

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.8, September 2014 – www.ijais.org

19

Use-Me Sort: A new Sorting Algorithm

Mohit Sehgal
Engineering (IT) Student,

GTBIT, Indraprastha University,
Delhi, India

Nihal Kumar
Engineering (IT) Student,

GTBIT, Indraprastha University,
Delhi, India

ABSTRACT

One of the fundamental issues in Computer Science is the

ordering of a list of items - known as sorting. Sorting

algorithms such as the Bubble, Insertion and Selection Sort,

all have a quadratic time complexity O(N2) that limits their

use when the number of elements is very large.

 This paper presents Use-Me sort. It sorts a list by making the

use of already sorted elements present in the list. Moreover, it

provides a trade-off between Space and Time Complexity

with better performance than the existing sorting algorithms

of the O (N2) class.

General Terms
NOC - Number of Comparisons, Space complexity, Time

Complexity.

Keywords

Algorithm, Complexity, Insertion Sort

1. INTRODUCTION
Information is growing rapidly in today’s world and to search

for this information, it should be systematically organized.

Algorithms such as Bubble, Insertion and Selection Sort, have

an O(N2) time complexity that limits its usefulness to small

number of elements no more than a few thousand elements.[5]

This paper presents Use-Me Sort which makes use of already

sorted elements present in the array. It iterates from one end to

the other, leaving behind a sorted array. Whenever a group of

ordered elements is encountered, it is merged recursively with

the sorted array behind. It follows a methodology, similar to

Insertion Sort.

The aim of Use-Me sort is to reduce the Number of

Comparisons (NOC) by using binary search instead of linear

search – at the time of merging. The difference is not big for

small N but it becomes significant when N goes high to some

few ten thousand elements or more.

For further references, we will use a term called UM array for

Use-Me array. In an unsorted array, UM array refers to an

ordered sub-array which is out of order with respect to the

array. It is important to note that the elements of the sub-array

should be in some order. In Figure 1, if the array A[1..6] is to

be sorted in ascending order then, array A[3..5] is a UM array.

 Fig 1: Example of UM array

2. APPROACH
Use-Me Sort uses an approach which is as follows:

1) Iterate from the first element till the last to find a

UM array.

2) Merge the UM array recursively with the sorted

array behind.

3) Repeat the steps 1 and 2 till the end.

2.1 Pseudo Code
Input: Array A[0…N-1], N is length of the array.

Output: Array A[0…N-1] in ascending order.

USE-ME(A)

1 i←0

2 while i < N-1

3 if A[i] > A[i+1]

4 then k←i+1

5 while A[k] > A[k+1] and k < N-1

6 do k++

7 if k ≠ i+1

8 then m ← k-i-1

9 DESC(A, i, k, m)

10 i ← k

11 else

12 while A[k]≤A[k+1] and k<N-1 and A[k+1]<A[i]

13 do k++

14 m ← k-i-1

15 ASC(A, i, k, m)

16 i ← k

17 else

18 i++

 DESC(A, i, k, m)

1 if m = -1

2 then return 0

3 temp ← A[i+m+1]

4 l ← DESC(A, i, k, m-1)

5 if temp < A[0]

6 then low ← -1

7 else

8 high ← i-l

 1 5 4

7

 3 1 9

5

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.8, September 2014 – www.ijais.org

20

9 low←0

10 do med ← (low+high)/2

11 if temp > A[med]

12 low ← med

13 else

14 high ← med

15 while low < high-1 go to line 10

16 while temp ≥ A[low+1]

17 do low++

18 k ← k-l-m

19 i ← i-l

20 while i > low

21 do A[k] ← A[i]

22 i--, k--, l++

23 A[k] ← temp

24 return l

ASC(A, i, k, m)

1 if m = -1

2 then return 0

3 temp ← A[k-m]

4 l ← ASC(A, i, k, m-1)

5 if temp < A[0]

6 then low ← -1

7 else

8 high ← i-l

9 low←0

10 do med ← (low+high)/2

11 if temp > A[med]

12 low ← med

13 else

14 high ← med

15 while low < high-1 go to line 10

16 while temp ≥ A[low+1]

17 do low++

18 k ← k-l-m

19 i ← i-l

20 while i > low

21 do A[k] ← A[i]

22 i--, k--, l++

23 A[k] ← temp

24 return l

2.2 Example
Consider the list as below:

2 3 5 4 3 1

STEP 1: Iterate from the first element to the last to find a UM

array.

 As 5 < 4, set Indexes i = 3 and k = 4

 Again 3 < 4, so k++

 Again 1 < 3, so k++

STEP 2: Recursively merge the already sorted array, A[1 to i]

and UM array, A[i+1 to k]

2 3 5 4 3 1
 i k

2 3 5 4 3 1
 i k

2 3 5 4 3 1
 i k

i = p, So return

2 3 5 4 3 1
 i,p k

Repeat the Above Process
and we get,

2 3 5 4 3 1
 i p k

temp=3

p - -

-

temp=4

2 3 5 4 3 1
 i p k

p - -

-

p - -

-

2 3 5 4 3 5
 i k

Now do, A[k] = temp
And return k--

2 3 5 4 4 5
 i k

k--

2 3 5 4 4 5
 i k

Repeat the Above Process
and we get,

2 3 5 3 4 5
 i k

k--

2 3 5 3 4 5
 i k

1 2 3 3 4 5

 i k,p
2 3 5 4 3 1

temp=1

Until A[i] > temp

 Repeat A[k] = A[i]

 k-- and i--

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.8, September 2014 – www.ijais.org

21

3. EVALUATION

3.1 Use of Binary Search
In Use-Me sort, the NOC is minimized by using binary search

in merging two arrays. As we know the fact that, two arrays to

be merged – will be already in order. Therefore binary search

will be an effective way to minimize the NOC in merging the

sub-arrays.

3.2 Trade-Off
It supports a Space-Time trade-off, in which run-time of an

algorithm can be improved by making it use more memory or

vice versa. To improve the runtime, we trade memory and for

less memory usage we trade runtime.[2]

In Use-Me Sort, by restricting the size of the ordered sub-

array, we can reduce the memory usage. As the memory

decreases, the execution time(time to sort the array) will

increase and hence, we can achieve Space-Time trade-off.

3.3 Stability
Stability simply means, maintaining the relative order of

elements with equal value. In other words, a sorting algorithm

is stable if whenever there are two records X and Y with the

same value and with X appearing before Y in the original list,

then X will always appear before Y in the sorted list. Use-Me

algorithm is a stable algorithm.[8]

4. ANALYSIS

4.1 Complexity
The complexity of Use-Me algorithm is O(N) in the best case.

In average case and worst case, when the UM array becomes

small, the approximate complexity is O(Nlog(N)). This is

because it will take N comparisons to iterate the array and

utmost logN comparisons to find the correct location of an

element of UM array. After summing all of it together the

complexity becomes O(Nlog(N)). In case when the array is in

decreasing order, the time complexity becomes less than

O(Nlog(N)) because of the fact that the whole array will

become UM array, apart from the first element. Therefore it

will take operations, less than normal, to sort the array.

4.2 Comparison
When compared the proposed algorithm with Insertion Sort, it

was inferred that the Use-Me algorithm shows a better results.

The Table 1 given below shows the complexities of different

sorting algorithms with the Use-Me algorithm[1]

Table 1. Comparison with other Algorithms

 Use-Me

Sort

Bubble

Sort

Selection

Sort

Insertion

Sort

Best Case

Complexity

 O(N)

O(N2)

O(N2)

O(N)

Average

Case

Complexity

O(Nlog(N))

O(N2)

O(N2)

O(N2)

Worst Case

Complexity

O(Nlog(N))

O(N2)

O(N2)

O(N2)

The efficiency of the Use-Me sort algorithm will be measured

in CPU time using the system clock [5] on a computer with

minimal background processes running, with respect to the

size of the input array, and compared with the insertion sort

algorithm. Both the algorithms were executed with array size:

3k, 6k, 9k, 12k and 15k.The data sets used, include system

generated random number. Algorithms were executed in C++.

A comparison graph of CPU time Vs Array Size of Use-Me

sort with Insertion sort has been shown in Figure 2 below.

Fig 2: Comparison of Use-Me and Insertion Sort

The trade-off between Memory and Time Complexity is

shown in Figure 3 below by a graph. This graph represents a

comparison of Use-Me algorithm executed for a Data Set of

15000 elements for different allocated memory.

Fig 3: Comparison at different Allocated Memory

5. CONCLUSION
This paper introduced Use-Me Sort with Time Complexity

O(Nlog(N)). It makes use of already ordered elements in the

list and recursively merge them with the sorted list behind.

 It also provides a trade-off between Memory and Time

Complexity. This trade-off allows Use-Me sort to perform

better for list having large number of elements.

In Striking contrast, Bubble, Insertion and Selection sort have

quadratic time complexity that limit its use to a small number

of elements. Use-Me is slightly faster than insertion sort when

N is small but is much faster as N grows.[5]

From the results in Table 1, Figure 1 and Figure 2, we

conclude that Use-Me algorithm has performed well in

average case because it avoids as well as reduces the number

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.8, September 2014 – www.ijais.org

22

of comparisons and number of swaps in comparison to the

other algorithms.

6. ACKNOWLEDGEMENT
I would like to express heartfelt thanks to my friend Nihal

Kumar for providing valuable feedback and comments. My

family for a constant source of encouragement to me. I am

deeply obliged to Mrs. Basantipal Ma’am of our College

(GTBIT) who urged me to think that “how difficult it can be

to develop your own Sorting Algorithm” and hence motivated

me for it.

7. REFERENCES
[1] Knuth D.E., ”The art of programming- sorting and

searching”. Addison-Wesley.

[2] Cormen T. , Leiserson C., Rivest R., and Stein C.,

“Introduction to Algorithms,” McGraw Hill.

[3] Sedgewick, Algorithms in C++, pp.98-100, ISBN 0-201-

51059-6, Addison-Wesley.

[4] Seymour Lipschutz, G A Vijayalakshmi Pai (2006),

“Data Structures”, Tata McGraw-Hill Publishing

Company Limited.

[5] Song Qin, “Merge Sort Algorithm” Florida Institute of

Technology.

[6] Vandana Sharma, Satwinder Singh and Dr.K.S.Kahlon,

“Performance Study of Improved Heap Sort Algorithm

and Other Sorting Algorithms on Different Platforms

(2008), ”IJCSNS International Journal of Computer

Science and Network Security, VOL.8 No.4.

[7] You Yang, Ping Yu, Yan Gan, “Experimental Study on

the Five Sort Algorithms”, International Conference on

Mechanic Automation and Control Engineering

(MACE), 2011.

[8] Kaur S., Sodhi T. S., Kumar P., (2012) “Freezing Sort”.

International Journal of Applied Information Systems

(IJAIS), vol. 2, no. 4, pp. 18–21.

[9] Gurram, H.K., GovardhanaBabuKolli, (2011). Average

Sort. International Journal of Experimental Algorithms

(IJEA), vol. 2, no. 2, pp. 48–54.

[10] Wang Min “Analysis on 2-Element Insertion Sort

Algorithm”, International Conference on Computer

Design And Appliations (ICCDA), 2010.

[11] Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan,

R.E., (1973). Time Bounds for Selection. Journal of

Computer and System Sciences, vol. 7, no. 4, pp. 448–

461.

