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ABSTRACT 

This work presents a modified simulated annealing applied to 

the process of solving a typical high school timetabling 

problem. Preparation of a high school timetable consists 

basically of fixing a sequence of meetings between teachers 

and students in a prefixed period of time in such a way that a 

certain set of constraints of various types is satisfied. The 

approach presented in the paper has been successfully used to 

schedule the first time school timetable of Fakunle 

Comprehensive High School, Osogbo Nigeria during the 

2012/2013 session and it was capable of generating timetables 

for complex problem instances. A task involving 18 Classes, 

45 Teachers and 15 Subjects for Junior Secondary School 

(JSS) with 3 Levels (JSS 1 to JSS 3), and 6 arms each; and 24 

Classes, 77 Teachers and 19 Subjects for Senior Secondary 

School (SSS), with 3 Levels (SSS 1 to SSS 3), and 8 arms (3 

for Science Group, 3 for Commercial Group, and 2 for Art 

Group), for 6 hours, 5 days respectively. The use of the 

implemented model resulted in significant time saving in the 

scheduling of the timetables, and a well spread lessons for the 

teachers. Also none of the teachers and classes was double 

booked. It was clearly evident that the developed modified 

simulated annealing reduces the major weakness of slow 

convergence (convergence at excessive time) associated with 

the classical simulated annealing. 

General Terms 

School Timetabling, Meta-heuristics. 

Keywords 

NP-Complete, Constraint Satisfaction, Combinatorial 
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1. INTRODUCTION 
Timetabling problems have been the subject of active research 

in recent time [1, 2], and [3] reports that timetabling problems 

have attracted substantial research interests due to its 

importance in a wide variety of application domains, 

including Education [4], Employee/Staff Rostering [5], 

Healthcare Institutions [6], Sports events [7], Interview 

scheduling [8], and many other constraint satisfaction 

problems. This diversity and its relevance in practice made 

timetabling an active research area in operations research [9]. 

 

Timetabling problems arising from educational institutions 

can be classified into three main groups: university 

examinations timetabling, university course timetabling and 

school timetabling problems. Most of the research on 

educational timetabling has concentrated on course 

timetabling and examination timetabling at the university 

level [10, 11], and timetabling researchers have obtained very 

promising and practicable results in these problem areas. 

However, school timetabling problem has not been as 

extensively studied as examination timetabling and course 

timetabling at the university, and widely usable results are not 

yet available due to lack of standard benchmarks and data 

formats [12]. This is also because school timetabling problem 

has a large number of variants or structure depending on the 

country (laws), the type of school, and even on the specific 

school involved (school policies) and other particular 

variables [13].  In reality, the research in this area is still very 

active and researchers are not even near to solving all the 

instances of the school timetabling problem to optimality. In 

addition, continuous reforms in educational systems all over 

the world generate new applications to tackle [14]. 

 The school timetabling problem is the process of weekly 

scheduling of lessons for high schools, and involves fixing a 

sequence of meetings between teachers and students in a 

prefixed period of time in such a way that a certain set of 

constraints of various types is satisfied. A typical educational 

timetable instance requires several days of work for a manual 

solution [15]. Generating School timetables manually is time 

consuming, requires several days or weeks [16], and tedious 

to do since it often involves numerous rounds of changes 

before they can be satisfactory. Usually such a process takes 

several days, and often the quality of the timetables is 

compromised due to pressure to release the timetables on time 

[17]. Another major problem in manually generating school 

timetables is dealing with clashes, and finding clash-free or 

conflict-free slots, as making a change requires that one has to 

undo previous lesson allocation and look for a new allocation. 

This creates a series of backtracks which are difficult to 

resolve. Also, as the solution obtained may be unsatisfactory 

in some respect because it is a highly complex task to verify 

all constraints, considerable attention has been devoted to 

automated timetabling. Also due to inherent problem 

complexity (with a large number of events needing to be 

assigned to resources and a list of constraints needing to be 
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satisfied), and variability (this problem has a varying structure 

in different high schools even in the same countries or 

educational systems), the search space for this problem is very 

large. 

For the above reasons, several techniques or approaches have 

been developed to automatically solve the problem [18, 19, 

20]. A concise overview of some general trends and recent 

state in automated timetabling can be found in a variety of 

papers [21, 22, 23]. Some of their concepts and/or methods 

can be used in real-life timetabling problems. 

For the school timetabling field, solutions that are based on 

the use of Genetic Algorithms [24], Tabu Search [25], 

Constraint Programming [26], Simulated Annealing [27], 

Meta-heusistics [28], are found but they meet neither the 

requirements nor the structure of school timetabling problem 

solved in this study. 

This is because this problem has a large number of variants 

depending on the country (laws), on the type of school, and 

even on the specific school involved (school policies) and 

other particular variables [13]. The school timetabling 

problem we consider in this paper comes from the Nigerian 

high-school system, and particularly interested in all those 

cases where it is necessary to match fixed periods of time with 

lessons that are given by certain teachers. Under this context, 

different constraints have to be considered. Some of them 

referred as hard constraints have to be satisfied for a solution 

to be considered valid (for example, a teacher cannot teach 

two lessons at the same time). Others, referred as soft 

constraints, reflect the preferences given by the teachers or by 

the policies of the school (for example, teachers want to 

minimize the holes in their schedule, and a school policy 

could aim at avoiding practicing sports after lunch). 

Therefore, the accomplishment of hard constraints indicates 

the feasibility of a solution, whereas the soft constraints 

permit to quantify its goodness. Also, the school timetabling 

problem we consider (including all constraints) admits a 

mathematical representation [20], so that heuristic solution 

can be obtained by applying well-known techniques in this 

field. However, school timetabling problem is known to be a 

NP-complete problem [29]. The objective of this research is to 

develop a modified simulated annealing algorithm that will 

efficiently solve school timetabling problems optimally, and 

that would also enhance the effectiveness of timetable 

generation in Nigerian high schools.  

Research into meta-heuristic methods has provided significant 

advances in automated timetabling technology [30]. Meta-

heuristic methods begin with one or more initial solutions and 

employ search strategies to find optimal solution, trying to 

avoid local optimal in the process [31]. Simulated Annealing 

(SA), Tabu Search (TS), Genetic Algorithm (GA), Memetic 

Algorithm (MA) and Ant Colony System (ACS) are among 

the main meta-heuristics for solving challenging problems of 

intelligent systems [32].  

SA is a random-search probabilistic method proposed in [33] 

and [34] for finding the global minimum of a cost function 

that may possess several local minima. It works by emulating 

the physical process whereby a solid is heated, slowly cooled, 

and eventually “frozen” into a minimum energy crystalline 

structure, this happens at a minimum energy configuration.  

 

SA is based on the annealing process for metals, and its major 

advantage over other meta-heuristics is its ability to avoid 

getting trapped at a local minimum by employing a random 

search which not only accepts changes (neighbourhood) that 

increase the objective function value but also some changes 

that decrease the objective function (assuming a minimization 

problem), using a probabilistic acceptance criterion [33]. 

SA is an efficient, robust and a good tool for complex 

nonlinear optimization problems [35], and is amongst the 

leading meta-heuristic for solving timetabling problems 

because of its ability to avoid getting trapped at a local 

minimum. SA has been widely and successfully used for 

tackling a variety of different combinatorial optimization 

problems since been originally developed by [33]. Depending 

on the problem to which it is applied, SA appears competitive 

with many of the best heuristics as shown by [36, 37, 38, 39, 

40]. 

However, the major drawback of SA is its very slow 

convergence (converges at excessive time) as SA is inherently 

sequential and hence very slow for problems with large search 

spaces [41]. Several attempts have been made to speed up this 

process, for example [42] indicated that by carefully 

controlling the rate of cooling the temperature, SA can find 

the global optimum exponentially faster since SA algorithm 

performance depends more on the choice of cooling schedule 

(cooling rate), and that since slow cooling schedules are 

generally more effective, the computational cost is generally 

improved with slower cooling rates.  

Hence, SA can be modified by including a mechanism for 

carefully controlling the rate of cooling the temperature. The 

inclusion of a mechanism for carefully controlling the rate of 

cooling the temperature into SA results into the model called 

Modified Simulated Annealing (MSA) developed in this work 

that converged at lesser time, thereby reducing the time 

wasted during manual timetable preparation, resolving the 

conflict associated with teachers and classes’ clashes, and as 

well reducing human intervention to solving combinatorial 

problems to avoid undue favouritism and partiality. 

The remainder of this paper is organized as follows: The next 

section presents the review of SA meta-heuristic technique. 

Section 3 describes the methodology adopted and especially 

the technique developed. Section 4 shows the simulation 

results and the performance obtained. Finally Section 5 

concludes the paper. 

2. SA META-HEURISTIC 
Simulated Annealing (SA) is a particular instance of meta-

heuristic algorithms or methods. Meta-heuristic methods 

(Local search or Population-based search) are sort of heuristic 

algorithms that are not designed to solve a particular problem, 

but are rather designed with the aim of being flexible enough 

to handle as many different problems as possible. In local 

search an intensive exploration of the solution space is 

performed by moving at each step from the current solution to 

another promising solution in neighbourhood while 

population-based search consists of maintaining a pool of 

good solution in order to produce hopefully better solutions 

[43]. 

 Meta-heuristic algorithms constitute a class of computational 

paradigms useful for function optimization, often inspired by 

the study of natural processes [44]. They begin with one or 

more initial solutions, and usually update possible solutions, 
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one or a whole set at a time, and employ search strategies to 

find optimal solution, trying to avoid local optimal in the 

process [31, 45]; in this sense the naming evolutionary 

algorithm is common in the literature [44].  Particular 

efficient instantiation of evolutionary algorithms are 

represented by Simulated Annealing [33], in which the natural 

analogy is the annealing process for metals; by Generic 

Algorithms [46], in which the natural analogy is population 

genetics, and by Tabu Search [47, 48]. 

Simulated Annealing is an effective single-solution, 

randomized, probabilistic, and local search heuristic, for both 

discrete and continuous problem, that is, problems whose cost 

functions are defined on finite set [49], and are also defined 

on continuous sets [50]. 

Local search techniques are a family of general-purpose 

techniques for the solution of optimization problems (Aarts et 

al., 1997). Consider an optimisation problem, and let S be a 

possible search space for it. A function N, which depends on 

the structure of the specific problem, assigns to each feasible 

solution s  S, its neighbourhood N(s)  S. Each solution s1  

N(s) is called a neighbour of s. A local search technique, 

starting from an initial solution s0 (which can be obtained with 

some other technique or generated at random), enters in a loop 

that navigates part of the search space, stepping iteratively 

from one solution to one of its neighbours. The connectivity 

of the search space, with respect to the neighbour relation, is a 

necessary condition for the technique to work effectively [19]. 

The modification that transforms a solution into one of its 

neighbours is called a move. The selection of the move to be 

performed at each step of the search is based on the cost 

function f, which assesses the quality of the solution. The cost 

function generally is composed of the so-called distance to 

feasibility, which accounts for the number of constraints that 

are violated, and the objective function of the problem. 

In other words, local search heuristics can be used to search 

for good solutions as opposed to using a mathematical 

program to find an optimal solution, which may take too long 

to find. Local search techniques move from one solution to 

another by making a “move” to a neighbour of the current 

solution. Neighbours, as well as moves, may be different for 

different problem models. Solutions are compared based on 

an objective function that needs to be minimized or 

maximized. 

Simulated Annealing, originally developed by [33], is a type 

of local-search heuristic algorithm that avoids getting trapped 

at a local minimum by employing a random search which not 

only accepts changes (neighbourhood) that increase the 

objective function value, but also some changes that decrease 

the objective function (assuming a minimization problem), 

using a probabilistic acceptance criterion [32]. It is a 

probabilistic method for finding the global minimum of a cost 

function that may possess several local minima.  

SA accepts always the randomly generated neighbour if it is 

better than or equal the current solution, and accepts it if is in 

an up-going move with a certain probability. Such probability 

depends on the increase of the objective function and on a 

factor called temperature reduction parameter (cooling rate), 

which decrease the number of iteration performed [51, 52]. 

Simulated Annealing is a random-search technique which 

exploits an analogy between the way in which a metal cools 

and freezes into a minimum energy crystalline structure (the 

annealing process) and the search for a minimum in a more 

general system; it forms the basis of an optimization 

technique for combinatorial and other problems [39, 53, 54]. 

It works by emulating the physical process whereby a solid is 

heated, slowly cooled, so that when eventually its structure is 

“frozen”, it “frozen” into a minimum energy crystalline 

structure. This happens at a minimum energy configuration 

[49]. In addition, the search for a minimum in a more general 

system forms the basis of an optimization technique for 

solving combinatorial based problems. 

 The process starts by creating a random initial solution. The 

main procedure consists of a loop that generates at random at 

each iteration a neighbour of the current solution. The 

definition of neighbour depends on the specific structure of 

the problem. Let's call ∆ the difference in the objective 

function between the new solution and the current one and 

suppose to deal with a minimization problem. If ∆ ≤ 0 the new 

solution is accepted and becomes the current one. If ∆ > 0 the 

new solution is accepted with probability e-∆/T, where T is a 

parameter, called the temperature. The temperature T is 

initially set to an appropriately high value T0. After a fixed 

number of iterations, the temperature is decreased by the 

cooling rate α, such that Tn =  α x Tn-1, where 0< α <1.The 

procedure stops when the temperature reaches a value very 

closed to 0 and no solution that increases the objective 

function is accepted anymore, i.e. the system is frozen. The 

solution obtained when the system is frozen is obviously a 

local minimum. The control knobs of the procedure are the 

cooling rate a, the number of iterations at each temperature, 

and the starting temperature T0. 

Simulated annealing has been considered a good tool for 

complex nonlinear optimization problems [35, 55]. The 

technique has been widely applied to a variety of problems. 

One of the major drawbacks of the technique is its very slow 

convergence (converges at excessive time). Simulated 

Annealing is inherently sequential and hence very slow for 

problems with large search spaces [41]. Several attempts have 

been made to speed up this process, such as development of 

parallel simulated annealing techniques [56] and special 

purpose computer architectures [57].  

[42] indicated that the performance of SA algorithm depends 

on the cooling rate ∆T/L than on the individual values of ∆T 

and L, and that slow cooling schedules are generally more 

effective, and that the computational cost is in general 

improves with slower cooling rates. [42] proved further that 

by carefully controlling the rate of cooling the temperature, 

SA can find the global optimum exponential faster since slow 

cooling schedules are generally more effective. 

[58] indicated that the physical analogy on which the SA is 

based suggests that, to achieve good quality results, the 

system should be kept close to thermal equilibrium as the 

temperature is lowered.  

[53] reported that to use simulated annealing effectively, it is 

crucial to use a good cooling schedule and a good method for 

choosing new trial schedules, in order to efficiently sample 

the search space. To obtain good results, the various tunable 

parameters to be used (such as the cooling rate, the update 

moves, and so on) need to be carefully chosen. Also, [59, 60] 

reported that the choice of the cooling schedule influences the 

quality of solution obtained. 

. 
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3. METHODOLOGY 
Solution representation technique appropriate to the problem 

is defined by mathematical formulation that describes the 

feasible regions through a solution space, along an objective 

(cost) function which permits to lead a search process towards 

an optimal solution. In the developed Modified Simulated 

Annealing (MSA) algorithm, the temperature reduction 

parameter for the exponential cooling schedule was modified 

to become parabolic by adding a non-linear factor which takes 

care of some of the intrinsic characteristics (good initial 

schedule, carefully selected update moves, and acceptance 

distribution) that account for the slow convergence of the SA 

algorithm. The MSA algorithm was implemented and 

simulated using MATLAB 7.9 version. Thereafter, the 

performance of the developed MSA algorithm was compared 

with the SA algorithm in terms of temperature reduction 

parameter, simulation time, computational cost, and 

constraints violation using data collected from Fakunle 

Comprehensive High School (FCHS) Osogbo, Nigeria. 

3.1 Problem Representation 
School timetabling is a specific case of the more general 

educational timetabling problem. In the case of school 

timetabling, a set of m classes c1, . .., cm, n teachers t1, . . . , tn, 

(q subjects s1, . . ., sq ) are to be scheduled within  a certain  

number of  p periods 1, . . . , p, such that no class, teacher, or 

subject is scheduled more than once per period, and subject to 

a variety of hard and soft constraints (see Table 1 below) [16, 

61, 62]. 

Table 1: Summary of Constraints Considered 

Label Definition 

HC1 Requirement Constraint 

HC2 Class Clashes Constraint 

HC3 Teacher Clashes Constraint 

HC4 Teachers Unavailability Constraint 

HC5 Classes Unavailability Constraint 

HC6 Class-One Lesson Constraint 

HC7 Pairs of Lessons Constraint 

SC1 Under-use Teaching Period Constraint 

SC2 Over-use Teaching Period Constraint 

SC3 Undesired Teaching Period Constraint 

SC4 Idle Period Constraint 

SC5 Class Split Constraint 

SC6 Maximum Number of Lessons Per Day Constraint 

SC7 Length of the Class Work Constraint 

HC = Hard Constraint  SC = Soft Constraint 

3.2 Classical SA Pseudocode 
Step 1: Generate initial solution randomly (double move) 

Step 2: Initialize Search variables 

Step 3: Estimate initial temperature 

Step 4: Repeat‘cycle’ 

Step 5: Set Sao = double random move 

Step 6: Initialize t = 0 

Step7: Generate “Current Timetable solution”; 

weights of hard and soft constraints are taken into 

consideration 

Step 8:  Repeat‘t’  

(i) Linear temperature reduction factor is set as  

         α = (1/log(1+t)) 

(ii) SetFinal Temperature: (i.e. Tt+1 = αTt)  

(iii) SetSa1=new random move 

(iv) Calculate the cost function by Setting ΔSa =  

       Sa1 - Sao 

(v) If ( ΔSa < 0 or random< e-Tt) Then 

      “accept Best timetable solution”  

        Else 

                        GoTo Step 6 

                        End 

 Until (t <= tmax) 

         Step 9: Set Current Timetable = Best Timetable solution 

         Until (nocylcle <= cycle) 

Step 10: Stop 

3.3 Modified SA Pseudocode 
Step 1: Generate initial solution randomly (double move) 

Step 2: Initialize Search variables 

Step 3: Estimate initial temperature 

Step 4: Repeat‘cycle’ 

Step 5: Set Modified Sao = double random move 

Step 6: Initialize t = 0 

Step 7: Generate “Current Time table solution”; 

weights of hard and soft constraints are taken into 

consideration 

Step 8:  Repeat‘t’ 

(i) Parabolic temperature reduction factor is set as     

     α = (1/log(1+t+t2)) 

    (ii) Set Final Temperature: (i.e. Tt+1 = αTt)  

    (iii)  Set Modified Sa1 = new random move 

    (iv) Calculate the cost function by Setting  
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                           Modified  ΔSa = Sa1 - Sao 

    (v)  If ( Modified ΔSa < 0 or random< e-Tt) Then 

                           “accept Best timetable solution”  

                           Else 

                           GoTo Step 6 

                           End 

 Until (t <= tmax) 

             Step9:Set Current Timetable = Best Timetable   

         solution 

Until (nocylcle <= cycle) 

Step 10: Stop 

Steps 8 (i & ii) of the two algorithms (classical simulated 

annealing and modified simulated annealing) shows the 

difference in the cooling schedule. For the classical simulated 

annealing the reduction parameter  for the exponential 

cooling schedule was determined using the formula proposed 

by [33] and, defined as  α = (1/log(1+t)). However, for the 

modified simulated annealing, the reduction parameter  for 

the exponential cooling schedule was modified to become 

parabolic by adding a non-linear factor to take care of some of 

the intrinsic characteristics that could not taken care of in the 

classical simulated annealing which accounts for the slow 

convergence of the classical simulated annealing, defined as α 

= (1/log(1+t+t2)). 

3.4 Data Used for the Work 
The following are the set of data used to automatically 

generate the school timetables: 

List of subjects and their grouping 

List of subjects’ period per week 

List of students classes’, levels, arms and grouping (science, 

commercial and art) 

List of teachers and their grouping (science, commercial and 

art), with their assigned teaching subjects 

Maximum lesson period per day for each class 

Maximum lesson period per week for each teacher 

Duration of each lesson 

(See Table 2, Table 3 and Table 4 for the summary of data 

used) 

Table 2: Summary of Data Used 

  (JSS)  (SSS) 

No of Classes 18 24 

No of Teachers 45 77 

No of Subjects 15 19 

JSS- Junior Secondary School 

SSS- Senior Secondary School 

 

Table 3: List of Class’s Level and Class’s Arms (JSS) 

Level Arm 

JSS 1 6 (a – f) 

JSS 2 6 (a – f) 

JSS 3 6 (a – f) 

Table 4: List of Class’s Level, Arms and Groups (SSS) 

Level Arm Groups 

JSS 1 8 (a – h) Science (a - c) 

JSS 2 8 (a – h) Commercial (d - f) 

JSS 3 8 (a – h) Art (g – h) 

3.5 Performance Evaluation Metrics  

In order to evaluate the coded algorithms, temperature 

reduction parameter, simulation time, computational cost, and 

constraints violation were used as performance evaluation 

metrics. The temperature reduction parameter is the metric 

which determines how the control parameter, designated by 

temperature T, is lowered during the annealing. The 

simulation time is the parameter which measures the time 

utilized by an algorithm to run until the result is produced. It 

is otherwise known as execution time. The constraints 

violation is the metric which determines the feasibility or 

validity, and the goodness of the solution produced by an 

algorithm. 

As advocated by [63], simulation or execution time should be 

considered first when dealing with the performance evaluation 

of optimization algorithms for combinatorial problems. It 

should be a key element of any such evaluation. [64] indicated 

that one of the most important factors considered before 

choosing the winner during the second international 

timetabling competition (ITC-2007) was the computation time 

4. RESULT AND DISCUSSIONS 
After the implementation of the two algorithms (classical SA 

and the modified MSA), Table 5 shows the evaluation 

parameters or metrics and the values obtained or measured. 

These values were used to evaluate the two algorithms. Table 

5 shows that the two algorithms produced feasible solutions, 

because none violated the constraints considered in this work. 

Table 1 contains the summary of the hard and soft constraints 

considered. 

Table 5: Summary of Data Used Obtained 

 JSS SSS 

 SA MSA SA MSA 

Parameters 

Temperature Reduction 

Parameter 

O.95 O.67 0.95 0.67 
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Simulation Time 

(Seconds) 

62.85 15.70 85.63 37.91 

Computational Cost 43.76 11.59 63.87 22.79 

Number of Hard 

Constraint Violated 

0 0 0 0 

Number of Soft 

Constraint Violated 

0 0 0 0 

4.1 Temperature Reduction Parameter 
The rate at which the control parameter designated by 

temperature T, is lowered during the annealing is known as 

the temperature reduction parameter. The temperature 

reduction parameter value for the exponential cooling 

schedule used in classical SA is 0.95, while the temperature 

reduction parameter value for the parabolic exponential 

cooling schedule used in the developed MSA is 0.67. This 

caused the developed MSA algorithm to utilize less 

simulation time (and converges faster), and less computation 

cost than the classical SA algorithm. 

This indicates that the performance of SA algorithm is in 

general depends on the cooling rate, and also that by carefully 

controlling the rate of cooling the temperature, SA can find 

the global optimum exponential faster since slow cooling 

schedules are generally more effective. 

4.2 Simulation Time 
The time utilized by an algorithm to run until the result is 

produced is usually called execution time or simulation time. 

Table 5 shows the measured or obtained values of the 

simulation time of the two algorithms (classical SA and the 

developed MSA) for Junior Secondary School (JSS) and 

Senior Secondary School (SSS) respectively. The simulation 

time of the classical Simulated Annealing (SA) and the 

developed Modified Simulated Annealing (MSA) are 62.85 

seconds and 15.70 seconds respectively to return a feasible 

school timetable for JSS, and 85.63 seconds and 37.91 

seconds respectively to return a feasible school timetable for 

SSS. This is clear evidence that the developed Modified 

Simulated Annealing (MSA) algorithm utilized less time and 

converges faster than the developed classical Simulated 

Annealing algorithm. 

 This indicates that by carefully controlling the rate of cooling 

the temperature, simulated annealing can find the global 

optimum exponential faster since slow cooling schedules are 

generally more effective. This further indicates that it takes 

more time to compute the timetables for SSS classes than JSS 

classes because of the different subject groups (arms) that 

exists such as science group, commercial group and art group 

in the SSS.  

4.3 Computational Cost 
Table 5 shows the measured values of the computational cost 

of the two algorithms (classical SA and the developed MSA) 

for Junior Secondary School (JSS) and Senior Secondary 

School (SSS) respectively. The computational cost of classical 

SA and the developed MSA are 43.76 and 11.59 respectively 

to return a feasible school timetable for JSS; and 63.87 and 

22.79 respectively to return a feasible school timetable for 

SSS. This is clear evidence that the developed MSA algorithm 

used less computation cost and converges faster than the 

classical SA. This is as a result of the lower reduction 

parameter value (slower cooling rate) used. 

 This indicates that computational cost is in general improves 

with slower cooling rates. This further indicates that it takes 

higher computational cost to compute the timetable for SSS 

classes than JSS classes because of the different subject 

groups that exists such as science group, commercial group 

and art group in the SSS. 

4.4 Constraints Violation 
The two algorithms (classical SA and the developed MSA) 

did not violate any of the constraints (hard and soft) 

considered in this work. This is clearly evident in the 

summary of data (result) obtained and presented in Table 5. 

This indicates that the two algorithms (classical SA and the 

developed MSA) produced feasible solutions. 

4.5 Summary of Result and Discussion 
The analysis of the implemented results shows that: 

i. The two considered algorithms (SA and the 

developed MSA) generated feasible solutions to the 

problem instances, as all the pre-specified hard and 

soft constraints were not violated.  

ii. The results generated generally indicate optimal 

solutions with high optimality by the developed 

MSA algorithm.  

iii. The developed MSA algorithm utilized less 

simulation time (converges faster) than the classical 

SA algorithm.  

iv. The developed MSA algorithm utilized less 

computational cost, and lower temperature 

reduction parameter value (slower cooling rate) than 

the classical SA algorithm.  

v. The developed MSA algorithm produced feasible 

high school timetables at the most reasonable time 

of 15.70 seconds for JSS and 37.91 seconds for 

SSS.  

vi. The developed MSA algorithm produced feasible 

high school timetables at the most reasonable 

computational cost of 11.59 for JSS and 22.79 for 

SSS.  

Furthermore, the analysis of the implemented results confirms 

that:  

i. Simulated Annealing is a good tool for solving 

complex nonlinear optimization problems  

ii. To obtain good results the various tunable 

parameters to be used such as (the cooling rate, the 

update moves) need to be carefully chosen.  

iii. The choice of the cooling schedule or cooling rate 

(temperature reduction parameter) influences the 

quality of solution obtained.  

iv. The performance of Simulated Annealing algorithm 

depends on the cooling rate, as slow cooling 

schedules are generally more effective, and that the 

computational cost is in general improves with 

slower cooling rates. 
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v. By carefully controlling the rate of cooling the 

temperature, Simulated Annealing can find the 

global optimum exponential faster since slow 

cooling schedules are generally more effective. 

5. CONCLUSIONS 
The school timetabling problem is very challenging for public 

schools in Nigeria. Several days of work are normally 

employed to manually solve these problems. In this work, a 

Modified Simulated Annealing (MSA) was developed as an 

approach for solving timetabling problems compared to 

classical Simulated Annealing (SA) approach. The developed 

algorithm (MSA) presents some modifications to the standard 

dynamics of temperature decrease function of the classical 

Simulated Annealing by the use of parabolic exponential 

temperature decrease function instead of linear exponential 

temperature decrease function which allows better solutions to 

be obtained. This modification enables the Modified 

Simulated Annealing Algorithm to work in short bursts of 

gradient descent, followed by random but controlled 

perturbations to escape local minima. 

This developed model was used for generating all school 

timetables of the Fakunle Comprehensive High Schoool 

(FCHS) Osogbo, Nigeria, and similar solution quality is 

obtained for classical SA, The analysis of the results showed 

that both the classical SA and developed MSA yielded better 

solutions when compares to manual allocation procedures but 

the improvement in the cooling schedule computation of the 

developed MSA makes it the preferred approach because it 

get out of local minima and converges in less time and utilizes 

less computational cost.  

The results of this work confirmed previous research reports 

that the performance of Simulated Annealing algorithm 

depends on the cooling rate, and that by carefully controlling 

the rate of cooling the temperature, Simulated Annealing can 

find the global optimum exponential faster as slow cooling 

schedules (cooling schedule with lower temperature 

parameter) are generally more effective, and that the 

computational cost is in general improves with slower cooling 

rates since the higher the value of temperature reduction 

parameter, the longer it will take to decrement the temperature 

to the stopping criterion. 

The developed MSA model thus make provisions for a robust 

school timetabling system that will ease administrators of the 

stress usually associated with manual timetabling and the time 

spent in its preparation would be drastically minimized. This 

work will also assist future researchers especially in 

scheduling or optimization techniques to be able to take more 

informed decisions when faced with the problem of selecting 

algorithm(s) that can solve this class of problem and related 

ones. 

This work therefore recommends the use of the developed 

MSA in solving school timetabling problems, because it 

reduces the weaknesses of slow convergence (convergence at 

excessive time), and of high computational cost associated 

with classical SA. 

6. FUTURE WORK 
The outcomes of this work have indicated several future 

research directions as stated below: 

i. Application of other meta-heuristic methods, such 

as Ant Colony Optimization and Case-Based 

Reasoning to solve school timetabling problem. 

ii. Since each country or high school has different 

characteristics and requirements, the mathematical 

programming model can be extended or modified in 

order to adapt to these characteristics and 

requirements.  

iii. Further improvements to the solution quality of 

school timetabling problem of this research could be 

found by hybridizing two-stage method. The stage 

of the hybrid approach may be integrated more 

fully, to yield a more powerful and robust 

algorithm.  
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