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ABSTRACT 

Predicting fault -prone software components is an 

economically important activity due to limited budget 

allocation for software testing. In recent years data mining 

techniques are used to predict the software faults .In this 

research, we present a cluster based fault prediction classifiers 

which increases the probability of detection. The expectation 

from a predictor is to get very high probability of detection to 

get more reliable and test effective software.  In our 

experiments, we used fault data from mission critical systems. 

In this paper we have used discretization as preprocessing and 

cluster based classification for prediction of fault-prone 

software modules. Clustering based classification allows 

production of comprehensible models of software faults 

exploiting symbolic learning algorithms. To evaluate this 

approach we perform an extensive comparative analysis with 

benchmark results of software fault prediction for the same 

data sets. Our proposed model shows better results than the 

standard and benchmark approaches for software fault 

prediction. Our proposed model  gives superior probability of 

detection (pd) 83.3% and balance rates 685%.   

General Terms 

Software fault prediction, Software Metrics 

Keywords 

Error Prone, Software fault prediction, software metrics 

1. INTRODUCTION 
The demand of highly reliable and secure system is increasing 

day by day. To fulfill these demands by the ever-increasing 

power of computing devices, systems are growing complex. 

Due to the complexity of these systems, effort and cost incur 

in development is increasing. Software complexity is the main 

source of failure and potential hazards. High quality software 

within allocate budget requires a careful planning and cost 

effective use of testing resources. In context of mission 

critical or safety and business critical needs more reliability 

and therefore requires more testing and resources.  

Testing phase is the most expensive, time and resource 

consuming phase of the software development lifecycle 

requires approximately 50% of the whole project schedule [1, 

2]. So an effective and intelligent test strategy can minimize 

the time of testing by using resources efficiently. Various 

methods for minimization of testing effort, inspections [3], 

manual software reviews or automated models [4], [5] are 

proposed. A panel at IEEE Metrics 2002 concluded that 

manual software reviews can find approximately 60% of 

faults [26]. Automated models proposed for fault prediction 

are useful tools for software organizations and significantly 

better in terms of fault detection performance, compared to 

other verification , validation and testing  activities 

[5][17][18]. These automated models uses static code 

attributes such as Lines of Code (LOC) and the 

McCabe/Halstead complexity attributes that can be easily 

extracted from source code repositories even for large 

systems.  

Software fault prediction uses various static code software 

metrics such as Halstead, Mc- Cabe metrics etc. to categorize 

modules and predicting them either falt-prone (fp) or non-

fault prone ( nfp) modules by using classification model 

derived from the data of previous projects. Software fault 

predictions models can estimate number of faults in software 

modules as well as which module is faulty. So the predictive 

models are easy to use  and faster to run for highlighting fault-

prone modules compared to inspections  [4][5][7].Fault 

prediction models are useful tools for software organizations 

to manage their testing resources effectively through focusing 

on fault-prone software modules extracted from software 

repositories to improve software quality. The software 

repositories contain years of software project development 

data, including all of the versions of the project. Some 

common types of software repositories are source code 

version control system repositories, bug repositories, and 

communication archives etc [5][8] . 

Many researchers have already worked towards this end and 

various software metrics and techniques like linear regression, 

discriminant analysis, decision trees, neural networks and 

Naive Bayes classification have been analyzed in previous 

research for fault prediction [5][8][9][35]. 

This study specifically includes projects of NASA MDP 

program. We produce the results of experiments on these 

datasets using cluster based classification after preprocessing, 

in order to compare it by Menzies et al. framework for the 

same NASA dataset [5]. We use the same probability of 

detection pd, probability of false alarm (pf) and balance as 

performance measure  in order to analyze the effectiveness of 

our framework. Our results indicate that cluster based 

classification using faulty data at static code attributes may 

increase the prediction performance significantly, while 

removing the need for feature subset selection.  

In this paper we our focus is at classification level rather than 

attribute level. We have proposed a new model to predict the 

software fault more accurately. This technique uses an 

entropy based splitting criteria and minimum description 

stopping criteria based binary discretization  for  

preprocessing  and  then clustering , i.e. predictions, from 

cluster based classifiers (CBC) which  produced better results 

for locating faults. We used the data from the Promise 

repository [24]. Therefore, all projects which are used in this 

study are available online. So, that empirical analysis can 
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easily be repeated, improved or refuted and evaluated by other 

researchers. 

Our conclusion is that, we also found that data mining using 

static code attributes to learn fault predictors is useful. Given 

our new results by clustering based classification applied after 

discretization, these predictions are much better than 

previously demonstrated [5]. In the following section, related 

work, models developed for fault prediction are explained. 

After describing the experimental design and the results, 

conclusions will be given.  

2. RELATED WORK 
 Researchers have used various methods such as statistical 

analysis, regression, Genetic Programming [11], Decision 

Trees [12], Neural Networks [13], Naïve Bayes [5], Case-

based Reasoning [14], Fuzzy Logic [15] and Logistic 

Regression [16] for software fault prediction.  Elish et al. [17] 

investigated the performance of Support Vector Machines 

(SVMs) and found SVM better than, or at least is competitive 

against the other statistical and machine learning models in 

the context of four NASA datasets. They compared the 

performance of SVMs with the performance of Logistic 

Regression, Multi-layer Perceptrons, Bayesian Belief 

Network, Naive Bayes, Random Forests, and Decision Trees. 

They used correlation based feature selection technique (CFS) 

to down select the best predictors out of the numbers of 

independent variables in the datasets. Catal et al. [18] 

investigated effects of dataset size, metrics set, and feature 

selection techniques and found RandomForests provide the 

best prediction performance for large datasets and Naive 

Bayes is the best prediction algorithm for small. Tomaszewski 

[19] have conducted Statistical models vs. expert estimation 

for fault prediction and found statistical techniques performed 

superior to locate software fault than an expert estimations 

approach.  

Turhan et al. [22] analyzed the effects of preprocessing of 

software fault data from NASA with PCA, subset selection 

and weighted Naive Bayes and concluded that either pre-

processing software fault data with PCA or using weighted 

Naive Bayes should be preferred rather than subset selection 

for Naïve Bayes models.Static code attributes like lines of 

code and the McCabe/Halstead attributes are easy to extract, 

use and provides reliable facts about the software. So they are 

widely used for software fault prediction. Menzies et al. [5] 

reported that Naive Bayes with logNums filter achieves the 

best performance in terms of the probability of detection (pd-

71%)and the probability of false alarm (pf-25%) .They also 

stated that there is no need to find the best software metrics 

group for software fault prediction because the performance 

variation of models with different metrics group is not 

significant. Almost all the software fault prediction studies 

use metrics and fault data of previous software release to build 

fault prediction models, which are called ‘‘supervised 

learning” approaches in machine learning community. 

  There have been discussions on finding the best classifier for 

fault predictors. Lessmann et al. [35] argued that their 15 best 

performing classifiers were statistically indistinguishable from 

each other in terms of the area under the receiver operating 

characteristic (ROC) curve. The authors did not use any 

filtering or transformation techniques. Instead, they used the 

algorithms on the original data to measure their effectiveness 

on detecting fault-prone modules.  

We used NASA MDP data from promise repository which is 

an open source repository for fault data [25]. Therefore; all 

projects used in this study are available online. So, this work 

can easily be repeated, improved or refuted by other 

researchers [24][22] .We present a fault prediction model 

based on   cluster based  classification for mission critical 

softwares. Our technique achieved probability of detection 

(pd-83%) which is better than the earlier models. 

Fault predictors as early warning mechanisms, would be very 

helpful for practitioners in order to improve product quality in 

mission critical software in a shorter time and with fewer 

resources, compared to other verification, validation and 

testing activities [28]. In this research we use static code 

attributes as predictor variables. A complete list of these 

attributes is available on line in the Promise repository [24].  

3. EXPERIMENTAL DESIGN 
From an industrial perspective, software managers aim to 

decrease their testing efforts while decreasing fault rates, 

thereby producing high quality real time systems. Since 

developers eliminate most of the faults in the software with 

less testing effort, they would, in turn, improve their product 

quality. We observed that cluster based classifiers would 

detect 81% of the faulty modules .Also the cluster based 

classification decreases the false alarms with increased 

detection rates. In mission critical systems high detection rates 

at the cost of false alarms may be a desirable outcome. 

However, in commercial applications, companies need to 

employ cost effective oracles, since an increase in false alarms 

would waste inspection costs by guiding testers through 

actually safe modules. Therefore, in this paper, our objective 

is “building a learning-based fault predictor for mission 

critical software that would decrease false alarms while 

producing high detection rates’’. We used a cluster-based 

classification framework in which faulty data are grouped into 

clusters. In our experiment we use supervised discretization 

tasks. We first discretize the data then cluster the data using 

clustering technique for the interdependencies among 

different attributes. We performed this analysis on same   

datasets used by Menzies et al.  and  compared the results  of 

our  method  with the  Menzies et al[5] results .In all 

experiments, we follow the procedures of conceptual 

replication studies, in which diverse sources and their effects 

on the results of the same research question are observed by 

proposing different experimental procedures [43]. As 

indicated by Shull et al. [43], replications help the software 

engineering researchers to address internal and external 

validity problems. These types of studies also lead the 

research community to build a solid knowledge about the 

influence of conditions on the experimental results and 

observations. Similarly in our case study, we observe a recent 

study on fault predictors for mission critical software and 

reproduce those via new techniques in order to find the best 

approach for fault prediction for mission critical software. 

Procedure Evaluation data Learning (data, scheme) 

Input: data - the data on which the learner is built       

[CM1,PC1,PC3,PC4, MW1,PC2, KC3] 

M=10,N=10 

Learners-- the learning scheme. [Cluster_based_classification ] 

Output Result  [C_pd, C_pf, C_prec,C_bal]  = C_predictor on TEST 
  // The final performance of pd,pf and balance 

over M*N way cross    validation. 

Preprocessing = {discretization} 
FOR EACH data  

C_TRAIN = data // complete training data 
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D_TRAIN = discretization data    // after discretization of 
data  

//construct predictor from C data 

C _PREDICTOR = Train LEARNER with C_TRAIN 
// construct predictor from D data 

D_PREDICTOR = Train LEARNER with D_TRAIN 

//Evaluate both predictors on the test data 
  [C_pd,C_pf,C_Balance] = C_ predictor on TEST 

  [D_pd, D_pf, D_Balance] = D_ predictor on TEST 

END 

Fig 1 Pseudo code for the experimental design 

 

Lessman et al. [35] reported that data preprocessing or 

engineering activities such as the removal of noninformative 

features or the discretization of continuous attributes may 

improve the performance of some classifiers [35].  Menzies et 

al.  also reported  that their Naive Bayes classifier benefited 

from  log-filter preprocessor [44]. 

Researchers in the Machine Learning community have 

introduced many data preprocessing and discretization 

algorithms. Discretization is the transformation of a 

continuous variable into a discrete space, grouping together 

multiple values of a continuous attribute, and partitioning the 

continuous domain into a finite numbers of non-overlapping 

intervals. The task of discretizing an input attribute for 

classification problems is usually divided into supervised 

discretization, when knowledge interdependency between the 

class level and attribute values  is used for the discretization 

process and unsupervised discretization, when the class values 

of the instances are unknown or not used. The methods for 

unsupervised discretization are equal-width and equal-

frequency binning [37]. The equal width divides the range of 

values of a numerical attribute into a pre-determined number 

of equal intervals. The equal frequency divides the range of 

values into a pre-determined number of intervals that contain 

equal number of instances. Supervised algorithms are 

maximum entropy [38], Patterson and Niblett [39], statistics- 

based algorithms like ChiMerge [40] and Chi2 [41]. 

Fayyad & Irani developed a concept of entropy based 

partitioning in [36].Dougherty, Kohavi, and Sahami in [42] 

made comparison of the uniform binning, an entropy based 

method proposed by Fayyad and Irani [3], using two induction 

algorithms: C4.5 and a Naive-Bayesian classifier and reported 

that the entropy based disretization was the most promising 

one. We have used entropy based preprocessing of fault data 

preprocessing. 

The binary discretization used, to divide the values of 

continuous attribute into two intervals.  We used the state-of-

the-art supervised discretisation technique developed by 

Fayyad and Irani [3] for binary discretization, of continuous 

attribute into two intervals. This entropy based discretization 

process is a viable choice as it improve accuracy reported by 

researchers [17][20]. 

Let assume a set of samples S, Entropy for S is calculates as 

      Entropy(S) = - p1*log2 (p1) – p2*log2 (p2) 

Now suppose if S is partitioned into two intervals S1 and S2 

using boundary T, the entropy after partition can be calculated 

as the equation given below 

 

 

 

The T is taken from the midpoints of the feature values. The 

goal is to get the maximum information gain after the split 

and the gain is calculated as  

Gain(S,T) = Entropy(S) - E(S,T).  

Recursively evaluating all possible splits and then selecting 

best split(s) with maximum gain is chosen. A partition point is 

decided on for discretization which minimizes the entropy 

function. The process is recursively applied to obtain 

partitions until it minimizes the difference to acceptable level 

e.g., 

 

 

Minimal descriptive length principle is used by [3] to 

determine stopping criteria for recursive discretization 

process.  

Once the discretization process has been completed, the 

discretized data is used by cluster based supervised 

classification algorithm for building the predictive model. We 

have changed the binary partition range to   minimum and 

maximum values of corresponding attribute. Clustering is one 

method to find most similar groups from given data, which 

means that data belonging to one cluster are the most similar; 

and data belonging to different clusters are the most 

dissimilar. Finally we generated a simple meta-classifier that 

uses clusters for classification.  Any clustering algorithm such 

as the hard c-means, mountain clustering algorithms can be 

used. We use the Simple k-means clustering algorithm that 

uses a fixed number of clusters.   

3.1 Clustering algorithm  

The K-means clustering algorithm starts with a training data 

set and a given number of clusters K. The samples in the 

training data set are assigned to a cluster based on a closeness 

measurement. Closeness is measured by Euclidean distance, 

cosine similarity, Manhatten distance etc. We have used  

Euclidean distance to measure the similarity. The centroid is 

the mean of   data vectors in the cluster.  

Algorithm:  k-mean clustering 

Input:   A set of N data Vectors 

X=(x1……………….xn) in  d   

K: - the number of clusters 

Output: A set of k clusters partition of the data vectors given 

by the cluster identity vector Y= {y1,…,yn},   {1,……K} 

Initialization:   Select arbitrarily K initial cluster centroid 

vectors { 1,……………. k}; 

Repeat 

 Each data vector xn, is assigned to the cluster with 

 the closed centroid k 

 Recompute the centroid of each cluster based on 

 mean value of the data vector 

Until no change in centroid  
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The cluster based classification algorithm takes a cluster built 

on a data set with a class attribute. K mean clustering is used 

to find the cluster in the fault data corresponding to faulty and 

not faulty class separately. We have taken K=2. We have used 

Euclidean distance in this work. Our model takes the benefit 

of supervised discretization process to reduce the error. For a 

new instance to be in faulty cluster should have minimum 

value from the center of the cluster for all features. 

 We have overcome the sampling bias by using M*N-way 

cross validation where both M and N are selected as 10 [44]. 

We create 10 stratified bins: 9 of these 10 bins are used as 

training sets and the last one is used as the test set. We 

randomize the dataset M = 10 times and create N = 10 sets in 

each iteration. The pseudo code of the model is shown in 

Fig1.   

4. DATASET USED 
 

We have used NASA MDP program   data which is publicly 

available [25]. NASA makes extensive use of contractors who 

are contractually obliged (ISO-9O01) to demonstrate their 

understanding and usage of current industrial best practices. 

These contractors service many other industries; for example, 

Rockwell-Collins builds systems for many government and 

commercial organizations. For these reasons, other noted 

researchers, such as Basili et al. , have argued that conclusions 

from NASA data are relevant to the general software 

engineering industry.  

The seven projects MW1,PC1, PC2,PC3,PC4, CM1 and ,KC3 

are from NASA MDP program.  Due to unavailability of KC4 

dataset we have excluded KC4 from our study. Each data set 

is encompassed of several software modules, together with 

their static code attributes and associated corresponding 

number of faults. After metric and bug data extraction from 

software repositories , modules that contain one or more bugs 

were marked as fault prone (fp), and where no bug were 

reported those modules were treated as non fault prone (nfp). 

The fault data sets which are taken from promise repository 

includes LOC counts, several Halstead attributes, McCabe 

complexity measures as well as various other static code 

attributes. Individual software metric feature per data set, 

together with percentage faulty modules and some general 

descriptions are given in Table 1. 

Table 1: Data set used in Study 

Sourc

e  

 No of 

Modul
e in 

Softwa

re  

Featur

es  

LOC % 

Fault
y  

Lan

gua
ge  

Description 

MW1 403 37 8341 7 C A zero 

gravity 

experiment 
related to 

combustion 

PC1 1,107 21 25,92

4 

6.94 C++ Flight 

software for 
earth 

orbiting 

satellite. 

PC2 5590 21 25K 6 C Flight 

software for 

earth 

orbiting 

satellite. 

PC3 1563 21 1564 10 C Flight 

software 

from an 
earth 

orbiting 

satellite  

PC4 1458 37 1458 12 C Flight 

software 

from an 
earth 

orbiting 

satellite  

CM1 498 21 14,76
3 

9.83 C Spacecraft 
instrument 

KC3 459 39 8K 9 JAV

A 

Storage 

management  
for ground 

data  

 

4.1 Performance Measures 
The accuracy and performance of prediction models for two-

class problem, defective or not defective is typically evaluated 

using a confusion matrix. A confusion matrix contains 

information about actual and predicted classifications done by 

a classification system.  In this study, we used the commonly 

used prediction performance measures: probability of 

detection (pd), probability of false alarm (pf), balance (bal) to 

evaluate and compare prediction models. These measures are 

derived from the confusion matrix. A confusion matrix is 

shown below. 

 Actual Faulty Module Not Faulty Module 

Predicted    

Faulty Module  TP(True Positive)  FP (False Positive) 

Not Faulty Module  FN (False Negative) TN (True Negative) 

     

False alarms, pf, should be 0, meaning that the predictor 

should never label a defect-free module as defective. In 

general, an increase in pd would also increase pf rates since 

the model triggers more often to achieve the ideal case [5]. To 

see how close our estimates are to the ideal case, we use a 

balance metric, which is the Euclidean distance between the 

ideal point and position on the ROC curve in reality.  

Pd =TP/ (TP+FN) 

Pf =FP/ (FP+TN) 

 

 2

)1()0(
1

22 pdpf
bal
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5. EXPERIMENTAL RESULTS  
In this  work the objectives are (a) building an Cluster based  

classifiers to predict fault-prone modules  for NASA  software  

systems, and (b) achieving high pd rates and balance rates 

using  preprocessing and CBC . We investigate separate 

performances of the CBC algorithm with and without 

discretization and found that the results after discretization are 

significantly better than we are applying it on raw data. 

According to the findings, we calibrate the proposed model 

using discretization in CBC to improve the prediction 

performance in terms of pd and balance rates. We compare 

CBC with the model proposed on NASA datasets by Menzies 

et al.[5] to validate its performance. We conjecture that if our 

results are at least comparable with their study, we can verify 

that the CBC approach is worth using in the context of NASA 

software.  In Table 2, the prediction performances of CBC and 

the model of Menzies et al. 2007 are presented. From the 

results, we could argue that CBC achieves good results for 

NASA MDP datasets.  

We outperform the results of Menzies et al. 2007 in terms of 

pd on average from 72% to 83% with cost of pf on average 

from 21% to 40%. When we analyze our cluster based 

classification for all embedded projects, the average 

performance is (83, 40%) in terms of (pd, pf). This means that 

the ensemble can predict 8 out of 10 defective modules, while 

making false alarms in 4 out of 10 defect-free modules. 

 

Table 2:  Comparison of CBC Result Set with Menzies et 

al. 2007 

 PD  PF 

DataSet OUR BEN
CH 

OUR BEN
CH 

OUR BENC
H  

CM1 0.815 0.71 0.4129 0.27 0.6801 0.7198 

PC1 0.662 0.48 0.3451 0.17 0.6587 0.6131 

PC3 0.806 0.8 0.4306 0.35 0.6663 0.7149 

PC4 0.726 0.98 0.4225 0.29 0.6441 0.7944 

MW1 1 0.52 0.6291 0.15 0.5551 0.6444 

PC2 0.833 0.72 0.1355 0.14 0.8481 0.7786 

KC3 0.99 0.69 0.4476 0.28 0.6834 0.7046 

Avg. 0.833 0.72 0.403 0.215 0.6854 0.7305 

 

The framework comparison results are summarized in Table 2 

which shows the results in terms of pd,pf and balance. From 

it, we find that our framework outperformed in terms of pd 

that of Menzies et al.  for 6 out of  7 data sets (each “winner” 

is denoted in bold). The mean probability of detection of the 

Menzies et al. 2007 framework over the 7 data sets is 72.7 

percent, and the mean probability of detection of the proposed 

framework is 83.3 percent, with an improvement of 10.6 

percent. The mean prediction balance of the MGF (Menzies et 

al.) framework over the 7 data sets is 73.0 percent, and the 

mean prediction balance of the proposed framework is 69 

percent. This suggests that the proposed framework worked 

well for probability of detection. 

6. CONCLUSION 
Software fault prediction can be regarded as one piece of the 

solution for timely and cost effective software development. It 

is argued by Lessmann et al. that fault prediction techniques 

should not be judged on their predictive performance alone, 

but that other aspects such as computational efficiency, ease 

of use, and especially comprehensibility should also be paid 

attention to [35].We conclude that discretization on software 

fault data with entropy based supervised discretization should 

be preferred with CBC approach perform better than naive 

Bayes with logNums.  The time complexity of CBC technique 

is also good for huge data. From a software practitioner’s 

point of view, these results are useful for detecting faults 

before proceeding to the test phase. In this sense, test 

resources can be managed more efficiently.  The contributions 

of this research are two folds: In empirical studies replications 

are very important to improve, refute, and validate the results 

of others [5, 22]. This research is not only a replication study, 

but also provides an effective software fault predictor model 

for NASA MDP dataset. 

 On all projects, CBC detects 83% defective modules while 

producing 40% false alarms. Furthermore, it manages to the 

balance rates from 68.5% on average (all projects). For further 

development   we will attempt to use intelligent computing   

for data preprocessing or activities for the removal of non 

informative features or feature extraction to improve the 

performance of software fault prediction models 
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