

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 3, May 2014 – www.ijais.org

35

An Efficient Software Fault Prediction Model using
Cluster based Classification

Pradeep Singh
Assistant Professor

National Institute of Technology
Raipur

 Shrish Verma
Professor

National Institute of Technology
Raipur

ABSTRACT

Predicting fault -prone software components is an

economically important activity due to limited budget

allocation for software testing. In recent years data mining

techniques are used to predict the software faults .In this

research, we present a cluster based fault prediction classifiers

which increases the probability of detection. The expectation

from a predictor is to get very high probability of detection to

get more reliable and test effective software. In our

experiments, we used fault data from mission critical systems.

In this paper we have used discretization as preprocessing and

cluster based classification for prediction of fault-prone

software modules. Clustering based classification allows

production of comprehensible models of software faults

exploiting symbolic learning algorithms. To evaluate this

approach we perform an extensive comparative analysis with

benchmark results of software fault prediction for the same

data sets. Our proposed model shows better results than the

standard and benchmark approaches for software fault

prediction. Our proposed model gives superior probability of

detection (pd) 83.3% and balance rates 685%.

General Terms

Software fault prediction, Software Metrics

Keywords

Error Prone, Software fault prediction, software metrics

1. INTRODUCTION
The demand of highly reliable and secure system is increasing

day by day. To fulfill these demands by the ever-increasing

power of computing devices, systems are growing complex.

Due to the complexity of these systems, effort and cost incur

in development is increasing. Software complexity is the main

source of failure and potential hazards. High quality software

within allocate budget requires a careful planning and cost

effective use of testing resources. In context of mission

critical or safety and business critical needs more reliability

and therefore requires more testing and resources.

Testing phase is the most expensive, time and resource

consuming phase of the software development lifecycle

requires approximately 50% of the whole project schedule [1,

2]. So an effective and intelligent test strategy can minimize

the time of testing by using resources efficiently. Various

methods for minimization of testing effort, inspections [3],

manual software reviews or automated models [4], [5] are

proposed. A panel at IEEE Metrics 2002 concluded that

manual software reviews can find approximately 60% of

faults [26]. Automated models proposed for fault prediction

are useful tools for software organizations and significantly

better in terms of fault detection performance, compared to

other verification , validation and testing activities

[5][17][18]. These automated models uses static code

attributes such as Lines of Code (LOC) and the

McCabe/Halstead complexity attributes that can be easily

extracted from source code repositories even for large

systems.

Software fault prediction uses various static code software

metrics such as Halstead, Mc- Cabe metrics etc. to categorize

modules and predicting them either falt-prone (fp) or non-

fault prone (nfp) modules by using classification model

derived from the data of previous projects. Software fault

predictions models can estimate number of faults in software

modules as well as which module is faulty. So the predictive

models are easy to use and faster to run for highlighting fault-

prone modules compared to inspections [4][5][7].Fault

prediction models are useful tools for software organizations

to manage their testing resources effectively through focusing

on fault-prone software modules extracted from software

repositories to improve software quality. The software

repositories contain years of software project development

data, including all of the versions of the project. Some

common types of software repositories are source code

version control system repositories, bug repositories, and

communication archives etc [5][8] .

Many researchers have already worked towards this end and

various software metrics and techniques like linear regression,

discriminant analysis, decision trees, neural networks and

Naive Bayes classification have been analyzed in previous

research for fault prediction [5][8][9][35].

This study specifically includes projects of NASA MDP

program. We produce the results of experiments on these

datasets using cluster based classification after preprocessing,

in order to compare it by Menzies et al. framework for the

same NASA dataset [5]. We use the same probability of

detection pd, probability of false alarm (pf) and balance as

performance measure in order to analyze the effectiveness of

our framework. Our results indicate that cluster based

classification using faulty data at static code attributes may

increase the prediction performance significantly, while

removing the need for feature subset selection.

In this paper we our focus is at classification level rather than

attribute level. We have proposed a new model to predict the

software fault more accurately. This technique uses an

entropy based splitting criteria and minimum description

stopping criteria based binary discretization for

preprocessing and then clustering , i.e. predictions, from

cluster based classifiers (CBC) which produced better results

for locating faults. We used the data from the Promise

repository [24]. Therefore, all projects which are used in this

study are available online. So, that empirical analysis can

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 3, May 2014 – www.ijais.org

36

easily be repeated, improved or refuted and evaluated by other

researchers.

Our conclusion is that, we also found that data mining using

static code attributes to learn fault predictors is useful. Given

our new results by clustering based classification applied after

discretization, these predictions are much better than

previously demonstrated [5]. In the following section, related

work, models developed for fault prediction are explained.

After describing the experimental design and the results,

conclusions will be given.

2. RELATED WORK
 Researchers have used various methods such as statistical

analysis, regression, Genetic Programming [11], Decision

Trees [12], Neural Networks [13], Naïve Bayes [5], Case-

based Reasoning [14], Fuzzy Logic [15] and Logistic

Regression [16] for software fault prediction. Elish et al. [17]

investigated the performance of Support Vector Machines

(SVMs) and found SVM better than, or at least is competitive

against the other statistical and machine learning models in

the context of four NASA datasets. They compared the

performance of SVMs with the performance of Logistic

Regression, Multi-layer Perceptrons, Bayesian Belief

Network, Naive Bayes, Random Forests, and Decision Trees.

They used correlation based feature selection technique (CFS)

to down select the best predictors out of the numbers of

independent variables in the datasets. Catal et al. [18]

investigated effects of dataset size, metrics set, and feature

selection techniques and found RandomForests provide the

best prediction performance for large datasets and Naive

Bayes is the best prediction algorithm for small. Tomaszewski

[19] have conducted Statistical models vs. expert estimation

for fault prediction and found statistical techniques performed

superior to locate software fault than an expert estimations

approach.

Turhan et al. [22] analyzed the effects of preprocessing of

software fault data from NASA with PCA, subset selection

and weighted Naive Bayes and concluded that either pre-

processing software fault data with PCA or using weighted

Naive Bayes should be preferred rather than subset selection

for Naïve Bayes models.Static code attributes like lines of

code and the McCabe/Halstead attributes are easy to extract,

use and provides reliable facts about the software. So they are

widely used for software fault prediction. Menzies et al. [5]

reported that Naive Bayes with logNums filter achieves the

best performance in terms of the probability of detection (pd-

71%)and the probability of false alarm (pf-25%) .They also

stated that there is no need to find the best software metrics

group for software fault prediction because the performance

variation of models with different metrics group is not

significant. Almost all the software fault prediction studies

use metrics and fault data of previous software release to build

fault prediction models, which are called ‘‘supervised

learning” approaches in machine learning community.

 There have been discussions on finding the best classifier for

fault predictors. Lessmann et al. [35] argued that their 15 best

performing classifiers were statistically indistinguishable from

each other in terms of the area under the receiver operating

characteristic (ROC) curve. The authors did not use any

filtering or transformation techniques. Instead, they used the

algorithms on the original data to measure their effectiveness

on detecting fault-prone modules.

We used NASA MDP data from promise repository which is

an open source repository for fault data [25]. Therefore; all

projects used in this study are available online. So, this work

can easily be repeated, improved or refuted by other

researchers [24][22] .We present a fault prediction model

based on cluster based classification for mission critical

softwares. Our technique achieved probability of detection

(pd-83%) which is better than the earlier models.

Fault predictors as early warning mechanisms, would be very

helpful for practitioners in order to improve product quality in

mission critical software in a shorter time and with fewer

resources, compared to other verification, validation and

testing activities [28]. In this research we use static code

attributes as predictor variables. A complete list of these

attributes is available on line in the Promise repository [24].

3. EXPERIMENTAL DESIGN
From an industrial perspective, software managers aim to

decrease their testing efforts while decreasing fault rates,

thereby producing high quality real time systems. Since

developers eliminate most of the faults in the software with

less testing effort, they would, in turn, improve their product

quality. We observed that cluster based classifiers would

detect 81% of the faulty modules .Also the cluster based

classification decreases the false alarms with increased

detection rates. In mission critical systems high detection rates

at the cost of false alarms may be a desirable outcome.

However, in commercial applications, companies need to

employ cost effective oracles, since an increase in false alarms

would waste inspection costs by guiding testers through

actually safe modules. Therefore, in this paper, our objective

is “building a learning-based fault predictor for mission

critical software that would decrease false alarms while

producing high detection rates’’. We used a cluster-based

classification framework in which faulty data are grouped into

clusters. In our experiment we use supervised discretization

tasks. We first discretize the data then cluster the data using

clustering technique for the interdependencies among

different attributes. We performed this analysis on same

datasets used by Menzies et al. and compared the results of

our method with the Menzies et al[5] results .In all

experiments, we follow the procedures of conceptual

replication studies, in which diverse sources and their effects

on the results of the same research question are observed by

proposing different experimental procedures [43]. As

indicated by Shull et al. [43], replications help the software

engineering researchers to address internal and external

validity problems. These types of studies also lead the

research community to build a solid knowledge about the

influence of conditions on the experimental results and

observations. Similarly in our case study, we observe a recent

study on fault predictors for mission critical software and

reproduce those via new techniques in order to find the best

approach for fault prediction for mission critical software.

Procedure Evaluation data Learning (data, scheme)

Input: data - the data on which the learner is built

[CM1,PC1,PC3,PC4, MW1,PC2, KC3]

M=10,N=10

Learners-- the learning scheme. [Cluster_based_classification]

Output Result [C_pd, C_pf, C_prec,C_bal] = C_predictor on TEST
 // The final performance of pd,pf and balance

over M*N way cross validation.

Preprocessing = {discretization}
FOR EACH data

C_TRAIN = data // complete training data

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 3, May 2014 – www.ijais.org

37

D_TRAIN = discretization data // after discretization of
data

//construct predictor from C data

C _PREDICTOR = Train LEARNER with C_TRAIN
// construct predictor from D data

D_PREDICTOR = Train LEARNER with D_TRAIN

//Evaluate both predictors on the test data
 [C_pd,C_pf,C_Balance] = C_ predictor on TEST

 [D_pd, D_pf, D_Balance] = D_ predictor on TEST

END

Fig 1 Pseudo code for the experimental design

Lessman et al. [35] reported that data preprocessing or

engineering activities such as the removal of noninformative

features or the discretization of continuous attributes may

improve the performance of some classifiers [35]. Menzies et

al. also reported that their Naive Bayes classifier benefited

from log-filter preprocessor [44].

Researchers in the Machine Learning community have

introduced many data preprocessing and discretization

algorithms. Discretization is the transformation of a

continuous variable into a discrete space, grouping together

multiple values of a continuous attribute, and partitioning the

continuous domain into a finite numbers of non-overlapping

intervals. The task of discretizing an input attribute for

classification problems is usually divided into supervised

discretization, when knowledge interdependency between the

class level and attribute values is used for the discretization

process and unsupervised discretization, when the class values

of the instances are unknown or not used. The methods for

unsupervised discretization are equal-width and equal-

frequency binning [37]. The equal width divides the range of

values of a numerical attribute into a pre-determined number

of equal intervals. The equal frequency divides the range of

values into a pre-determined number of intervals that contain

equal number of instances. Supervised algorithms are

maximum entropy [38], Patterson and Niblett [39], statistics-

based algorithms like ChiMerge [40] and Chi2 [41].

Fayyad & Irani developed a concept of entropy based

partitioning in [36].Dougherty, Kohavi, and Sahami in [42]

made comparison of the uniform binning, an entropy based

method proposed by Fayyad and Irani [3], using two induction

algorithms: C4.5 and a Naive-Bayesian classifier and reported

that the entropy based disretization was the most promising

one. We have used entropy based preprocessing of fault data

preprocessing.

The binary discretization used, to divide the values of

continuous attribute into two intervals. We used the state-of-

the-art supervised discretisation technique developed by

Fayyad and Irani [3] for binary discretization, of continuous

attribute into two intervals. This entropy based discretization

process is a viable choice as it improve accuracy reported by

researchers [17][20].

Let assume a set of samples S, Entropy for S is calculates as

 Entropy(S) = - p1*log2 (p1) – p2*log2 (p2)

Now suppose if S is partitioned into two intervals S1 and S2

using boundary T, the entropy after partition can be calculated

as the equation given below

The T is taken from the midpoints of the feature values. The

goal is to get the maximum information gain after the split

and the gain is calculated as

Gain(S,T) = Entropy(S) - E(S,T).

Recursively evaluating all possible splits and then selecting

best split(s) with maximum gain is chosen. A partition point is

decided on for discretization which minimizes the entropy

function. The process is recursively applied to obtain

partitions until it minimizes the difference to acceptable level

e.g.,

Minimal descriptive length principle is used by [3] to

determine stopping criteria for recursive discretization

process.

Once the discretization process has been completed, the

discretized data is used by cluster based supervised

classification algorithm for building the predictive model. We

have changed the binary partition range to minimum and

maximum values of corresponding attribute. Clustering is one

method to find most similar groups from given data, which

means that data belonging to one cluster are the most similar;

and data belonging to different clusters are the most

dissimilar. Finally we generated a simple meta-classifier that

uses clusters for classification. Any clustering algorithm such

as the hard c-means, mountain clustering algorithms can be

used. We use the Simple k-means clustering algorithm that

uses a fixed number of clusters.

3.1 Clustering algorithm

The K-means clustering algorithm starts with a training data

set and a given number of clusters K. The samples in the

training data set are assigned to a cluster based on a closeness

measurement. Closeness is measured by Euclidean distance,

cosine similarity, Manhatten distance etc. We have used

Euclidean distance to measure the similarity. The centroid is

the mean of data vectors in the cluster.

Algorithm: k-mean clustering

Input: A set of N data Vectors

X=(x1……………….xn) in d

K: - the number of clusters

Output: A set of k clusters partition of the data vectors given

by the cluster identity vector Y= {y1,…,yn}, {1,……K}

Initialization: Select arbitrarily K initial cluster centroid

vectors { 1,……………. k};

Repeat

 Each data vector xn, is assigned to the cluster with

 the closed centroid k

 Recompute the centroid of each cluster based on

 mean value of the data vector

Until no change in centroid

)(
||

||
)(

||

||
),(

2

2

1

1

S
S

S
S

Ent
S

Ent
S

TSE

),()(STESEnt

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 3, May 2014 – www.ijais.org

38

The cluster based classification algorithm takes a cluster built

on a data set with a class attribute. K mean clustering is used

to find the cluster in the fault data corresponding to faulty and

not faulty class separately. We have taken K=2. We have used

Euclidean distance in this work. Our model takes the benefit

of supervised discretization process to reduce the error. For a

new instance to be in faulty cluster should have minimum

value from the center of the cluster for all features.

 We have overcome the sampling bias by using M*N-way

cross validation where both M and N are selected as 10 [44].

We create 10 stratified bins: 9 of these 10 bins are used as

training sets and the last one is used as the test set. We

randomize the dataset M = 10 times and create N = 10 sets in

each iteration. The pseudo code of the model is shown in

Fig1.

4. DATASET USED

We have used NASA MDP program data which is publicly

available [25]. NASA makes extensive use of contractors who

are contractually obliged (ISO-9O01) to demonstrate their

understanding and usage of current industrial best practices.

These contractors service many other industries; for example,

Rockwell-Collins builds systems for many government and

commercial organizations. For these reasons, other noted

researchers, such as Basili et al. , have argued that conclusions

from NASA data are relevant to the general software

engineering industry.

The seven projects MW1,PC1, PC2,PC3,PC4, CM1 and ,KC3

are from NASA MDP program. Due to unavailability of KC4

dataset we have excluded KC4 from our study. Each data set

is encompassed of several software modules, together with

their static code attributes and associated corresponding

number of faults. After metric and bug data extraction from

software repositories , modules that contain one or more bugs

were marked as fault prone (fp), and where no bug were

reported those modules were treated as non fault prone (nfp).

The fault data sets which are taken from promise repository

includes LOC counts, several Halstead attributes, McCabe

complexity measures as well as various other static code

attributes. Individual software metric feature per data set,

together with percentage faulty modules and some general

descriptions are given in Table 1.

Table 1: Data set used in Study

Sourc

e

 No of

Modul
e in

Softwa

re

Featur

es

LOC %

Fault
y

Lan

gua
ge

Description

MW1 403 37 8341 7 C A zero

gravity

experiment
related to

combustion

PC1 1,107 21 25,92

4

6.94 C++ Flight

software for
earth

orbiting

satellite.

PC2 5590 21 25K 6 C Flight

software for

earth

orbiting

satellite.

PC3 1563 21 1564 10 C Flight

software

from an
earth

orbiting

satellite

PC4 1458 37 1458 12 C Flight

software

from an
earth

orbiting

satellite

CM1 498 21 14,76
3

9.83 C Spacecraft
instrument

KC3 459 39 8K 9 JAV

A

Storage

management
for ground

data

4.1 Performance Measures
The accuracy and performance of prediction models for two-

class problem, defective or not defective is typically evaluated

using a confusion matrix. A confusion matrix contains

information about actual and predicted classifications done by

a classification system. In this study, we used the commonly

used prediction performance measures: probability of

detection (pd), probability of false alarm (pf), balance (bal) to

evaluate and compare prediction models. These measures are

derived from the confusion matrix. A confusion matrix is

shown below.

 Actual Faulty Module Not Faulty Module

Predicted

Faulty Module TP(True Positive) FP (False Positive)

Not Faulty Module FN (False Negative) TN (True Negative)

False alarms, pf, should be 0, meaning that the predictor

should never label a defect-free module as defective. In

general, an increase in pd would also increase pf rates since

the model triggers more often to achieve the ideal case [5]. To

see how close our estimates are to the ideal case, we use a

balance metric, which is the Euclidean distance between the

ideal point and position on the ROC curve in reality.

Pd =TP/ (TP+FN)

Pf =FP/ (FP+TN)

 2

)1()0(
1

22 pdpf
bal

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 3, May 2014 – www.ijais.org

39

5. EXPERIMENTAL RESULTS
In this work the objectives are (a) building an Cluster based

classifiers to predict fault-prone modules for NASA software

systems, and (b) achieving high pd rates and balance rates

using preprocessing and CBC . We investigate separate

performances of the CBC algorithm with and without

discretization and found that the results after discretization are

significantly better than we are applying it on raw data.

According to the findings, we calibrate the proposed model

using discretization in CBC to improve the prediction

performance in terms of pd and balance rates. We compare

CBC with the model proposed on NASA datasets by Menzies

et al.[5] to validate its performance. We conjecture that if our

results are at least comparable with their study, we can verify

that the CBC approach is worth using in the context of NASA

software. In Table 2, the prediction performances of CBC and

the model of Menzies et al. 2007 are presented. From the

results, we could argue that CBC achieves good results for

NASA MDP datasets.

We outperform the results of Menzies et al. 2007 in terms of

pd on average from 72% to 83% with cost of pf on average

from 21% to 40%. When we analyze our cluster based

classification for all embedded projects, the average

performance is (83, 40%) in terms of (pd, pf). This means that

the ensemble can predict 8 out of 10 defective modules, while

making false alarms in 4 out of 10 defect-free modules.

Table 2: Comparison of CBC Result Set with Menzies et

al. 2007

 PD PF

DataSet OUR BEN
CH

OUR BEN
CH

OUR BENC
H

CM1 0.815 0.71 0.4129 0.27 0.6801 0.7198

PC1 0.662 0.48 0.3451 0.17 0.6587 0.6131

PC3 0.806 0.8 0.4306 0.35 0.6663 0.7149

PC4 0.726 0.98 0.4225 0.29 0.6441 0.7944

MW1 1 0.52 0.6291 0.15 0.5551 0.6444

PC2 0.833 0.72 0.1355 0.14 0.8481 0.7786

KC3 0.99 0.69 0.4476 0.28 0.6834 0.7046

Avg. 0.833 0.72 0.403 0.215 0.6854 0.7305

The framework comparison results are summarized in Table 2

which shows the results in terms of pd,pf and balance. From

it, we find that our framework outperformed in terms of pd

that of Menzies et al. for 6 out of 7 data sets (each “winner”

is denoted in bold). The mean probability of detection of the

Menzies et al. 2007 framework over the 7 data sets is 72.7

percent, and the mean probability of detection of the proposed

framework is 83.3 percent, with an improvement of 10.6

percent. The mean prediction balance of the MGF (Menzies et

al.) framework over the 7 data sets is 73.0 percent, and the

mean prediction balance of the proposed framework is 69

percent. This suggests that the proposed framework worked

well for probability of detection.

6. CONCLUSION
Software fault prediction can be regarded as one piece of the

solution for timely and cost effective software development. It

is argued by Lessmann et al. that fault prediction techniques

should not be judged on their predictive performance alone,

but that other aspects such as computational efficiency, ease

of use, and especially comprehensibility should also be paid

attention to [35].We conclude that discretization on software

fault data with entropy based supervised discretization should

be preferred with CBC approach perform better than naive

Bayes with logNums. The time complexity of CBC technique

is also good for huge data. From a software practitioner’s

point of view, these results are useful for detecting faults

before proceeding to the test phase. In this sense, test

resources can be managed more efficiently. The contributions

of this research are two folds: In empirical studies replications

are very important to improve, refute, and validate the results

of others [5, 22]. This research is not only a replication study,

but also provides an effective software fault predictor model

for NASA MDP dataset.

 On all projects, CBC detects 83% defective modules while

producing 40% false alarms. Furthermore, it manages to the

balance rates from 68.5% on average (all projects). For further

development we will attempt to use intelligent computing

for data preprocessing or activities for the removal of non

informative features or feature extraction to improve the

performance of software fault prediction models

7. REFERENCES
[1] M.J. Harrold, Testing: a roadmap, in: Proceedings of the

Conference on the Future of Software Engineering, ACM

Press, New York, NY, 2000.

[2] B.V. Tahat, B. Korel, A. Bader, Requirement-based

automated black-box test generation, in: Proceedings of

the 25th Annual International Computer Software and

Applications Conference, Chicago, Illinois, 2001, pp.

489–495

[3] Wohlin, C., Aurum, A., Petersson, H., Shull, F., &

Ciolkowski, M. (2002). Software inspection

benchmarking— A qualitative and quantitative

comparative opportunity. In METRICS ’02: Proceedings

of the 8th international symposium on software metrics

(pp. 118–127). IEEE Computer Society.

[4] Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A

validation of object-oriented design metrics as quality

indicators. IEEE Transactions on Software Engineering.

IEEE Press, 22, 751–761

[5] Menzies, T., Greenwald, J., & Frank, A. (2007). Data

mining static code attributes to learn defect predictors.

IEEE Transactions on Software Engineering, IEEE

Computer Society, 32(11), 2–13

[6] F. Shull, V.B. Boehm, A. Brown, P. Costa, M. Lindvall,

D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz, “What

We Have Learned About Fighting Defects,” Proc. Eighth

Int’l Software Metrics Symp., pp. 249-258, 2002

[7] Tosun, A., Turhan, B., & Bener, A. (2009). Practical

Considerations in Deploying AI for defect prediction: A

case study within the Turkish telecommunication

industry. In PROMISE’09: Proceedings of the first

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 3, May 2014 – www.ijais.org

40

international conference on predictor models in software

engineering. Vancouver, Canada.

[8] N. Nagappan and T. Ball, Static Analysis Tools as Early

Indicators of Pre-Release Defect Density, Proc. Intl

Conf. Software Eng., 2005.

[9] T. Khoshgoftaar and E. Allen, “Model Software Quality

with Classification Trees,” Recent Advances in

Reliability and Quality Eng., pp. 247-270, 2001.

[10] Li, Q., & Yao, C. (2003). Real-time concepts for

embedded systems. San Francisco: CMP Books.

[11] M. Evett, T. Khoshgoftaar, P. Chien, E. Allen, GP-based

software quality prediction, in: Proceedings of the Third

Annual Genetic Programming Conference, San

Francisco, CA, 1998, pp. 60–65.

[12] T.M. Khoshgoftaar, N. Seliya, Software quality

classification modeling using the SPRINT decision tree

algorithm, in: Proceedings of the Fourth IEEE

International Conference on Tools with Artificial

Intelligence, Washington, DC, 2002, pp. 365–374.

[13] M.M. Thwin, T. Quah, Application of neural networks

for software quality prediction using object-oriented

metrics, in: Proceedings of the 19th International

Conference on Software Maintenance, Amsterdam, The

Netherlands, 2003, pp. 113–122.

[14] K. El Emam, S. Benlarbi, N. Goel, S. Rai, Comparing

case-based reasoning classifiers for predicting high risk

software components, Journal of Systems and Software

55 (3) (2001) 301–320.

[15] X. Yuan, T.M. Khoshgoftaar, E.B. Allen, K. Ganesan,

An application of fuzzy clustering to software quality

prediction, in: Proceedings of the Third IEEE

Symposium on Application-Specific Systems and

Software Engineering Technology, IEEE Computer

Society, Washington, DC, 2000, pp. 85.

[16] H.M. Olague, S. Gholston, S. Quattlebaum, Empirical

validation of three software metrics suites to predict

fault-proneness of object-oriented classes developed

using highly iterative or agile software development

processes, IEEE Transactions on Software Engineering

33 (6) (2007) 402–419.

[17] K.O. Elish, M.O. Elish, Predicting defect-prone software

modules using support vector machines, Journal of

Systems and Software 81 (5) (2008) 649–660.

[18] Catal C, Diri B. ”Investigating the effect of dataset size,

metrics sets, and feature selection techniques on software

fault prediction problem”, Information Sciences.

179:pp.1040-1058,2009.

[19] P. Tomaszewski, J. Hakansson, H. Grahn, and L.

Lundberg, Statistical models vs. expert estimation for

fault prediction in modified code-an industrial case

study, The Journal of Systems and Software, vol. 80, no.

8, pp. 12271238, 2007.

[20] I. Gondra, Applying machine learning to software fault-

proneness prediction, Journal of Systems and Software

81 (2) (2008) 186–195.

[21] T. Quah, Estimating software readiness using predictive

models, Information Sciences, 2008

[22] B. Turhan and A. Bener, Analysis of Naive Bayes

Assumptions on Software Fault Data: An Empirical

Study, Data & Knowledge Eng., vol. 68, no. 2, pp. 278-

290, 2009.

[23] Ayse Tosun Misirli, Ayse Basar Bener, Burak Turhan:

An industrial case study of classifier ensembles for

locating software defects. Software Quality Journal

19(3): 515-536 (2011)

[24] Boetticher, G., Menzies, T., & Ostrand, T. J. (2007). The

PROMISE repository of empirical software engineering

data West Virginia University, Lane Department of

Computer Science and Electrical Engineering.

[25]http://promise.site.uottowa.ca/SERepository

[26]Amasaki, S., Takagi, Y., Mizuno, O., & Kikuno, T.

(2005). Constructing a Bayesian belief network to predict

final quality in embedded system development. IEICE

Transactions on Information and Systems, 134, 1134–

1141.

[27] Kan, S. H. (2002). Metrics and models in software

quality engineering. Reading: Addison-Wesley.

[28]Oral, A. D., & Bener, A. (2007). Defect Prediction for

Embedded Software. ISCIS ’07: Proceedings of the 22nd

international symposium on computer and information

sciences (pp. 1–6).

[29]T.M. Khoshgoftaar, N. Seliya, Fault prediction modeling

for software quality estimation: comparing commonly

used techniques, Empirical Software Engineering 8 (3)

(2003) 255–283

[30]Zhong, S., Khoshgoftaar, T.M., and Seliya, N.,

“Analyzing Software Measurement Data with Clustering

Techniques”, IEEE Intelligent Systems, Special issue on

Data and Information Cleaning and Pre-processing, Vol

(2), 2004, pp. 20-27.

[31]T. Menzies, J. DiStefano, A. Orrego, and R. Chapman,

“Assessing Predictors of Software Defects,” Proc.

Workshop Predictive Software Models, 2004.

[32]Fenton, N., Neil, M., “A Critique of Software Defect

Prediction Models”, IEEE Transactions on Software

Engineering, Vol 25(5), 1999, pp.675-689.

[33]M. Halstead, Elements of Software Science. Elsevier,

1977.

[34]T. McCabe, “A Complexity Measure,” IEEE Trans.

Software Eng.,vol. 2, no. 4, pp. 308-320, Dec. 1976.

[35]S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.

Benchmarking classification models for software fault

prediction: A proposed framework and novel findings.

IEEE Transactions on Software Engineering, 2008.

[36]U. M. Fayyad and K. B. Irani, Multi-interval

discretisation of continuous-valued attributes," in

Proceedings of the Thirteenth International Joint

Conference on Artificial Intelligence. 1993, pp. 1022-

1027,

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 3, May 2014 – www.ijais.org

41

[37]D. Chiu, A. Wong, and B. Cheung, “Information

Discovery through Hierarchical Maximum Entropy

Discretization and Synthesis,” Knowledge Discovery in

Databases, G. Piatesky-Shapiro and W.J. Frowley, ed.,

MIT Press, 1991.

[38]X. Wu, “A Bayesian Discretizer for Real-Valued

Attributes,” The Computer J., vol. 39, 1996.

[39]A. Paterson and T.B. Niblett, ACLS Manual. Edinburgh:

Intelligent Terminals, Ltd, 1987

[40]R. Kerber, “ChiMerge: Discretization of Numeric

Attributes,” Proc. Ninth Int’l Conf. Artificial Intelligence

(AAAI-91), pp. 123-128, 1992.

[41]H. Liu and R. Setiono, “Feature Selection via

Discretization,” IEEE Trans. Knowledge and Data Eng.,

vol. 9, no. 4, pp. 642-645, July/ Aug. 1997.

[42]Dougherty, J., Kohavi, R., and Sahami, M. (1995),

Supervised and Unsupervised discretization of

continuous features. Machine Learning 10(1), 57-78.

[43]Shull, F. J., Carver, J. C., Vegas, S., & Juristo, N. (2008).

The role of replications in empirical software

engineering. Empirical Software Engineering Journal,

13, 211–218.

[44]Hall, M. A., & Holmes, G. (2003). Benchmarking

attribute selection techniques for discrete class data

mining IEEE transactions on knowledge and data

engineering. IEEE Educational Activities Department,

15, 1437–1447.

[45]J. Lung, J. Aranda, S.M. Easterbrook, G.V. Wilson, On

the difficulty of replicating human subjects studies in

software engineering, in: Proceedings of the 30th

International Conference on Software Engineering, 2008,

pp. 191–200.

[46]T. Menzies, J. DiStefano, A. Orrego, and R. Chapman,

“Assessing Predictors of Software Defects,” Proc.

Workshop Predictive Software Models, 2004.

[47]J. MacQueen. Some methods for classification and

analysis of multivariate observations. In Proc. 5th

Berkeley Symp. Math. Statistics and Probability, pages

281{297, 1967.

[48] Lee, E. A. (2002). Embedded software, advances in

computers 56. London: Academic Press.

[49] I.H. Witten and E. Frank, Data Mining, second

ed.Morgan Kaufmann, 2005.

