
 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

32 

Artificial Bee Colony Algorithm with Adaptive 

Explorations and Exploitations: A Novel Approach for 

Continuous Optimization 

Mohammad Shafiul Alam 
Department of Computer 
Science and Engineering 
Ahsanullah University of 
Science and Technology 
Dhaka-1208, Bangladesh  

Md. Monirul Islam 
Department of Computer 
Science and Engineering 
Bangladesh University of 

Engineering and Technology  
Dhaka-1000, Bangladesh 

 

Kazuyuki Murase 
Department of Human and 

Artificial Intelligence Systems  
University of Fukui 

Fukui 910-8507, Japan 

ABSTRACT 

A proper balance between global explorations and local 

exploitations is often considered necessary for complex, high 

dimensional optimization problems to avoid local optima and 

to find a good near optimum solution with sufficient 

convergence speed. This paper introduces Artificial Bee 

Colony algorithm with Adaptive eXplorations and 

eXploitations (ABC-AX2), a novel algorithm that improves 

over the basic Artificial Bee Colony (ABC) algorithm. 

ABC-AX2 augments each candidate solution with three 

control parameters that control the perturbation rate, 

magnitude of perturbations and proportion of explorative and 

exploitative perturbations. Together, all the control parameters 

try to adapt the degree of global explorations and local 

exploitations around each candidate solution by affecting how 

new trial solutions are produced from the existing ones. The 

control parameters are automatically adapted at the individual 

solution level, separately for each candidate solution. 

ABC-AX2 is tested on a number of benchmark problems of 

continuous optimization and compared with the basic ABC 

algorithm and several other recent variants of ABC algorithm. 

Results show that the performance of ABC-AX2 is often 

better than most other algorithms in comparison, in terms of 

both convergence speed and final solution quality.  

Keywords 

Artificial bee colony algorithm; Exploration and exploitation; 

Continuous optimization; Meta-heuristic optimization.  

1. INTRODUCTION 
The Artificial Bee Colony (ABC) algorithm is a recently 

introduced [1] swarm intelligence algorithm that tries to 

mimic the intelligent food foraging behavior of honey bees. 

Since its advent, the ABC algorithm has been successfully 

applied to wide and diverse range of problems, such as 

continuous optimization [2], discrete optimization [3], 

constrained optimization [4], multi-objective optimization [5], 

design optimization [6], training neural network [7], design of 

digital IIR filter [8], PID controller [9], parameterizing of 

milling processes [10] and so on [11]. ABC is simple in 

concept, easy to implement and requires fewer control 

parameters [12]. ABC shows very competitive and often 

better performance in comparison to many other existing 

evolutionary and swarm intelligence algorithms [2], such as 

genetic algorithm (GA), differential evolution (DE) and 

particle swarm optimization (PSO).  

Similar to other population based meta-heuristic algorithms, 

ABC also has its own challenges and limitations. For 

example, ABC can prematurely converge to local optima, 

especially for complex high dimensional multimodal 

problems [2,13]. Also, the convergence speed of ABC is 

usually slower than some other meta-heuristic algorithms, 

such as DE and PSO, especially on unimodal problems [2]. 

Another problem that may occur with ABC is fitness 

stagnation [14], where the entire population of solutions stops 

improving, even without converging to some local optima, 

because the fitness based selection scheme fails to find new, 

better trial solutions that can enter the population by replacing 

the existing solutions. All these problems originate from a 

lack of balance between global explorations and local 

exploitations during the optimization procedure. ABC drives 

its search towards global optimum with two operators — 

perturbation and selection. The perturbation operation is 

responsible for explorations by random variations of existing 

solutions, while the fitness based selection operation performs 

exploitations of the search regions explored so far. However, 

both these operations are more aligned towards exploitations 

than explorations. The perturbation operation of ABC perturbs 

a single parameter of an existing solution and thus produces 

the new trial solution in the neighborhood of the original 

solution, which is exploitative. The selection operation of 

ABC can accept only the better solutions, which is 

exploitative too. This paper introduces ABC with Adaptive 

eXplorations and eXploitations (ABC-AX2), a novel 

improvement over the basic ABC algorithm that tries to 

automatically adapt the degree of explorations and 

exploitations, separately for every candidate solution of the 

population. ABC AX2 augments each candidate solution xi 

with three control parameters– pi, qi and ηi, each of which 

affects the perturbation operations on xi to control the degree 

of explorations and exploitations around xi. The values of pi, 

qi and ηi are automatically adjusted, cycle (i.e., iteration) by 

cycle, using adaptive and self-adaptive techniques to increase 

the likelihood of producing more effective perturbations on xi. 

ABC-AX2 is tested on a benchmark suite of 30 continuous 

functions of different complexity. Results are compared with 

the basic ABC [2] and several other recent variants of ABC 

(e.g., [15]–[21]), which show that ABC-AX2 often performs 

better than most other ABC-variants in comparison.  

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

33 

2. THE ABC ALGORITHM 
Honey bees in nature have to forage over a vast area in search 

of good sources of nectar. After an initial exploration stage, 

more bees are employed to collect honey from more profitable 

food sources whereas fewer bees are assigned to the less 

worthy sources. After returning the hive, each bee goes to the 

‗dance floor‘ and performs a special dance known as the 

‗waggle dance‘ to share the information of the food source it 

has found. The ‗onlooker‘ bees, waiting around the dance 

floor, observe the waggle dances of the ‗employed‘ bees and 

pick any of them to follow and collect nectar from the vicinity 

of its food source. Some scout bees are also assigned for 

random explorations of the search space to find new food 

sources. The basic ABC algorithm [1,2] mimics the food 

foraging behavior of honey bees with the same three groups of 

bees — employed, onlooker and scout bees. A bee working to 

forage a particular food source (i.e., candidate solution) and 

searching only around its vicinity is called an employed bee. 

Onlooker bees randomly pick and follow any of the employed 

bees. The probability of picking an employed bee is 

proportional to the quality of its food source. Scout bees can 

perform random explorations of the search space to find new 

food sources. If the employed and onlooker bees, even after 

limit attempts, fail to find a better food position around a 

particular food xi, then xi is abandoned and replaced by 

initiating a scout bee and its food source is placed uniformly 

at random across the search space. In the original 

implementation of the ABC algorithm, half of the colony is 

employed bees, the other half is onlooker bees, and scout bees 

are created on demand only when a food source fails to 

improve with several attempts. Fig. 1 presents the pseudocode 

for the basic ABC algorithm. Each cycle (i.e., iteration) of 

ABC consists of foraging by the employed bees (steps 4–5, 

Fig. 1), then foraging by the onlookers (steps 7–9), followed 

by placement of the scout bees (step 10). Each of these stages 

is described below. 

Foraging by employed bees: Suppose, an employed bee is 

currently positioned at a food source position xi. During this 

stage, each employed bee searches in the vicinity of its current 

position xi to produce new trial food source vi using (1), where 

j ∈ {1, 2, …, D} and k ∈ {1, 2, …, SN} are randomly picked 

indices, D is dimensionality of the problem, SN is the number 

of food positions and φij is a uniform random value ~  [-1, 1]. 

 vij = xij + φij (xkj – xij)      (1) 

Thus, the new solution vi is produced from xi by perturbing its 

randomly picked j-th parameter and using the information of 

xi and another randomly picked solution xk. If vi has better 

‗fitness‘ than the old food position xi, then xi is replaced by vi. 

For the problem of function optimization, where f is the 

function to be minimized, ABC computes the ‗fitness‘ of a 

candidate solution xi using (2). 

 

   
 

 

1
;   if  0

1

1 otherwise

i

ii

i

fitness

f  
f

f    












x
xx

x   

(2) 

 

Foraging by onlooker bees: During this stage, each onlooker 

bee randomly picks an employed bee to follow and forages 

only around the vicinity of its food source. The probability wi 

that the employed bee with food source xi would be picked by 

an onlooker bee is computed using (3), which makes the 

probability wi to be proportional to fitness(xi).  

 

 

 
1

i
i SN

n

n

fitness x
w

fitness x






  (3) 

Like the employed bees, each onlooker bee also employs (1) 

to produce trial food source vi in the vicinity of its current 

food source position xi. If vi has better fitness than xi, then xi 

is replaced by vi. Otherwise, vi is discarded. 

Placement of Scout bees: A scout bee is created only when a 

particular food source xi failed to be improved over the last 

‗limit‘ iterations. The bee employed to xi now becomes a 

scout bee and its food source is positioned at random across 

the search space using (4), where j = 1, 2, …, D and 

[minj, maxj] is the search space along the j-th dimension. 

 xij = minj + rand (0,1) * (maxj – minj) (4) 

 

3. EXISTING VARIANTS OF ABC 

ALGORITHM  
There exist a number of recent studies (e.g., [15]–[24]) that 

try to alter the explorative and/or exploitative properties of the 

basic ABC algorithm. For example, ABC with self-adaptive 

mutation (ABC-SAM) [15] introduces an adaptive mutation 

scaling factor SFi for every candidate solution xi and tries to 

ensure both explorations and exploitations by periodically 

adjusting the value of SFi using two different distributions — 

one explorative and the other exploitative. The SFi values can 

be randomly re initialized, if necessary, to perform more 

explorations. The cooperative ABC (CABC) [16] tries to 

enforce more explorations by decomposing the search space 

into multiple subspaces and by employing multiple bee 

colonies to explore through different subspaces. ABC with 

diversity strategy (DABC) [17] tries to maintain sufficient 

level of population diversity for conducting more explorations 

by alternating between two different perturbation schemes. 

Chaotic ABC (ChABC) [18] tries to improve the explorative 

characteristics of ABC by employing chaotic dynamics 

instead of random number generators. The Gbest-guided 

ABC (GABC) [20] tries to improve the exploitations and 

convergence speed of ABC by altering its perturbation 

operation using the information of the global best solution 

found so far. Hooke Jeeves ABC (HJABC) [21–22] is a 

hybrid ABC-variant that intensifies the exploitative operations 

by hybridizing ABC with a local search technique (i.e., the 

Hooke Jeeves pattern search). The Elitist ABC (EABC) [24] 

is another exploitative ABC variant that hybridizes ABC with 

two different local search operators to intensify the degree of 

exploitations around the best candidate solution found so far. 

Thus, most existing ABC-variants try to improve either the 

exploitative (e.g., [20]–[24]) or the explorative ([15]–[19]) 

characteristics of the basic ABC algorithm. The exploitative 

improvements are usually based on intensifying the search 

around the best solution(s) found so far (e.g., [20], [21], [24]) 

and hybridizing efficient local search operators with ABC 

(e.g., [21], [23], [24]), while the explorative improvements 

can be based on more population diversity (e.g., [16], [17]) 

and more explorative selection and/or perturbation operations 

([15], [18], [19]). But none of these algorithms considers the 

individual explorative/exploitative requirements of each 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

34 

candidate solution separately; rather they employ some 

population-wide global strategy, identically for all candidate 

solutions, which is significantly improved in the proposed 

algorithm — ABC-AX2, as described in the following section.  

 

 

 

Fig. 1: Algorithm for the basic Artificial Bee Colony (ABC) algorithm   

4. THE PROPOSED ALGORITHM — 

ABC-AX
2
 

ABC-AX2 tries to improve over the basic ABC algorithm by 

adapting and customizing the degree of explorations and 

exploitations at the individual solution level, i.e., separately 

for every candidate solution. ABC-AX2 includes three control 

parameters – pi, qi and ηi within each candidate solution xi. 

The control parameter pi controls the proportion of explorative 

and exploitative perturbations; qi controls the perturbation rate 

to produce vi from xi; ηi=[ηi1, ηi2, …, ηiD]T is a vector with D 

components, each one (say, ηij) of which controls the 

distribution of the scaling factor values (i.e., φij values in (1)) 

during perturbations along the corresponding (i.e., j-th) 

dimension. Each control parameter is gradually adapted to 

achieve higher rate of ‗successful‘ perturbations. A 

perturbation is considered ‗successful‘ only if the new trial 

solution vi has higher fitness value than the original solution 

xi. A detailed description of the role of each control 

parameter, how it affects explorations and exploitations in 

perturbations and how it is gradually adapted by ABC-AX2 

are presented in the following paragraphs. 

A. Control parameter pi for adaptive proportion of 

explorations and exploitations: The basic ABC algorithm 

uses the single perturbation scheme (1), with no attempt to 

differentiate between explorative or exploitative perturbations. 

In contrast, ABC-AX2 employs two different perturbation 

schemes — one for explorations, the other for exploitations. 

Both the perturbation schemes are based on the same 

expression (1), but they differ in how xi selects its supporting 

candidate solution xk in (1). For explorative perturbations, xk 

is picked by three-tier explorative tournament selection 

(3T-ER-TS), while the exploitative perturbations use two-tier 

exploitative tournament selection (2T-ET-TS) procedure. 

Both the selection procedures are introduced in Fig. 2.  

Explorative perturbation:  

     vij = xij + φij (xkj – xij), where  xk ~ 3T-ER-TS(xi)     (5) 

Exploitative perturbation:  

     vij = xij + φij (xkj – xij), where  xk ~ 2T-ET-TS(xi)     (6) 

The explorative 3T-ER-TS scheme tries to pick a candidate 

solution xk that is not only fit, but also dissimilar (from the 

current solution xi) and diverse (from the other solutions of 

the population). Dissimilarity of xk from xi is measured as 

their Euclidean distance (ED), while diversity of xk is 

estimated as its ED from the centroid of population of 

solutions. High dissimilarity of xk from xi ensures a large     

|xkj  xij| in (5) to make a large, explorative perturbation on xi, 

while the high diversity of xk tries to pull xi away from the 

population centroid to promote more diversity and to avoid 

being trapped around local optima. In contrast, the 

exploitative 2T-ET-TS scheme tries to pick an xk that is both 

fit and has high degree of similarity to xi. This tries to ensure a 

small |xkj  xij| in (6) to make small, exploitative steps towards 

the better regions of the search space. 

But how does ABC-AX2 decide on whether to perform 

explorative or exploitative perturbation on xi? This is done 

probabilistically — the current values of pi and 1–pi denote 

the probability of exploitative and explorative perturbations 

on xi, respectively. The value of pi is automatically adapted 

using the incremental learning experience of xi, which 

includes the number of successes and failures by explorative 

and exploitative perturbations on xi during the last τ1 cycles 

(learning period). Initially, pi is set to 0.5 for every solution xi, 

Algorithm:  Artificial Bee Colony (ABC) Algorithm 

1: Initialize a population of SN food source positions (candidate solutions) xi, for i = 1, 2, …, SN. Each xi is a vector of D 

parameters: xi = [xi1, xi2, …, xiD]T 

2: Evaluate the fitness of each food source position using (2).  

3: repeat 

4:   For each employed bee, perturb its food source position xi to produce a new food position vi using (1).  

5:    Evaluate each new solution vi by (2). If vi has higher fitness than xi, then accept vi  to replace xi. Else, discard vi. 

6.    Calculate the probability wi associated with each food source position xi using (3). 

7:    For each onlooker bee, assign it to a food source xi, proportionally based on the probability wi. 

8:    For each onlooker bee, perturb its food source position xi to produce a new food position vi using (1).  

9:    Evaluate each new solution vi using (2). If vi  is better than xi, then accept vi to replace xi. Else, discard vi. 

10:   If a food source has not improved during the last limit cycles, then abandon it and replace it with a new randomly 

placed scout bee with its food source xi produced by (4). 

11:   Memorize the best food source position found so far  

12:   Set cycle counter C=C + 1  

13: until C = Maximum cycle number (MCN) 

14: return the best food source position (i.e., candidate solution) found so far 

 

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

35 

which makes exploitative and explorative perturbations 

equally desired. After the initial learning period of τ1 cycles, 

ABC-AX2 starts adjusting the pi value for each xi. To do this, 

ABC-AX2 keeps record of the number of successes and 

failures by exploitative and explorative perturbations on xi 

over the last τ1 cycles. Suppose nsER and nfER (nsET and nfET) 

are the number of successes and failures, respectively by the 

explorative (exploitative) perturbations on xi during the last τ1 

cycles. Then, success ratios of explorative perturbation (SRER) 

and exploitative perturbation (SRET) on xi are computed as: 

SRER = (nsER) / (nsER + nfER) and SRET = (nsET) / (nsET + nfET). 

Now, the adjusted probability of exploitative perturbation on 

xi (i.e., the adjusted value of pi) is computed using (7), which 

also ensures 0.1 ≤ pi ≤ 0.9 to avoid the complete domination 

by either mode of perturbations. Once the value of pi for each 

candidate solution xi is computed by ABC-AX2 using (7), it is 

kept unchanged for the next τ2 cycles (τ2 < τ1), which allows 

some time for the adjusted value of pi to produce both 

successes and failures by each type of perturbation. ABC-AX2 

regularly adjusts the value of pi for each candidate solution xi 

using (7), periodically after each τ2 cycles, using the recorded 

values of number of successes and failures by each type of 

perturbation on xi over the last τ1 cycles. After some initial 

experiments, these parameters are set as τ1=50 and τ2=10. 

 min 0.9,max 0.1, ET
i

ER ET

SR
p

SR SR

  
      

      (7) 

B. Control parameter qi for self-adaptive 

perturbation rate: The basic ABC algorithm perturbs only a 

single, random parameter of xi using (1). This usually 

produces the trial solution vi in the neighbourhood of the 

original solution xi, which is exploitative. Perturbing a single 

parameter allows search along a single dimension at a time. 

This may work well for separable problems, but not suitable 

for non-separable problems where the parameters are not 

independent. Fig. 3 shows an example using a 2D search 

space. Allowing perturbation of both the parameters (i.e., xi1 

and xi2) can produce vi along any possible direction from xi. 

This is more efficient than perturbing either xi1 or xi2, one at a 

time, as is done by the basic ABC algorithm that allows 

search along axis directions only. In contrast, ABC-AX2 tries 

to perform search along any possible direction from xi by 

maintaining and automatically adapting a control parameter qi, 

separately for every candidate solution xi, that controls the 

perturbation rate during producing the trial solution vi from xi. 

When ABC-AX2 wants to perturb a solution xi to produce vi, 

the value of qi is perturbed first, with probability=u1 using (8), 

before perturbing any other parameter of xi. This perturbed 

value of qi is inherited by vi, which is henceforth referred as 

vi.q and is used as the probability of perturbing the parameters 

of xi during producing vi from xi. A more appropriate value of 

vi.q is likely to produce fitter new solutions, which are 

supposed to survive better than xi and produce better, newer 

solutions and hence, propagate the better value of the 

perturbation probability. Thus a gradual self-adaptation 

towards better, more effective qi values takes place, allowing 

a self-adaptive and appropriate perturbation rate for the 

candidate solutions across the population.  

      1rand 0,1 ; if  rand 0,1  
.

otherwise

+  
=

                                         
i

i

min max minq q q u
q

q

  




v

 

(8)  

Here, u1 is the probability that the perturbation probability qi 

itself is perturbed before perturbing the parameters of xi. In 

ABC-AX2 implementation, these parameters have been set as 

u1=0.10, qmax=1.0 and qmin=1/D. 

C. Control parameter ηi for self-adaptive 

perturbation scaling factors: The basic ABC algorithm 

draws the φij values in (1) uniformly at random from [-1, 1], 

without any attempt to perform adaptation of the φij values for 

more effective perturbations on xi. In contrast, ABC-AX2 

produces φij values from a Gaussian distribution with mean=0 

and standard deviation=ηij, where ηi=[ηi1, ηi2, …, ηiD]T is a 

control parameter vector that is maintained separately for each 

candidate solution xi and is gradually self-adapted using (9) 

and (10). Although this procedure is similar to the 

self-adaptation strategy adopted in some other previous 

evolutionary algorithms [25], it has not yet been employed 

and tested with the ABC algorithm.   

for j = 1, 2, …, D  

     0,1 0,1exp  jNη η τ +τ N=ij ij
   
 

(9)  (9) 

 
  2

if  

otherwise

0,1rand u            

            

 



 
i

i

i

.
η

v η=
η

   (10) 

Here u2 is the probability that the new trial solution vi gets a 

control parameter vi.η that is different from ηi of the original 

solution xi. ABC-AX2 uses u2=0.5. The N(0,1) and Nj(0,1) are 

random numbers produced from the Normal distribution with 

mean=0 and standard deviation=1. The subscript j in Nj(0,1) 

indicates that the random number is generated anew for each 

value of j. The τ and τʹ are called learning rates and are set as 

suggested in [25]. ABC-AX2 maintains a separate ηi for every 

solution xi, which enables each xi to customize its own degree 

of explorations and exploitations, separately along the D 

different axis directions of the search space, using the 

components of ηi=[ηi1, ηi2, …, ηiD]T. An effective value for 

vi.η is likely to produce better, fitter new solutions that should 

survive better than xi and thus a gradual self-adaptation 

towards better, more effective ηi values can take place, cycle 

by cycle, across the population. 

5. EXPERIMENTAL STUDIES 
To evaluate the performance of ABC-AX2 and to compare it 

with the basic ABC [2] and some other recent ABC-variants 

(e.g., [15]–[21]), this paper uses a set of benchmark problems 

which has 30 standard functions, including 18 scalable high 

dimensional functions with dimensionality D=30, 60, as well 

as 12 low dimensional multimodal functions with D ≤ 10. The 

suite contains both unimodal (i.e., f1–f9) and multimodal (i.e., 

f10–f30), separable (e.g., f1, f3, f8) and non-separable (e.g., f2, f4, 

f5), high (i.e., f1–f18) and low (i.e., f19–f30) dimensional 

functions. These functions have been widely used with many 

other evolutionary and swarm intelligence algorithms (e.g., 

[2], [15]–[18], [26]–[28]). Each function is briefly presented 

in Table 1. More details can be found in [2], [21], [28].  

5.1 ABC-AX
2
 on Standard Benchmark 

Functions 
Based on their properties, the benchmark functions (Table 1) 

can be divided into three groups – functions with no local 

minima (i.e., unimodal functions f1–f9), large number of local 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

36 

minima (i.e., high dimensional multimodal functions f10–f18) 

and only a few local minima (i.e., low dimensional 

multimodal functions f19–f30). To minimize a multimodal 

function, the optimization algorithm should have both 

explorative and exploitative capabilities, because it has to 

avoid being trapped around the locally minimal points and 

continue both explorations and exploitations until it locates 

the neighbourhood of a global minimum. Some of the 

multimodal functions can have tens or even hundreds of local 

minima, even with just two dimensions (e.g., Rastrigin 

function f10). The number of local minima can increase 

exponentially with the number of dimensions, which makes 

the optimization extremely difficult. 

Table 2 presents the results of ABC-AX2 on the 30 standard 

benchmark functions and compares the results with the basic 

ABC [2] and ABC with self-adaptive mutation 

(ABC-SAM) [15]. All the algorithms have made 50 

independent runs on each function and the mean and standard 

deviation of the best found solutions are presented in Table 2.  

      

Fig. 2: Pseudocode for three-tier explorative tournament selection (on the left) and two-tier exploitative 

tournament selection (on the right) for ABC-AX
2
 

 

Fig. 3: Search direction by ABC (on the left) and ABC-AX
2
 (on the right) in 2D search space 

These algorithms have three parameters in common, which 

are population size SN, maximum cycle number MCN and 

limit. For functions f1–f18 with D=30, ABC-AX2 used SN=100, 

MCN=1000 and limit=100. For the larger variants with D=60, 

the value of SN is kept the same (i.e., 100), but limit and MCN 

are set to 200 and 2000, respectively. For the low dimensional 

f19–f30, ABC-AX2 sets SN=100, MCN=100 and limit=10D. 

The other parameters of ABC-AX2 are set as: τ1=50, τ2=10, 

u1=0.1, u2=0.5, qmin=1 D ,  qmax=1.0. Tournament sizes for 

3T-ETS and 2T-ETS selection schemes (Fig. 2) are set as: 

t1=t2=6, t3=4, and s1=6, s2=4. During initializations, control 

parameter pi of each solution xi is set to 0.5, and the qi and ηij 

values are initialized to random values from [qmin, qmax] and 

[-1, 1], respectively. These values are chosen with some initial 

experiments and not meant for optimum. The results in 

Table 2 are summarized in the following points. 

 

Algorithm: Two Tier Exploitative Tournament Selection(xi)  

 global P: Population of candidate solutions 

 global s1, s2: Tournament sizes for the similarity and  

                      fitness based tournaments, respectively 
 

 

 

     return Tier2_Similarity_Tournament(xi)    

 

 
 procedure Tier2_Similarity_Tournament(xi)   

 best ← Tier1b_Fitness_Tournament( ) 

 for i from 2 to s2 do 

     next ← Tier1b_Fitness_Tournament( ) 

  if distance(next, xi) < distance(best, xi) then 

  best ← next 

   return best 
 

 
 

 

 procedure Tier1b_Fitness_Tournament( ) 

 best ← a solution picked at random from P  

 for i from 2 to s1 do 

     next ← a solution picked at random from P  

  if fitness(next) > fitness(best) then 

   best ← next 

   return best 
 

 

 

 

Algorithm: Three Tier Explorative Tournament Selection(xi) 

 global P: Population of candidate solutions 

 global t1, t2, t3: Tournament sizes for the dissimilarity,  

 diversity and fitness based tournaments, respectively 
 

    return Tier3_Dissimilarity_Tournament(xi)  
 

 procedure Tier3_Dissimilarity_Tournament(xi)  

 best ← Tier2_Diversity_Tournament( ) 

 for i from 2 to t3 do 

     next ← Tier2_Diversity_Tournament( ) 

  if distance(next, xi) > distance(best, xi) then 

  best ← next 

   return best 
 

 procedure Tier2_Diversity_Tournament( )    

 best ← Tier1a_Fitness_Tournament( ) 

 for i from 2 to t2 do 

     next ← Tier1a_Fitness_Tournament( ) 

  if diversity(next) > diversity(best) then 

   best ← next 

 return best 
 

 procedure Tier1a_Fitness_Tournament( )   

 best ← a solution picked at random from P  

 for i from 2 to t1 do 

     next ← a solution picked at random from P  

  if fitness(next) > fitness(best) then 

   best ← next 

   return best 
 

 

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

37 

 ABC vs. ABC-AX2: Out of the 18 high dimensional 

functions f1–f18, ABC-AX2 outperforms ABC on as many 

as 16 functions, shows similar performance on one (f8), 

while ABC manages to perform better only on one 

function (f7). Each time, the difference is statistically 

significant, as measured by t-test with 99% confidence 

interval. For the low dimensional functions f19–f30, both 

ABC and ABC-AX2 perform equally well on eight 

functions, while ABC-AX2 performs better on other four. 

 

Table 1. Benchmark functions for experimental study. D: dimensionality of the function, S: search space,                

fmin: function value at global minimum, C:  function characteristics with values — U: Unimodal,                

M: Multimodal, S: Separable and N: Non-Separable. 

No Function D S C fmin 

f1 Sphere 30 and 60 [-100, 100]D US 0 

f2 Schwefel 2.22 30 and 60 [-10, 10]D UN 0 

f3 Schwefel 2.21 30 and 60 [-10, 10]D US 0 

f4 Schwefel 1.2 30 and 60 [-100, 100]D UN 0 

f5 Powell 24 [-4, 5]D UN 0 

f6 Dixon-Price 30 and 60 [-10, 10]D UN 0 

f7 Rosenbrock 30 and 60 [-30, 30]D UN 0 

f8 Step 30 and 60 [-100, 100]D US 0 

f9 Quartic 30 and 60 [-1.28, 1.28]D US 0 

f10 Rastrigin 30 and 60 [-5.12, 5.12]D MS 0 

f11 
Non-continuous 

Rastrigin 
30 and 60 [-5.12, 5.12]D MS 0 

f12 Schwefel 30 and 60 [-500, 500]D MS 0 

f13 Ackley 30 and 60 [-32, 32]D MN 0 

f14 Griewank 30 and 60 [-600, 600]D MN 0 

f15 Alpine 30 and 60 [-10, 10]D MS 0 

f16 Weierstrass 30 and 60 [-0.5, 0.5]D MS 0 

f17 Penalized 30 and 60 [-50, 50]D MN 0 

f18 Penalized2 30 and 60 [-50, 50]D MN 0 

f19 Foxholes 2 [-65.536, 65.536]D MS 1 

f20 Kowalik 4 [-5, 5]D MN 3.07e-04 

f21 
Six Hump 

Camel Back 
2 [-5, 5]D MN -1.0316 

f22 Branin 2 
[-5, 10] 

x [0, 15] 
MS 0.398 

f23 Hartman3 3 [0, 1]D MN -3.86 

f24 Hartman6 6 [0, 1]D MN -3.32 

f25 Shekel5 4 [0, 10]D MN -10.15 

f26 Shekel7 4 [0, 10]D MN -10.40 

f27 Shekel10 4 [0, 10]D MN -10.55 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

38 

f28 Fletcher Powell 10 [-π, π]D MN 0 

f29 Michalewicz 10 [0, π]D MS -9.66015 

f30 Langerman 10 [0, 10]D MN -1.4 

Table 2. Comparison of ABC-AX2 with basic ABC [2] and ABC-SAM [15] on the standard benchmark suite functions. Best 

results are marked with boldface font; if not other algorithms produce similar results. 

No fmin D G 
ABC ABC-SAM ABC-AX2 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

f1 0 
30 1000 2.45e–11 7.72e–12 4.18e–14 5.37e–15 5.51e–24 3.73e–25 

60 2000 3.75e–10 2.01e–11 6.09e–13 7.24e–13 9.43e–28 7.26e–29 

f2 0 
30 1000 5.05e–07 1.74e–07 2.47e–08 2.35e–09 4.23e–15 3.54e–16 

60 2000 5.58e–06 1.17e–06 5.06e–07 2.97e–07 2.98e–17 1.07e–17 

f3 0 
30 1000 4.18e+01 5.90 1.69e+01 1.43 6.60e–02 5.21e–03 

60 2000 7.31e+01 6.88 3.10e+01 5.12 2.78 0.77 

f4 0 
30 1000 8.32e–10 9.75e–11 3.95e–12 5.77e–13 3.42e–16 8.83e–18 

60 2000 4.50e–09 5.64e–10 7.54e–11 2.14e–11 8.84e–20 5.45e–21 

f5 0 24 1000 6.61e+00 1.07e+00 9.24e–01 2.08e–01 2.23e–02 3.75e–03 

f6 0 
30 1000 6.67e–01 1.21e–08 2.16e–03 6.37e–04 5.91e–05 5.67e–06 

60 2000 6.66e–01 1.05e–07 7.76e–02 1.63e–02 8.33e–05 1.71e–05 

f7 0 
30 1000 4.25e–01 1.18e–01 2.28e+01 3.75 2.39e+01 3.66 

60 2000 2.02e–01 6.92e–02 4.96e+01 7.80 5.15e+01 7.69 

f8 0 
30 1000 0 0 0 0 0 0 

60 2000 0 0 0 0 0 0 

f9 0 
30 1000 8.60e–13 8.32e–13 3.66e–16 1.44e–17 8.87e–34 6.78e–35 

60 2000 9.31e–12 7.17e–12 4.76e–15 5.32e–16 6.31e–32 2.16e–33 

f10 0 
30 1000 1.72e–14 1.56e–14 1.26e–16 2.11e–17 4.68e–24 9.03e–26 

60 2000 2.84e–13 8.01e–14 8.55e–15 3.15e–16 6.12e–31 8.67e–33 

f11 0 
30 1000 2.33e–08 7.49e–09 4.60e–10 8.85e–11 1.04e–13 3.16e–14 

60 2000 6.64e–07 1.51e–07 6.80e–09 8.77e–10 4.25e–13 7.32e–14 

f12 
–12569.5 30 1000 –11346.79 2.77e+02 –12416.19 4.02e+01 –12569.48 1.50e–02 

–25138.9 60 2000 –22530.82 4.08e+02 –23805.93 2.84e+02 –25016.6 1.89e+01 

f13 0 
30 1000 2.93e–06 3.38e–07 9.26e–08 1.89e–08 8.13e–13 6.71e–14 

60 2000 4.65e–06 1.07e–06 2.07e–08 3.55e–08 3.62e–14 1.15e–15 

f14 0 
30 1000 4.55e–08 6.54e–09 8.36e–10 5.08e–11 5.63e–23 7.35e–25 

60 2000 8.01e–07 2.64e–07 1.56e–10 6.90e–11 7.04e–31 5.77e–32 

f15 0 
30 1000 3.34e–04 3.76e–05 2.22e–08 3.93e–09 8.56e–13 1.56e–13 

60 2000 7.49e–03 9.58e–04 1.17e–08 2.35e–09 5.37e–13 1.25e–13 

f16 0 
30 1000 3.36e–01 9.58e–02 5.78e–04 6.31e–05 6.46e–09 8.32e–10 

60 2000 8.99e–01 3.09e–01 9.20e–03 4.03e–03 5.38e–08 9.19e–10 

f17 0 
30 1000 5.47e–12 2.09e–13 2.78e–12 8.89e–13 3.85e–14 4.93e–15 

60 2000 7.47e–12 1.74e–12 1.32e–12 5.15e–13 3.50e–14 2.60e–15 

f18 0 
30 1000 2.63e–03 1.89e–04 3.06e–02 8.59e–03 2.33e–21 7.55e–22 

60 2000 2.66e–03 7.90e–04 5.11e–02 7.39e–03 7.52e–26 1.29e–26 

f19 1 2 100 1.04 0.04 1.03 0.03 1.01 0.01 

f20 3.07e–04 4 100 5.98e–04 7.22e–05 4.32e–04 1.09e–05 3.10e–04 8.73e–06 

f21 –1.0316 2 100 –1.0316 0 –1.0316 0 –1.0316 0 

f22 0.398 2 100 0.398 7.12e–08 0.398 2.75e–07 0.398 1.83e–07 

f23 –3.86 3 100 –3.86 7.09e–07 –3.86 1.54e–08 –3.86 6.77e–10 

f24 –3.32 6 100 –3.32 4.74e–13 –3.32 6.26e–14 –3.32 2.61e–15 

f25 –10.15 4 100 –9.61 0.14 –10.14 3.68e–07 –10.15 9.15e–08 

f26 –10.40 4 100 –10.40 8.61e–03 –10.40 7.94e–03 –10.40 2.56e–03 

f27 –10.54 4 100 –10.52 0.08 –10.54 6.77e–07 –10.55 7.84e–08 

f28 0 10 100 13.77 3.80 4.02 0.39 4.19e–01 6.54e–02 

f29 -9.66015 10 100 -9.66015 0 -9.66015 0 -9.66015 0 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

39 

f30 -1.4 10 100 –0.78 0.09 –1.04 0.06 –1.28 0.03 

Summary 

(t-Test) 

+ 20 19 

 – 1 0 

≈ 9 11 

 

  

  

  

Fig. 4.  Convergence characteristics of ABC, ABC-SAM and ABC-AX2 on three unimodal (f1, f4, f8) 

and three multimodal (f12, f13, f18) functions. The vertical axis is the function value and the horizontal 

axis is the number of cycles elapsed. 

 ABC-SAM vs. ABC-AX2: On all of the 30 functions, 

ABC-AX2 performs either better than or as well as 

ABC-SAM. For the high dimensional functions f1–f18, 

ABC-AX2 significantly outperforms ABC-SAM on as 

many as 16 functions and shows similar performance on 

two (f7 and f8). On most (nine out of twelve) of the low 

dimensional functions f19–f30, both perform equally well, 

but ABC-AX2 performs better on the remaining three.  

 For almost all the functions, ABC-AX2 shows very low 

standard deviation of its results. This indicates its high 

degree of consistency and robustness for all these 

benchmark functions.  

 The ‗+‘, ‗–‘ and ‗≈‘ symbols at the bottom rows count 

the number of functions where ABC-AX2 produces 

significantly better, worse and similar results, 

respectively compared to ABC or ABC-SAM. Out of 30 

functions, ABC-AX2 performs significantly better than 

ABC and ABC-SAM on 20 and 19 functions, shows 

similar performance on 9 and 11 functions, while ABC 

performs better on one function (f7) only. So the overall 

performance of ABC-AX2 is much better than others.  

Fig. 4 shows the convergence graphs of ABC, ABC-SAM and 

ABC-AX2 for three unimodal (f1, f4, f8) and three multimodal 

(f12, f13, f18) functions with D=30. ABC-AX2 shows far better 

convergence characteristics than its counterparts for all these 

functions. For example, consider the functions f12 and f18, 

where both ABC and ABC-SAM converges to a local 

minimum and gets stuck there till the end of their execution. 

In contrast, ABC-AX2 easily reaches the global minimum for 

f12 and shows no sign of fitness stagnation for f18, even after 

reaching the vicinity of the global minimum. For some 

functions, e.g., f1, f4, f13 and f18, ABC-SAM initially shows 

somewhat higher convergence speed than ABC-AX2, but 

eventually it either gets stuck at local optima (f13, f18) or 

gradually slows down (f1, f4) and at the end, ABC-AX2 shows 

significantly higher convergence speed than both ABC and 

ABC-SAM. Fig. 4 shows that ABC-AX2 has always reached 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

40 

very close proximity to the global minimum, while ABC and 

ABC-SAM can get stuck at several intermediate local optima 

(note the semi-flat and flat regions of the plot of ABC in f4 

and ABC-SAM in f13). Previously Table 2 considered the 

performance of all three algorithms to be similar on f8, but 

Fig. 4 now reveals that ABC-AX2 actually reaches the global 

minimum of f8 much earlier than both ABC-SAM and ABC. 

Table 3. Comparison of ABC-AX2 with the CABC [16] variants. The boldface font marks the best performance for each 

function. The  +, –  and ≈ counts the number of instances where ABC-AX2 performs better, worse and similar, respectively.  

Function 
CABC_S CABC_H ABC-AX2 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

f1 3.30e–19 2.00e-19 5.92e–18 3.56e–18 7.22e–51 4.08e–52 

f7 6.33e+00 7.68e+00 4.80e–01 8.55e–01 5.94e+00 4.35e+00 

f10 0 0 0 0 8.56e–54 3.83e–55 

f12 1.30e–04 5.21e–06 1.27e–04 0 1.04e–06 7.98e–08 

f13 1.83e–14 9.86e–15 8.35e–15 4.13e–15 7.14e–18 7.83e–19 

f14 4.42e–02 2.99e–02 7.96e–03 9.06e–03 3.84e–54 2.04e–55 

 + 4 4 

 – 1 2 

≈ 1 0 
 

Table 4. Comparison between ABC-AX2 and DABC [17]. Best results are marked with bold font; if not both the 

algorithms produce identical results.  

Function D 
DABC ABC-AX2 

Mean Std. Dev. Mean Std. Dev. 

f1 
10 2.01e–17 5.63e–17 0 0 

30 2.01e–16 2.85e–17 7.26e–51 6.47e–52 

f7 
10 2.73e–03 7.04e–03 9.46e–02 8.22e–03 

30 1.42e–02 2.53e–02 5.88e–01 8.32e–02 

f10 
10 0 0 0 0 

30 0 0 0 0 

f14 
10 0 0 0 0 

30 2.59e–16 1.22e–16 1.78e–50 5.28e–51 

 + 2 

 – 1 

≈ 1 
 

Table 5. Comparison between ABC-AX2 and ChABC [18]. Best results are marked with bold font.  

Function D 
CHABC ABC-AX2 

Mean Std. Dev. Mean Std. Dev. 

f1 30 2.99e–16 3.54e–17 9.76e–119 7.17e–120 

f7 30 6.33e–02 8.96e–02 8.48e–07 4.99e–08 

f10 30 0 0 8.60e–129 5.14e–130 

f12 30 3.81e–04 2.07e–04 5.32e–06 6.04e–07 

f13 30 2.93e–14 2.99e–15 2.48e–17 4.09e–18 

f14 30 2.70e–16 6.20e–17 1.85e–129 5.75e–130 

 + 5  



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

41 

– 1 

≈ 0 

Table 6. Comparison between ABC-AX2 and GABC [20]. Best results are marked with bold font. 

Function D 
GABC (C=1.0) GABC (C=1.5) ABC-AX2 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

f1 
30 4.31e–16 7.49e–17 4.17e–16 7.36e–17 9.66e–105 8.05e–106 

60 1.43e–15 1.43e–16 1.43e–15 1.37e–16 1.98e–36 3.58e–37 

f7 
2 3.93e–04 4.45e–04 1.68e–04 1.45e–04 7.88e–03 5.35e–04 

3 2.63e–03 2.11e–03 2.65e–03 2.22e–03 2.13e–01 6.12e–02 

f10 
30 9.47e–15 2.15e–14 1.32e–14 2.44e–14 6.30e–108 1.52e–109 

60 4.16e–13 1.77e–13 3.52e–13 1.24e–13 7.42e–40 3.75e–41 

f13 
30 3.31e–14 2.90e–15 3.21e–14 3.25e–15 4.04e–19 8.28e–20 

60 1.04e–13 1.07e–14 1.00e–13 6.08e–15 1.63e–17 2.66e–18 

f14 
30 8.88e–17 8.45e–17 2.96e–17 4.99e–17 9.50e–101 2.00e–102 

60 9.47e–16 7.84e–16 7.54e–17 4.12e–16 1.81e–33 3.25e–34 

 + 4 4 

 – 1 1 

≈ 0 0 

 

Table 7. Comparison of ABC-AX2 with HJABC [21] based on convergence speed. Best results are marked with bold font.  

Function D 
Number of function evaluations 

HJABC ABC-AX2 

f1 30 18322 13805 

f2 30 12509 17987 

f3 30 120315 – 

f4 30 43939 35502 

f7 30 102718 – 

f8 30 17755 13986 

f9 30 – 12230 

f10 30 15376 20713 

f13 30 54497 42609 

f14 30 56855 31582 

f15 30 99686 81678 

    + 7 

 – 4 

≈ 0 
 

5.2 Comparison with other ABC-variants  
In this section ABC-AX2 is compared with some other recent 

variants of ABC, such as the cooperative ABC (CABC) [16], 

ABC with diversity strategy [17], chaotic ABC (CHABC) 

[18], gbest-guided ABC (GABC) [20] and Hooke Jeeves ABC 

(HJABC) [21]. The first three variants (e.g., [16]–[18]) 

increase the degree of explorations, while the last two variants 

(e.g., [20]–[21]) increase the intensity of exploitations.  

First, ABC-AX2 is compared with CABC [16], which is a 

cooperative variant of the basic ABC algorithm. CABC has 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

42 

been introduced in two different versions — CABC_S and 

CABC_H. In order to perform more explorations, CABC_S 

decomposes the search space into multiple sub-spaces and 

employs different bee colonies to search and explore the 

different sub-spaces. The other variant, CABC_H tries to 

perform more exploitations than CABC_S by repeatedly 

alternating between explorative CABC_S and exploitative 

ABC. For comparison, ABC-AX2 is re-implemented with the 

same settings [16] — SN=40, no. of function evaluations 

FE=100,000 and limit=SND. Table 3 shows that ABC-AX2 

significantly outperforms both the CABC variants on four out 

of the six benchmark functions, while CABC_S and CABC_H 

perform better on one or two functions only. So the overall 

performance of ABC-AX2 is better than the CABC variants.  

The next comparison is made between ABC-AX2 and DABC 

[17]. DABC tries to maintain sufficient amount of diversity 

among the candidate solutions to allow more search space 

explorations. DABC regularly measures the existing 

population diversity d and employs either its explorative or 

exploitative perturbation based on the value of d. ABC-AX2 is 

re-implemented with SN=20, MCN=5000 and limit=100 to 

compare with DABC. Results presented in Table 4 show that 

ABC-AX2 performs better than DABC on two out of four 

functions (f1 and f14), shows similar performance on one (f10), 

while DABC performs better on the remaining one function 

(f7) only. The reason may be that DABC completely relies on 

its estimated value of population diversity d to choose 

between explorations and exploitations, while there is no 

accurate metric for diversity. Besides, DABC uses a naïve 

strategy of fixed threshold diversity value (dlow in [17]), which 

may cause repeated oscillations between conflicting 

explorations and exploitations to reduce convergence speed.  

Next, ABC-AX2 is compared with the Chaotic ABC 

(CHABC) [18] algorithm. CHABC employs chaotic search 

behavior during perturbations to produce new food positions 

from the existing ones. Chaotic dynamics are produced by the 

logistic equations (eq. (4)–(7) in [18]) which provide a simple 

mechanism to escape from local minima and avoid premature 

convergence. For comparison, ABC-AX2 is executed for 5000 

cycles with population size of 70 and limit=200, as suggested 

in [18]. Results (Table 5) show that ABC-AX2 outperforms 

CHABC on as many as five out of the six functions, while 

CHABC performs better on the remaining one function (f10) 

only. The reason may be that CHABC employs same chaotic 

strategy uniformly for all the candidate solutions across the 

population, without considering their individual 

exploitative/explorative requirement, while ABC-AX2 

considers and customizes the degree of explorations and 

exploitations separately for every candidate solution.  

Next, ABC-AX2 is compared with GABC [20], which is an 

exploitative ABC-variant that tries to improve the 

convergence speed by using the information of the global best 

solution found so far into the perturbation scheme (1). 

ABC-AX2 is executed with the same settings [20] and results 

are presented in Table 6. In [20], GABC is tested with several 

values of its parameter C, but the best results are always 

observed with C = 1.0 or 1.5, so Table 6 includes both the 

results. Results show that ABC-AX2 outperforms GABC on 

four out of the five functions, while GABC performs better on 

the remaining one (f7) only. The reason may be that the 

perturbation operation of GABC becomes too exploitative by 

pushing its candidate solutions towards the best solution 

found so far. Increased exploitations, at the cost of reduced 

explorations, may improve the final solution quality for the 

unimodal and low dimensional function f7, but is likely to fail 

for the other four multimodal functions in Table 6.  

Next, ABC-AX2 is compared with HJABC [21], which is a 

hybrid ABC-variant that intensifies the degree of exploitations 

by hybridizing basic ABC with an efficient local search 

technique (i.e., Hooke Jeeves pattern search). Table 7 

compares ABC-AX2 and HJABC based on the number of 

function evaluations (NFE) required to achieve a predefined 

level of accuracy. Both ABC-AX2 and HJABC are run with 

SN=25 and limit=SND, until either NFE reaches a 

predefined maximum value (NFEmax) or the algorithm reaches 

as accuracy of ɛ around the global minimum. As suggested in 

[21], ABC-AX2 used ɛ = 10-8 with NFEmax=300000. For seven 

out of the eleven functions in Table 7, ABC-AX2 performs 

better than HJABC, by showing a faster convergence speed, 

while HJABC performs better on the remaining four. 

However, ABC-AX2 can‘t achieve the predefined level of 

accuracy within NFEmax function evaluations for two 

functions (f3 and f7), while HJABC fails to do so only for one 

function (f9). In short, the overall performance of ABC-AX2 is 

quite comparable to HJABC. The reason that HJABC often 

requires larger number of function evaluations, even after 

using the efficient Hooke Jeeves local searcher [21], may be 

that HJABC regularly tries to find an appropriate search 

direction by exploring along the axis directions only, 

exploring just one variable at a time, which is not suitable for 

the non-separable problems.  

6. CONCLUSION AND SUGGESTION 

FOR FURTHER STUDY 
This paper introduces ABC-AX2 — an improvement of the 

basic ABC algorithm [2] that tries to adaptively control the 

degree of explorations and exploitations, separately for each 

candidate solution. ABC-AX2 includes three control 

parameters — pi, qi and ηi within each candidate solution xi 

and employs adaptive and self-adaptive techniques to adapt 

their values gradually. The control parameter pi controls the 

proportion of exploitative and explorative perturbations on xi 

and is gradually adapted by ABC-AX2 based on the previous 

successes and failures of the exploitative and explorative 

perturbations on xi. The other two control parameters – qi and 

ηi control the perturbation rate and perturbation scaling factors 

for xi and they have to go through gradual self-adaptation, 

using (8) and (10) respectively.  

ABC-AX2 significantly differs from most other existing 

variants of ABC algorithm. Most ABC-variants view 

exploitations and explorations as conflicting operations, so 

they try to improve either the local exploitations (e.g., 

GABC [20], HJABC [21]) or the global explorations (e.g., 

CABC [16], DABC [17], CHABC [18]) of the basic ABC 

algorithm, without trying to establish a proper balance 

between exploitations and explorations. In contrast, ABC-AX2 

considers exploitations and explorations to be complementary, 

rather than conflicting, operations and try to achieve some 

degree of both exploitations and explorations throughout the 

entire optimization procedure. For example, ABC-AX2 keeps 

the value of pi always within [0.1, 0.9] to avoid the complete 

domination by either exploitative or explorative perturbations. 

Also, ABC-AX2 uses fixed values of u1 and u2 (e.g., 0.1 and 

0.5, respectively, as in the current implementation), so there is 

always significant possibility that the values of qi and ηi will 

be randomized using (8) and (10), respectively, which can 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 8– No.2, January 2015 – www.ijais.org 

 

43 

induce both explorations and exploitations on xi throughout 

the entire optimization procedure. Experimental results 

(Tables 2–7) clearly show that ABC-AX2 has significantly 

improved its results over the basic ABC algorithm [2] as well 

as several other recent variants of ABC (e.g., [15]–[21]).  

There may be several possible future research directions based 

on this study. Firstly, ABC-AX2 uses a simple strategy to 

adjust the control parameters – pi, qi and ηi for each candidate 

solution xi. A more sophisticated strategy, such as considering 

the properties of fitness landscape around xi, or using a 

strategy parameterized by existing population diversity or the 

maturity of the optimization process may be more effective to 

balance between exploitations and explorations around xi. 

Secondly, the quality of the final solution could be improved 

further by using an exploitative and efficient local searcher. 

This may pinpoint the global minimum more precisely. 

Thirdly, ABC-AX2 can be hybridized with many other 

existing evolutionary, swarm intelligence, machine learning 

techniques to further improve its results. Finally, ABC-AX2 

has been employed on the continuous problems. It would be 

interesting to know how well ABC-AX2 performs on other 

existing problems, especially the discrete and real world ones. 

7. REFERENCES 
[1] D. Karaboga, ―An idea based on honey bee swarm for 

numerical optimization‖, Erciyes University, Kayseri, 
Turkey, Technical Report-TR06, 2005. 

[2] D. Karaboga, B. Akay, ―A comparative study of artificial 

bee colony algorithm‖, Applied Mathematics and 
Computation 214 (1) (2009) 108–132. 

[3] Q. Bai, X. Yun, ―A new hybrid artificial bee colony 

algorithm for the traveling salesman problem‖, in: Proc. 

3rd Int. Conf. Communication Software and Networks 
(ICCSN), 2011, pp. 155–159. 

[4] N. Stanarevic, M. Tuba, N. Bacanin, ―Modified artificial 

bee colony algorithm for constrained problems 

optimization‖, Int. Journal of Mathematical Models and 

Methods in Applied Sciences 5 (3) (2011) 644–651. 

[5] S. Omkar, J. Senthilnath, R. Khandelwal, G. Naik, S. 

Gopalakrishnan, ―Artificial bee colony (ABC) for multi-

objective design optimization of composite structures‖, 
Applied Soft Computing 11 (1) (2011) 489–499. 

[6] F. Kang, J. Li, Q. Xu, ―Structural inverse analysis by 

hybrid simplex artificial bee colony algorithms‖, 
Computers and Structures 87 (13–14) (2009) 861–870.  

[7] R. Irani, R. Nasimi, ―Application of artificial bee colony-

based neural network in bottom hole pressure prediction 

in underbalanced drilling‖, Journal of Petroleum Science 
and Engineering 78 (1) (2011) 6–12. 

[8] N. Karaboga, ―A new design method based on artificial 

bee colony algorithm for digital IIR filters‖, Journal of 

the Franklin Institute 346 (4) (2009) 328–348. 

[9] D. Karaboga, B. Akay, ―PID controller design by using 

artificial bee colony, harmony search and bees 

algorithms‖, in: Proceedings of the Institution of 

Mechanical Engineers, Part I: Journal of Systems and 

Control Engineering 224 (7) (2010) 869–883. 

[10] R. Rao, P. Pawar, ―Parameter optimization of a 

multi-pass milling process using non-traditional 

optimization algorithms‖, Applied Soft Computing 
10 (2) (2010) 445-456. 

[11] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, ―A 

comprehensive survey: artificial bee colony (ABC) 

algorithm and applications‖, Artificial Intelligence 
Review (2012) 1–37.  

[12] L. Bao, J. Zeng, ―Comparison and analysis of the 

selection mechanism in the artificial bee colony 

algorithm‖, in: Proc. 9th Int. Conf. Hybrid Intelligent 

Systems, 2009, pp. 411–416. 

[13] W. Gao, S. Liu, ―A modified artificial bee colony 

algorithm‖, Computers and Operations Research 39 (3) 
(2012) 687–697. 

[14] J. Lampinen, I. Zelinka, ―On stagnation of the 

differential evolution algorithm‖, in: Proc. 6th Int. 
Mendel Conf. on Soft Computing, 2000, pp. 76–83.  

[15] M. S. Alam, M. M. Islam, ―Artificial bee colony 

algorithm with self-adaptive mutation: A novel approach 

for numeric optimization‖, in: Proc. 2011 IEEE Int. 

Conf. on Trends and Developments in Converging 
Technology (TENCON), 2011, pp. 49–53. 

[16] M. Abd, ―A cooperative approach to the artificial bee 

colony algorithm‖, in: IEEE Congress on Evolutionary 

Computation (CEC), 2010, pp. 1–5. 

[17] W. Lee, W. Cai, ―A novel artificial bee colony algorithm 

with diversity strategy‖, in: Proc. 7th Int. Conf. Natural 
Computation, 2011, pp. 1441–1444.  

[18] B. Wu, S. Fan, ―Improved Artificial Bee Colony 

Algorithm with Chaos‖, in: Y. Yu, Z. Yu, J. Zhao (Eds.): 

Computer Science for Environmental Engineering and 

EcoInformatics, Part I, Communications in Computer 
and Information Science, vol. 158, 2011, pp. 51-56. 

[19] L. Fenglei, D. Haijun, F. Xing, ―The parameter 

improvement of bee colony algorithm in TSP problem‖, 
Science Paper Online, November 2007. 

[20] G. Zhu, S. Kwong, ―Gbest-guided artificial bee colony 

algorithm for numerical function optimization‖, Applied 

Mathematics & Computation 217 (7) (2010) 3166–3173. 

[21] F. Kang, J. Li, Z. Ma, H. Li, ―Artificial bee colony 

algorithm with local search for numerical optimization‖, 
Journal of Software 6 (3) (2011) 490–497. 

[22] F. Qingxian, D. Haijun, ―Bee colony algorithm for the 
function optimization‖, Science Paper Online, 2008. 

[23] H. Quan, X. Shi, ―On the analysis of performance of the 

improved ABC algorithm‖, in: 4th IEEE Int. Conf. 

Natural Computation (ICNC), 2008, pp. 654–658. 

[24] E. Montes, R. Koeppel, ―Elitist artificial bee colony for 

constrained real-parameter optimization‖, IEEE 
Congress on Evolutionary Computation 11 (2010) 1–8. 

[25] S. Nieberg, H. Beyer, ―Self-adaptation in evolutionary 

algorithms‖, Parameter Setting in Evolutionary 
Algorithm (2007) 47–76. 

[26] J. Liang, A. Qin, P. Suganthan, S. Baskar, 

―Comprehensive learning particle swarm optimizer for 

global optimization of multimodal functions‖, IEEE 
Trans. on Evolutionary Comput. 10 (3) (2006) 281--295. 

[27] C. Lee, X. Yao, ―Evolutionary programming using 

mutations based on the Lévy probability distribution‖, 

IEEE Transactions on Evolutionary Computation 8 (1) 
(2004) 1–13. 

[28] X. Yao, Y. Liu, G. Lin, ―Evolutionary programming 

made faster‖, IEEE Transactions on Evolutionary 
Computation 3 (2) (1999) 82–102. 


