-33
		30	1000	1.72e-14	1.56e-14	1.26e-16	2.11e-17	4.68e-24	9.03e-26
f_{10}	0	60	2000	2.84e-13	8.01e-14	8.55e-15	3.15e-16	6.12e-31	8.67e-33
		30	1000	2.33e-08	7.49e–09	4.60e-10	8.85e-11	1.04e-13	3.16e-14
f_{11}	0	60	2000	6.64e-07	1.51e-07	6.80e-09	8.77e-10	4.25e–13	7.32e-14
	-12569.5	30	1000	-11346.79	2.77e+02	-12416.19	4.02e+01	-12569.48	1.50e-02
f_{12}	-25138.9	60	2000	-22530.82	4.08e+02	-23805.93	2.84e+02	-25016.6	1.89e+01
		30	1000	2.93e-06	3.38e-07	9.26e-08	1.89e-08	8.13e-13	6.71e-14
f_{13}	0	60	2000	4.65e-06	1.07e-06	2.07e-08	3.55e-08	3.62e-14	1.15e-15
		30	1000	4.55e-08	6.54e-09	8.36e-10	5.08e-11	5.63e-23	7.35e-25
f_{14}	0	60	2000	8.01e-07	2.64e-07	1.56e-10	6.90e-11	7.04e-31	5.77e-32
		30	1000	3.34e-04	3.76e-05	2.22e-08	3.93e-09	8.56e-13	1.56e-13
f_{15}	0	60	2000	7.49e–03	9.58e-04	1.17e–08	2.35e-09	5.37e-13	1.25e-13
		30	1000	3.36e-01	9.58e-02	5.78e-04	6.31e-05	6.46e-09	8.32e-10
f_{16}	0	60	2000	8.99e-01	3.09e-01	9.20e-03	4.03e-03	5.38e-08	9.19e-10
		30	1000	5.47e-12	2.09e-13	2.78e-12	8.89e-13	3.85e-14	4.93e-15
f_{17}	0	60	2000	7.47e–12	1.74e-12	1.32e-12	5.15e-13	3.50e-14	2.60e-15
c	C	30	1000	2.63e-03	1.89e-04	3.06e-02	8.59e-03	2.33e-21	7.55e-22
f_{18}	0	60	2000	2.66e-03	7.90e-04	5.11e-02	7.39e-03	7.52e–26	1.29e-26
f_{19}	1	2	100	1.04	0.04	1.03	0.03	1.01	0.01
f_{20}	3.07e-04	4	100	5.98e-04	7.22e-05	4.32e-04	1.09e-05	3.10e-04	8.73e-06
f_{21}	-1.0316	2	100	-1.0316	0	-1.0316	0	-1.0316	0
f_{22}	0.398	2	100	0.398	7.12e–08	0.398	2.75e-07	0.398	1.83e-07
f_{23}	-3.86	3	100	-3.86	7.09e-07	-3.86	1.54e-08	-3.86	6.77e-10
f_{24}	-3.32	6	100	-3.32	4.74e-13	-3.32	6.26e-14	-3.32	2.61e-15
f_{25}	-10.15	4	100	-9.61	0.14	-10.14	3.68e-07	-10.15	9.15e-08
f_{26}	-10.40	4	100	-10.40	8.61e-03	-10.40	7.94e-03	-10.40	2.56e-03
f_{27}	-10.54	4	100	-10.52	0.08	-10.54	6.77e–07	-10.55	7.84e-08
f_{28}	0	10	100	13.77	3.80	4.02	0.39	4.19e-01	6.54e-02
f_{29}	-9.66015	10	100	-9.66015	0	-9.66015	0	-9.66015	0

f_{30}	-1.4	10	100	-0.78	0.09	-1.04	0.06	-1.28	0.03
Summary (t-Test)		+		2	20		19		
			_	1	1	(C		
			æ	9		11			

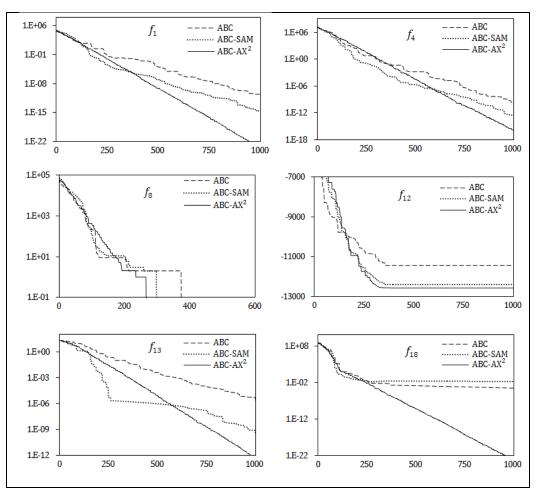


Fig. 4. Convergence characteristics of ABC, ABC-SAM and ABC-AX² on three unimodal (f_1, f_4, f_8) and three multimodal (f_{12}, f_{13}, f_{18}) functions. The vertical axis is the function value and the horizontal axis is the number of cycles elapsed.

- **ABC-SAM vs. ABC-AX²:** On all of the 30 functions, ABC-AX² performs either better than or as well as ABC-SAM. For the high dimensional functions f_{1} - f_{18} , ABC-AX² significantly outperforms ABC-SAM on as many as 16 functions and shows similar performance on two (f_7 and f_8). On most (nine out of twelve) of the low dimensional functions f_{19} - f_{30} , both perform equally well, but ABC-AX² performs better on the remaining three.
- For almost all the functions, ABC-AX² shows very low standard deviation of its results. This indicates its high degree of consistency and robustness for all these benchmark functions.
- The '+', '-' and '≈' symbols at the bottom rows count the number of functions where ABC-AX² produces significantly better, worse and similar results, respectively compared to ABC or ABC-SAM. Out of 30 functions, ABC-AX² performs significantly better than ABC and ABC-SAM on 20 and 19 functions, shows

similar performance on 9 and 11 functions, while ABC performs better on one function (f_7) only. So the overall performance of ABC-AX² is much better than others.

Fig. 4 shows the convergence graphs of ABC, ABC-SAM and ABC-AX² for three unimodal (f_1, f_4, f_8) and three multimodal (f_{12}, f_{13}, f_{18}) functions with D=30. ABC-AX² shows far better convergence characteristics than its counterparts for all these functions. For example, consider the functions f_{12} and f_{18} , where both ABC and ABC-SAM converges to a local minimum and gets stuck there till the end of their execution. In contrast, \overrightarrow{ABC} - \overrightarrow{AX}^2 easily reaches the global minimum for f_{12} and shows no sign of fitness stagnation for f_{18} , even after reaching the vicinity of the global minimum. For some functions, e.g., f_1 , f_4 , f_{13} and f_{18} , ABC-SAM initially shows somewhat higher convergence speed than ABC-AX², but eventually it either gets stuck at local optima (f_{13}, f_{18}) or gradually slows down (f_1 , f_4) and at the end, ABC-AX² shows significantly higher convergence speed than both ABC and ABC-SAM. Fig. 4 shows that ABC-AX² has always reached

very close proximity to the global minimum, while ABC and ABC-SAM can get stuck at several intermediate local optima (note the semi-flat and flat regions of the plot of ABC in f_4 and ABC-SAM in f_{13}). Previously Table 2 considered the

performance of all three algorithms to be similar on f_8 , but Fig. 4 now reveals that ABC-AX² actually reaches the global minimum of f_8 much earlier than both ABC-SAM and ABC.

Function	CABC_S CABC_H		CABC_S		C_H	ABC	-AX ²
Function	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	
f_1	3.30e-19	2.00e-19	5.92e-18	3.56e-18	7.22e–51	4.08e-52	
f_7	6.33e+00	7.68e+00	4.80e-01	8.55e-01	5.94e+00	4.35e+00	
f_{10}	0	0	0	0	8.56e-54	3.83e-55	
f_{12}	1.30e-04	5.21e-06	1.27e-04	0	1.04e-06	7.98e-08	
f_{13}	1.83e-14	9.86e-15	8.35e-15	4.13e-15	7.14e–18	7.83e-19	
f_{14}	4.42e-02	2.99e-02	7.96e-03	9.06e-03	3.84e-54	2.04e-55	
+	4		4				
-	1		2				
8	-	1	()			

Table 3. Comparison of ABC-AX² with the CABC [16] variants. The boldface font marks the best performance for each function. The +, – and \approx counts the number of instances where ABC-AX² performs better, worse and similar, respectively.

Table 4. Comparison between ABC-AX ² and DABC [17]. Best results are marked with bold font; if not both the
algorithms produce identical results.

Function	nction D DABC		ABC-AX ²		
		Mean	Std. Dev.	Mean	Std. Dev.
£	10	2.01e-17	5.63e-17	0	0
f_1	30	2.01e-16	2.85e-17	7.26e–51	6.47e-52
£	10	2.73e-03	7.04e-03	9.46e-02	8.22e-03
f_7	30	1.42e-02	2.53e-02	5.88e-01	8.32e-02
£	10	0	0	0	0
f_{10}	30	0	0	0	0
£	10	0	0	0	0
f_{14}	30	2.59e-16	1.22e-16	1.78e-50	5.28e-51
+	+		2		
-	_		1		
*		1			

Table 5. Comparison between ABC-AX² and ChABC [18]. Best results are marked with bold font.

Function	D	CHA	ABC	ABC	-AX ²
runction	D	Mean	Std. Dev.	Mean	Std. Dev.
f_1	30	2.99e-16	3.54e-17	9.76e-119	7.17e–120
f_7	30	6.33e-02	8.96e-02	8.48e-07	4.99e-08
f_{10}	30	0	0	8.60e-129	5.14e-130
f_{12}	30	3.81e-04	2.07e-04	5.32e-06	6.04e-07
f_{13}	30	2.93e-14	2.99e-15	2.48e-17	4.09e-18
f_{14}	30	2.70e-16	6.20e-17	1.85e-129	5.75e-130
+	+		5		

_	1	
~	0	

Function D		GABC (<i>C</i> =1.0)		GABC	GABC (<i>C</i> =1.5)		ABC-AX ²	
1 411011011		Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	
£	30	4.31e-16	7.49e-17	4.17e-16	7.36e-17	9.66e-105	8.05e-106	
f_1	60	1.43e-15	1.43e-16	1.43e-15	1.37e-16	1.98e-36	3.58e-37	
£	2	3.93e-04	4.45e-04	1.68e-04	1.45e-04	7.88e-03	5.35e-04	
f_7	3	2.63e-03	2.11e-03	2.65e-03	2.22e-03	2.13e-01	6.12e–02	
C	30	9.47e-15	2.15e-14	1.32e-14	2.44e-14	6.30e-108	1.52e-109	
f_{10}	60	4.16e-13	1.77e-13	3.52e-13	1.24e-13	7.42e–40	3.75e-41	
C	30	3.31e-14	2.90e-15	3.21e-14	3.25e-15	4.04e-19	8.28e-20	
f_{13}	60	1.04e-13	1.07e-14	1.00e-13	6.08e-15	1.63e-17	2.66e-18	
£	30	8.88e-17	8.45e-17	2.96e-17	4.99e-17	9.50e-101	2.00e-102	
f_{14}	60	9.47e-16	7.84e-16	7.54e-17	4.12e-16	1.81e-33	3.25e-34	
+		4		4				
_	_		l	1				
*		()	0				

Table 6. Comparison between ABC-AX² and GABC [20]. Best results are marked with bold font.

Table 7. Comparison of ABC-AX	² with HJABC [21] based on convergence speed.	Best results are marked with bold font.
-------------------------------	--	---

Function	D	Number of function evaluations	
		HJABC	ABC-AX ²
f_1	30	18322	13805
f_2	30	12509	17987
f_3	30	120315	_
f_4	30	43939	35502
f_7	30	102718	_
f_8	30	17755	13986
f_9	30	_	12230
f_{10}	30	15376	20713
f_{13}	30	54497	42609
f_{14}	30	56855	31582
f_{15}	30	99686	81678
+		7	
_		4	1
~		0]

5.2 Comparison with other ABC-variants

In this section $ABC-AX^2$ is compared with some other recent variants of ABC, such as the cooperative ABC (CABC) [16], ABC with diversity strategy [17], chaotic ABC (CHABC) [18], gbest-guided ABC (GABC) [20] and Hooke Jeeves ABC

(HJABC) [21]. The first three variants (e.g., [16]–[18]) increase the degree of explorations, while the last two variants (e.g., [20]–[21]) increase the intensity of exploitations.

First, ABC-AX² is compared with CABC [16], which is a cooperative variant of the basic ABC algorithm. CABC has

been introduced in two different versions — CABC_S and CABC_H. In order to perform more explorations, CABC_S decomposes the search space into multiple sub-spaces and employs different bee colonies to search and explore the different sub-spaces. The other variant, CABC_H tries to perform more exploitations than CABC_S by repeatedly alternating between explorative CABC_S and exploitative ABC. For comparison, ABC-AX² is re-implemented with the same settings [16] — *SN*=40, no. of function evaluations *FE*=100,000 and *limit=SN***D*. Table 3 shows that ABC-AX² significantly outperforms both the CABC variants on four out of the six benchmark functions, while CABC_S and CABC_H perform better on one or two functions only. So the overall performance of ABC-AX² is better than the CABC variants.

The next comparison is made between $ABC-AX^2$ and DABC[17]. DABC tries to maintain sufficient amount of diversity among the candidate solutions to allow more search space explorations. DABC regularly measures the existing population diversity d and employs either its explorative or exploitative perturbation based on the value of d. ABC-AX² is re-implemented with SN=20, MCN=5000 and limit=100 to compare with DABC. Results presented in Table 4 show that ABC-AX² performs better than DABC on two out of four functions (f_1 and f_{14}), shows similar performance on one (f_{10}), while DABC performs better on the remaining one function (f_7) only. The reason may be that DABC completely relies on its estimated value of population diversity d to choose between explorations and exploitations, while there is no accurate metric for diversity. Besides, DABC uses a naïve strategy of fixed threshold diversity value (d_{low} in [17]), which may cause repeated oscillations between conflicting explorations and exploitations to reduce convergence speed.

Next, ABC-AX² is compared with the Chaotic ABC (CHABC) [18] algorithm. CHABC employs chaotic search behavior during perturbations to produce new food positions from the existing ones. Chaotic dynamics are produced by the logistic equations (eq. (4)-(7) in [18]) which provide a simple mechanism to escape from local minima and avoid premature convergence. For comparison, ABC-AX² is executed for 5000 cycles with population size of 70 and *limit=200*, as suggested in [18]. Results (Table 5) show that $ABC-AX^2$ outperforms CHABC on as many as five out of the six functions, while CHABC performs better on the remaining one function (f_{10}) only. The reason may be that CHABC employs same chaotic strategy uniformly for all the candidate solutions across the considering population, without their individual exploitative/explorative requirement, while ABC-AX² considers and customizes the degree of explorations and exploitations separately for every candidate solution.

Next, ABC-AX² is compared with GABC [20], which is an exploitative ABC-variant that tries to improve the convergence speed by using the information of the global best solution found so far into the perturbation scheme (1). ABC-AX² is executed with the same settings [20] and results are presented in Table 6. In [20], GABC is tested with several values of its parameter *C*, but the best results are always observed with C = 1.0 or 1.5, so Table 6 includes both the results. Results show that ABC-AX² outperforms GABC on four out of the five functions, while GABC performs better on the remaining one (f_7) only. The reason may be that the perturbation operation of GABC becomes too exploitative by pushing its candidate solutions towards the best solution found so far. Increased exploitations, at the cost of reduced

explorations, may improve the final solution quality for the unimodal and low dimensional function f_7 , but is likely to fail for the other four multimodal functions in Table 6.

Next, ABC-AX² is compared with HJABC [21], which is a hybrid ABC-variant that intensifies the degree of exploitations by hybridizing basic ABC with an efficient local search technique (i.e., Hooke Jeeves pattern search). Table 7 compares ABC-AX² and HJABC based on the number of function evaluations (NFE) required to achieve a predefined level of accuracy. Both ABC-AX² and HJABC are run with SN=25 and limit=SN*D, until either NFE reaches a predefined maximum value (NFE_{max}) or the algorithm reaches as accuracy of ε around the global minimum. As suggested in [21], ABC-AX² used $\varepsilon = 10^{-8}$ with *NFE_{max}=300000*. For seven out of the eleven functions in Table 7, ABC-AX² performs better than HJABC, by showing a faster convergence speed, while HJABC performs better on the remaining four. However, ABC-AX² can't achieve the predefined level of accuracy within NFE_{max} function evaluations for two functions (f_3 and f_7), while HJABC fails to do so only for one function (f_9) . In short, the overall performance of ABC-AX² is quite comparable to HJABC. The reason that HJABC often requires larger number of function evaluations, even after using the efficient Hooke Jeeves local searcher [21], may be that HJABC regularly tries to find an appropriate search direction by exploring along the axis directions only, exploring just one variable at a time, which is not suitable for the non-separable problems.

6. CONCLUSION AND SUGGESTION FOR FURTHER STUDY

This paper introduces ABC-AX² — an improvement of the basic ABC algorithm [2] that tries to adaptively control the degree of explorations and exploitations, separately for each candidate solution. ABC-AX² includes three control parameters — p_i , q_i and η_i within each candidate solution x_i and employs adaptive and self-adaptive techniques to adapt their values gradually. The control parameter p_i controls the proportion of exploitative and explorative perturbations on x_i and is gradually adapted by ABC-AX² based on the previous successes and failures of the exploitative and explorative parameters – q_i and η_i control the perturbation rate and perturbation scaling factors for x_i and they have to go through gradual self-adaptation, using (8) and (10) respectively.

ABC-AX² significantly differs from most other existing variants of ABC algorithm. Most ABC-variants view exploitations and explorations as conflicting operations, so they try to improve either the local exploitations (e.g., GABC [20], HJABC [21]) or the global explorations (e.g., CABC [16], DABC [17], CHABC [18]) of the basic ABC algorithm, without trying to establish a proper balance between exploitations and explorations. In contrast, ABC-AX² considers exploitations and explorations to be complementary, rather than conflicting, operations and try to achieve some degree of both exploitations and explorations throughout the entire optimization procedure. For example, ABC-AX² keeps the value of p_i always within [0.1, 0.9] to avoid the complete domination by either exploitative or explorative perturbations. Also, ABC-AX² uses fixed values of u_1 and u_2 (e.g., 0.1 and 0.5, respectively, as in the current implementation), so there is always significant possibility that the values of q_i and η_i will be randomized using (8) and (10), respectively, which can

induce both explorations and exploitations on x_i throughout the entire optimization procedure. Experimental results (Tables 2–7) clearly show that ABC-AX² has significantly improved its results over the basic ABC algorithm [2] as well as several other recent variants of ABC (e.g., [15]–[21]).

There may be several possible future research directions based on this study. Firstly, ABC-AX² uses a simple strategy to adjust the control parameters $-p_i$, q_i and η_i for each candidate solution x_i . A more sophisticated strategy, such as considering the properties of fitness landscape around x_i , or using a strategy parameterized by existing population diversity or the maturity of the optimization process may be more effective to balance between exploitations and explorations around x_i . Secondly, the quality of the final solution could be improved further by using an exploitative and efficient local searcher. This may pinpoint the global minimum more precisely. Thirdly, ABC-AX² can be hybridized with many other existing evolutionary, swarm intelligence, machine learning techniques to further improve its results. Finally, ABC-AX² has been employed on the continuous problems. It would be interesting to know how well ABC-AX² performs on other existing problems, especially the discrete and real world ones.

7. REFERENCES

- D. Karaboga, "An idea based on honey bee swarm for numerical optimization", Erciyes University, Kayseri, Turkey, Technical Report-TR06, 2005.
- [2] D. Karaboga, B. Akay, "A comparative study of artificial bee colony algorithm", Applied Mathematics and Computation 214 (1) (2009) 108–132.
- [3] Q. Bai, X. Yun, "A new hybrid artificial bee colony algorithm for the traveling salesman problem", in: Proc. 3rd Int. Conf. Communication Software and Networks (ICCSN), 2011, pp. 155–159.
- [4] N. Stanarevic, M. Tuba, N. Bacanin, "Modified artificial bee colony algorithm for constrained problems optimization", Int. Journal of Mathematical Models and Methods in Applied Sciences 5 (3) (2011) 644–651.
- [5] S. Omkar, J. Senthilnath, R. Khandelwal, G. Naik, S. Gopalakrishnan, "Artificial bee colony (ABC) for multiobjective design optimization of composite structures", Applied Soft Computing 11 (1) (2011) 489–499.
- [6] F. Kang, J. Li, Q. Xu, "Structural inverse analysis by hybrid simplex artificial bee colony algorithms", Computers and Structures 87 (13–14) (2009) 861–870.
- [7] R. Irani, R. Nasimi, "Application of artificial bee colonybased neural network in bottom hole pressure prediction in underbalanced drilling", Journal of Petroleum Science and Engineering 78 (1) (2011) 6–12.
- [8] N. Karaboga, "A new design method based on artificial bee colony algorithm for digital IIR filters", Journal of the Franklin Institute 346 (4) (2009) 328–348.
- [9] D. Karaboga, B. Akay, "PID controller design by using artificial bee colony, harmony search and bees algorithms", in: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 224 (7) (2010) 869–883.
- [10] R. Rao, P. Pawar, "Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms", Applied Soft Computing 10 (2) (2010) 445-456.

- [11] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, "A comprehensive survey: artificial bee colony (ABC) algorithm and applications", Artificial Intelligence Review (2012) 1–37.
- [12] L. Bao, J. Zeng, "Comparison and analysis of the selection mechanism in the artificial bee colony algorithm", in: Proc. 9th Int. Conf. Hybrid Intelligent Systems, 2009, pp. 411–416.
- [13] W. Gao, S. Liu, "A modified artificial bee colony algorithm", Computers and Operations Research 39 (3) (2012) 687–697.
- [14] J. Lampinen, I. Zelinka, "On stagnation of the differential evolution algorithm", in: Proc. 6th Int. Mendel Conf. on Soft Computing, 2000, pp. 76–83.
- [15] M. S. Alam, M. M. Islam, "Artificial bee colony algorithm with self-adaptive mutation: A novel approach for numeric optimization", in: Proc. 2011 IEEE Int. Conf. on Trends and Developments in Converging Technology (TENCON), 2011, pp. 49–53.
- [16] M. Abd, "A cooperative approach to the artificial bee colony algorithm", in: IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1–5.
- [17] W. Lee, W. Cai, "A novel artificial bee colony algorithm with diversity strategy", in: Proc. 7th Int. Conf. Natural Computation, 2011, pp. 1441–1444.
- [18] B. Wu, S. Fan, "Improved Artificial Bee Colony Algorithm with Chaos", in: Y. Yu, Z. Yu, J. Zhao (Eds.): Computer Science for Environmental Engineering and EcoInformatics, Part I, Communications in Computer and Information Science, vol. 158, 2011, pp. 51-56.
- [19] L. Fenglei, D. Haijun, F. Xing, "The parameter improvement of bee colony algorithm in TSP problem", Science Paper Online, November 2007.
- [20] G. Zhu, S. Kwong, "Gbest-guided artificial bee colony algorithm for numerical function optimization", Applied Mathematics & Computation 217 (7) (2010) 3166–3173.
- [21] F. Kang, J. Li, Z. Ma, H. Li, "Artificial bee colony algorithm with local search for numerical optimization", Journal of Software 6 (3) (2011) 490–497.
- [22] F. Qingxian, D. Haijun, "Bee colony algorithm for the function optimization", Science Paper Online, 2008.
- [23] H. Quan, X. Shi, "On the analysis of performance of the improved ABC algorithm", in: 4th IEEE Int. Conf. Natural Computation (ICNC), 2008, pp. 654–658.
- [24] E. Montes, R. Koeppel, "Elitist artificial bee colony for constrained real-parameter optimization", IEEE Congress on Evolutionary Computation 11 (2010) 1–8.
- [25] S. Nieberg, H. Beyer, "Self-adaptation in evolutionary algorithms", Parameter Setting in Evolutionary Algorithm (2007) 47–76.
- [26] J. Liang, A. Qin, P. Suganthan, S. Baskar, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions", IEEE Trans. on Evolutionary Comput. 10 (3) (2006) 281–295.
- [27] C. Lee, X. Yao, "Evolutionary programming using mutations based on the Lévy probability distribution", IEEE Transactions on Evolutionary Computation 8 (1) (2004) 1–13.
- [28] X. Yao, Y. Liu, G. Lin, "Evolutionary programming made faster", IEEE Transactions on Evolutionary Computation 3 (2) (1999) 82–102.