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ABSTRACT 
MapReduce is a famous model for data-intensive parallel com-

puting in shared-nothing clusters. One of the main issues in 

MapReduce is the fact of depending its performance mainly on 

data distribution. MapReduce contains simple load balance 

technique based on FIFO job scheduler that serves the jobs in 

their submission order but unfortunately it is insufficient in real 

world cases as it missed many factors that impact the perfor-

mance such as heterogeneity factor and data skewness, so Load 

balancing is important to make all resources utilized evenly 

and more efficiently. There are two main schemes in load bal-

ancing a- Static Load Balancing Schemes b- Dynamic load 

balancing. The main aim of this work is to study and compare 

existing Load Balance algorithms also to illustrate the features 

of Load Balance algorithms  

Keyword 
Static Load Balance, Map reduce,Dynamic Load Balance,static 

load balance,comparative study 

1. INTRODUCTION 
In order to handle huge data sets, using parallel processing 

tasks running on large clusters of computers, utilizing their 

combined resources is necessary. However, since developing 

such parallel programs from scratch is very difficult job and 

causing errors, programming models that support the parallel-

ization automatically of processing jobs have gained a lot of 

importance in recent years. [1] 

MapReduce is important for data-analysis in parallel computa-

tion in shared-nothing clusters. Its open-source implementation 

Hadoop is very famous and establishes the basis of many paral-

lel algorithms in the last years [2] [3] [4] .  

According to key/value data model, MapReduce allows pro-

grammers to define complex functions which are wrapped by 

map or reduce functions (second order functions) that guaran-

tee that the input data is passed correctly to the user function 

parallel instances at runtime.  

In MR, much of the processing is done by black-box user code. 

The computation is expressed using two functions: 

Map (k1,v1)  list(k2,v2); 

Reduce (k2,list(v2))  list(k3,v3). [2] 

A Map Reduce Dataflow  depend on three further functions. 

First, the PART function that partitions the map output and 

distributes it to the unused reduce tasks. Second COMP func-

tion that help in sorting all keys. Finally, GROUP function that 

for each reduce task it groups results to determine the data 

blocks for each reduce function call.[5] [6] Load balancing is 

used to make all resources are utilized evenly[7]. 

To balance load distribution, the load can be migrated from the 

source nodes (over utilized) to the underutilized one. [8] 

The cost-effectiveness and scalability of MR implementations 

Relies on load balancing approaches to utilize available nodes. 

This is particularly challenging for data-analysis tasks where 

non balanced data can make some nodes bottlenecks.  

Hadoop framework supplies a simple job scheduler FIFO 

which serves the jobs in order of their submissions. The se-

quential scheduler could ease the management of job to some 

extent and sometimes it is efficient when the framework deals 

with the job queue but in some cases this is not sufficient 

enough. 

Unbalanced reducer workloads lead to high runtime differ-

ences, poor parallelism and the overall runtime increases.  

Hadoop framework performance is degraded on heterogeneous 

clusters due to load imbalance. There are four issues in imbal-

ance: 

 Imbalance in input splits, 

 Imbalance in computations, 

 Imbalance in partition sizes and 

 Imbalance in heterogeneous hardware.  

The rest of this paper is organized as follows section 2 describe 

and study Static Load Balancing algorithms, section 3 describe 

and study dynamic Load Balancing algorithms, section 4 de-

scribe comparative analysis of Load Balancing algorithms in 

environment of Map Reduce and finally section 5 shows the 

conclusion and future work. 

2. STATIC LOAD BALANCING TECH-

NIQUES 
In these type decisions are made before starting the execution. 

The system performs several experiments to collect infor-

mation like execution time on a single processor, memory us-

age and so on. [9][10] 

There are three categories: 

Min-Min algorithm: first it finds the smallest fitness value of 

all the machines for each subtask. Then it finds the smallest 

value among the first step results. This algorithm is recursive 

and the end point occurs when the dispatch of all the subtasks 

happens. Both Levelized Weight Tuning (LWT) and Bottom 

Up algorithm are based on the DAG (Directed Acyclic Graph) 
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where subtasks dependencies are represented and dispatch 

these subtasks level-by-level, top to bottom or bottom to up, 

Searching algorithms: uses search tree to find the best solution, 

it assures that the complexity is acceptable. The tree depth 

depends on the number of subtasks or available machines 

number.  One example is A* algorithm. 

Machine learning algorithms: widely used static load balancing 

algorithms. Its idea to randomly generate some dispatch pat-

terns and generate new patterns from them. Let the fittest pat-

terns survives in each step, then it generates new patterns in the 

next step.  

All these algorithms consider execution time and energy cost. 

[10] 

2.1 Cogset load balance 
This part describe a static load balancing technique It depends 

on the replication of the data[11] partition on many nodes and 

uses this structure in load balancing. It transfers load between 

neighbor nodes. The key step in this algorithm is selecting 

which partition to process next, effectively implementing a 

distributed scheduling algorithm. To select the next partition to 

be processed, the node estimates the total amount of work re-

maining for itself, and for its neighbors, then selects the node 

with most work remaining, and determines which of the re-

maining partitions hosted by that node has the highest estimat-

ed processing cost, this partition will be the selected one [12] 

3. DYNAMIC LOAD BALANCING 

TECHNIQUES 
It applies load balancing and calculating cost during runtime, 

these algorithms must have less complexity than static algo-

rithms. It is not recommended to use calculation intensive algo-

rithms because the best solution at given instant may change 

according to new events. It is recommended to reach an effec-

tive solution in a short time. This can be done by two ap-

proaches according to the execution 

Direct: it selects final destination node in one step. 

Iterative: it determines the final destination node through sev-

eral iterations [8] 

Dynamic Load balancing can be done either in distributed or 

non- distributed way In the distributed one, the algorithm is 

performed by all nodes existed in the system and the load bal-

ancing task is shared between them. 

Nodes can interact to reach load balancing in two methods: 

cooperative where nodes work together and non-cooperative 

where nodes are working independently. [13] 

3.1 Adaptive MapReduce using Situation-

Aware Mappers 
In Adaptive MapReduce using situation aware mappers, the 

technique is based on breaking an assumption in MapReduce 

that all the mappers are independent, here the mappers are 

communicated asynchronously through a metadata store that is 

distributed so they are aware of the global state. The adaptive 

techniques are packaged as a library that can be used by 

Hadoop developers through an API this algorithm doesn’t 

change the original MR APIs. It adds new runtime options to 

Hadoop to make them adaptive to the runtime environment. 

Adaptive algorithms are better in performance and more stable, 

they show resilience to tuning errors and changing runtime 

conditions. All systems offer various query “hint” mechanisms 

not normal cost-based optimizers. So using adaptive run-time 

algorithms is a logic choice. MapReduce can be adaptive and 

more flexible by providing the communication method be-

tween mappers. [14] 

 In this technique they are using asynchronous communication 

channel between mappers, transactional, distributed meta-data 

store (DMDS). So, the mappers can post some metadata about 

their state and be aware of the state of all other mappers (“situ-

ation-aware mappers” (SAMs)). SAM tasks can alter their 

execution, at runtime, depending on the global state. 

SAMs are used in a number of adaptive techniques:  

 Adaptive Mappers dynamically control the check-

point interval to balance between performance, load 

balancing, and fault tolerance. After every split, AMs 

make a decision either to checkpoint or take another 

split and join it to already processed one(s). So the 

obtained result is:  Minimum task startup overhead 

and   dynamic load balancing. 

 Adaptive Combiners use hash-based aggregation of 

map outputs with frequent keys and keeping the sort-

based aggregation as a fallback option for non-

frequent ones In case of a cache miss there are 2 re-

placement policies. No Replacement (NR), Least Re-

cently Used (LRU).  They maintain the benefit of 

shuffling and combine data in the reducers, while 

overhead eliminated.  

 Adaptive Sampling uses map outputs to produce a 

sample of their keys and aggregates them in the glob-

al histogram. AMs are producing samples in separate 

files and when reach the condition needed to stop, the 

first mapper discovers that this condition is satisfied 

is nominated as leader and collects all samples in the 

global histogram. AS dynamically decides when to 

stop sampling. It eliminates the need for the stage of 

sampling to be rerun un the main query phase and 

dynamically determine when to stop , Adaptive Parti-

tioning dynamically partitions map outputs based on 

the histogram produced from sampling phase. 

 Adaptive Partitioning During job evaluation, AP de-

termines the partitioning function. The main idea is 

for mappers to start processing data, but not produce 

any output. The AP piggybacks on AS, which aggre-

gated map outputs into a histogram. This happens at a 

leader mapper. [14] 

3.2 Block-based Load Balancing for Entity 

Resolution with MapReduce 
ER (entity resolution) is the task of identifying entities refer-

ring to the same real-world object.  

ER techniques compare pairs of entities by which is insuffi-

cient in Large Datasets [15]. 

Evaluating various similarity measures using Cartesian product 

is the approach used here. The complexity of this approach is 

O(n2) Using the blocking techniques is good for improving the 

efficiency. They utilize a blocking key depending on values of 

one or many entity attributes this will lead to partition the input 

data. The matching id limited to entities of the same block. [16] 

3.2.1 Block-Based Load Balancing 
In ER the input is a set of entities and the output are the entity 

pairs that are considered to be the same. ER is processed within 

two MR jobs. Both jobs are based on the same number of map 

tasks and the same partitioning of the input data. Block distri-
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bution matrix (BDM) is calculated by the first job. It specifies 

the entities number for each block separated by input partitions. 

The matrix is used by the map phase of the second Map Re-

duce Job. 

BlockSplit generates one or several coincide tasks per block 

and distributes matched tasks among reduce tasks. 

It uses the following: 

In a single match task, small blocks are processed similar to 

MR implementation while large blocks are split into m sub 

blocks. 

BlockSplit determines the number of comparisons per match 

task and assigns matches tasks in descending size among re-

duce tasks [17]  as in. Fig(1) that shows an overview of the MR 

matching process with block based load balancing 

3.3  Load Balancing in MapReduce based on 

Scalable Cardinality Estimates 

Data skew is very common in distributed databases systems 

and solutions for operations like joins and group-

ing/aggregation have been proposed [18][19][20] but these 

solutions are not applicable for MapReduce. 

Scalable cardinality estimates algorithm uses the idea of ap-

proximately global histogram to address this problem. 

Depending on their cost, the clusters are grouped into partitions 

that are distributed to the reducers. The cost of a partition is the 

sum of the costs of its clusters. This estimation is difficult due 

to the face that each mapper sees only a portion of the data.so a 

controller should be used to estimate all the costs which is 

based on short summaries. In addition, not all mappers do nec-

essarily run at the same time. 

Thus the controller cannot incrementally retrieve information 

as is done. Scalable cardinality estimates algorithm discusses 

TopCluster, a sophisticated distributed monitoring approach for 

MapReduce systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1 Overview of the MR matching process with block based load balancing [17] 

 
TopCluster requires one parameter, the cluster threshold (), 

which controls the size of the local statistics that are sent from 

each mapper to the controller. The result is a global histogram 

of (key, cardinality) pairs. 

TopCluster guarantees:  

Completeness: All clusters with cardinalities above the cluster 

threshold   are in the global histogram. 

Error Bound: The approximation error of the cluster cardinali-

ties is bound by /2. 

Getting the largest clusters with high precision is critical for 

accurate cost estimation. 

Also it provides an automatic good value for  based on skew 

in data  

3.3.1 Exact Global Histograms 
Global Histogram  

The exact global histogram stores all information required to 

compute the exact cost for all partitions. This is not feasible for 

large datasets. TopCluster algorithm is efficient and effective 

approximation of the exact global histogram.  

Local Histogram definition: Let Ii be the bag of all intermedi-

ate (key, value) pairs produced by mapper i. The local histo-

gram Li is defined as a set of pairs (k; v), where k  {x | y((x, 

y)  Ii)} is a key in Ii and v is the number of tuples in Ii with 

key k. 

Global Histogram definition: Given m local histograms Li, 1 ≤ 

i ≤ m, of pairs (k, v), where k is the key and v is the associated 

cardinality, and the presence indicator pi(k), which is true for k 

if and only if k exists in Li 

Pi(k) =  
                    

               
  

The global histogram G is the set {(k, v)} with 

                               

                   
     

         
    

3.3.2 TOPCLUSTER 
To determine the global histogram TopCluster algorithm uses 3 
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Local histogram (mapper): a local histogram Li is maintained 

on mapper i for each partition  

Communication: For each partition it sends the presence indi-

cator for all local clusters and the histogram for the largest 

local clusters (histogram head) to the controller. 

Global histogram (controller): The controller approximates the 

global histogram using aggregation of the heads of local histo-

grams and by estimation cardinality for all clusters that are not 

in the local histograms. [21] 

3.4 Improving MapReduce Performance 

through Data Placement in 

Heterogeneous Hadoop Clusters 
The current Hadoop implementation has 2 assumptions, com-

puting nodes in a cluster are homogeneous Most maps are data-

local (Data locality has not been considered,). 

Unfortunately, both assumptions are not satisfied in virtualized 

data centers[22].  

Data placement in a heterogeneous environment algorithm 

addresses the problem of placing data across nodes to achieve a 

goal that each node has a balanced data.  

Data locality is a determining factor for the MapReduce per-

formance. In a heterogeneous cluster nodes with higher per-

formance can complete processing their local data faster than 

lower performance ones. 

After the fast node finished processing their own data, it has to 

deal with unprocessed data in a far slow node. The expense of 

this data transferring from slow to fast nodes is high if the 

amount of moved data is huge.  

The proposed algorithm discusses a data reorganization and 

redistribution algorithms in HDFS.  

The MapReduce program routes queries to a name-node, which 

in passes the file requests to the correct data nodes. Then, they 

input  large amount of data  to Map functions. File fragments 

of the file are stored on multiple data nodes within the cluster 

during writing new data to a file in HDFS. 

It is powerful to move data processing tasks to nodes where 

application data are located if the cluster has nodes with a local 

disk for each one, To improve the performance of Hadoop in 

heterogeneous clusters, data movement between fast and slow 

nodes should be minimized.  

This can be done by a data placement scheme that balance data 

storage across nodes based on their computing capacities.  

Making a complete replica of the data on each node is not suit-

able due to waste of resources and this solution is very expen-

sive.  

To address limitations of the data-replication approach, the 

algorithm is using an approach for files partitioning and distri-

bution across multiple nodes in a Hadoop cluster without du-

plication.  

In this mechanism, two algorithms are implemented and incor-

porated into Distributed file system [23, 24, 25] like 

HADOOP’s HDFS. The first algorithm is initially distribute 

file fragments to heterogeneous nodes in the cluster. Then, 

these file fragments are distributed to the computing nodes. 

The second algorithm is used to reorganize file fragments; this 

will solve the problem of data skew.  

The initial data placement starts by dividing a large input file 

into a number of equal sized fragments. 

Then, assigns fragments to nodes in a cluster in accordance to 

the nodes’ data processing speed.The calculation of nodes 

speed is done by computing ratio. After placement, Input file 

fragments distributed [26] 

3.5 Randomized Hydrodynamic Load 

Balancing:  
Randomized Hydrodynamic Load balance algorithm uses the 

hyper approach for dynamic load balance Here the load balanc-

ing algorithm balance the disk space usage on HDFS cluster 

when some data nodes became full or when new empty nodes 

joined the cluster. The balancer starts with a threshold value, (a 

fraction from 0% to 100%).  

With smaller threshold values the cluster will become more 

balanced and the balancer will take longer time. The cluster is 

considered balanced if for each data node,  The difference of 

the node utilization and the cluster utilization <= threshold 

value Utilization of the node: used space of the node/total ca-

pacity of the node Utilization of the cluster: used space of the 

cluster/total capacity of the cluster Moving the blocks from the 

highly utilized data nodes to the seedy used ones is made by 

iterations. 

Depending upon the utilization rating of each node, nodes are 

classified as  

 Highly-utilized. 

 Average-utilized 

 Under-utilized. 

The algorithm steps: 

The module gets neighborhood details: 

When a DataNode load reaches the threshold level, it sends a 

request to the NameNode which had information about the load 

levels of the nearest neighbors of this node. 

The details about the freest neighbor nodes are sent to the re-

quester DataNode after comparing Loads by the NameNode. 

Each DataNode compares its own load amount with the sum of 

the load amount of nearest neighbors. 

If a DataNode's load level is greater than the sum of its neigh-

bors, then load-destination nodes (direct neighbors and other 

nodes) will be chosen at random. 

Load requests are then sent to the origin nodes. 

Last, the request is received. 

Buffers are  preserve at every node to received load  

A message passing interface (MPI) manages this buffer. 

A main thread will listen to the buffered queue and will service 

the requests it receives. 

The nodes enter the load-balancing-execution phase. [27] 

3.6 Resource-Aware Adaptive Scheduling for 

MapReduce Clusters 
This work present RAS, a Resource-aware Adaptive Scheduler 

for MapReduce to increase resource utilization which is guided 

by completion time goals. It also addresses the system admin-

istration problem of configuring the number of slots for each 

machine. [28] 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 7– No.11, November 2014 – www.ijais.org 

 

45  

Resource-Aware Adaptive Scheduling algorithm has the fol-

lowing features: 

Extends the abstraction of “task slot” to “job slot” that is relat-

ed to a job with market profile. 

Leverages resource profiling information for better resource 

utilization Dynamically allocating resources to jobs to Adapt to 

change in resource demand At decision related to resource-

aware scheduling it differentiate between map and reduce tasks 

RAS is a combination between resource awareness which is 

used to determine task placement on Task-Trackers over time 

and continuous job performance management the algorithm 

uses this information to determine the number of parallel tasks 

for each job depending on performance. 

Most of the logic behind RAS resides in the Job-Tracker in 

each job submitted there are two pieces of information config-

ured in the job configuration file Job completion time goal 

(optional) Resource consumption profile  Active jobs list and 

active tasks list are maintained in the Job-Tracker. Information 

stored for each active job includes their submitted time infor-

mation and state information like number of pending tasks. 

Regarding task-tracker it stores its resource capacity. 

When the task completed, the Task-Tracker notifies the Job 

Status Updater, which triggers an update of pending maps and 

reduces in the job descriptor. The Job Status Updater also has 

the information about the average task lengths; this information 

is used to estimate the completion time for each job. 

Placement Algorithm and the Job Utility Calculator are consid-

ered the core of RAS. They operate in control cycles of period 

T. They produce a new placement matrix P that will be active 

until reaching (current time + T). If it is required from the sys-

tem to change in the task and respond fast to new job submis-

sions. To choose the best placement choice available, the Job 

Utility Calculator evaluates a value for utilization to input 

placement matrix then it is used by the Placement Algorithm.  

Placement decisions are used by the Task Scheduler. The Task 

Scheduler schedules tasks using Placement Controller decision. 

After task completion, Task Scheduler selects a new task to 

execute in the free slot. fig(2) shows Resource-Aware Adaptive 

Scheduling system architecture [29] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2 Resource-Aware Adaptive Scheduling system architecture [29] 
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Fig 3 Resource-Aware Adaptive Scheduling system architecture [25] 

 

3.7 Mesh Simplification Algorithm 
Mesh algorithm suggests an algorithm of load balancing based 

on hashing key values over a certain range then construct a 

histogram contains these hash values which are then assigned 

to reducers 

This task is done over sample data randomly taken it suggests 

25% of the input data as sample. Then it uses this histogram to 

assign data to reducers. The master data and histogram are 

available in the master node after that it uses the results from 

previous phases to do the real map-reduce task 

The reducers’ inputs are decided by the custom Partitioner 

which uses the partitions provided in the partition file  [30] 

fig(3) shows  Mesh Simplification algorithm 

3.8 Dynamic Load Balancing Schemes in 

Stream Based Scenarios 
Stream based scenarios usually involve a leveled network and 

each level of network is responsible for particular operations. 

Each task includes a series of operations and each operation 

can be performed by one level in the network. These tasks are 

unpredictable. The network does not have previous knowledge 

how many tasks will arrive over the next few seconds. Event 

simulation is also not synchronized during execution.  

So it is recommended to use machine learning algorithms as 

they tend to perform much better. 

Ant-colony algorithm is one example for stream-based scenari-

os dynamic load balancing. The suggested algorithm is based 

on three types of ants with different functionalities. The modi-

fied algorithm keeps store more information but the main idea 

still involves searching the path randomly and leaving phero-

mones in the path while passing by. 

Unlike other systems, extremely selfish behavior in this system 

is acceptable. The goal of the algorithm here is to reach the 

minimum average latency. The first task should be served as 

fast as it can because nobody knows how many other tasks may 

arrive in the near future. Also, the algorithm usually does not 

work as efficiently in the beginning as it is in the learning 

phase. [9][31] 

3.9 Variable-sized map and locality-aware 

reduce on public-resource grids 
Variable-sized map and locality-aware reduce on public-

resource grids discusses Ussop algorithm. 

The Ussop portal chooses several grid nodes to run the applica-

tion when this MR application is submitted to portal. It nomi-

nates one node as the master of the application and the others 

as workers. Each idle worker requests a map reduce task from 

the master. 

As the grid nodes used by Ussop are chosen on market, the 

input data cannot be stored in these grid nodes in advance. The 

input data is come from the user’s node that submitted the job 

or from remote replica.  

The grid nodes are usually from various geographically distrib-

uted sites and they are heterogeneous and non-dedicated.  

3.9.1 Variable-sized map scheduling (VSMS) 
During the execution, a task may be performed at the different 

rate even if it is executed by the same worker all the time. The 

speculative execution scheme is not robust enough for the 

Ussop. 

Ussop has to balance the workload between all workers by 

adjusting the size of a task dynamically according to compu-

ting capability of the workers. Also it can avoid misjudging a 

poor performance node as a faulty one. Ussop uses the varia-

ble-sized map scheduling algorithm (VSMS) to determine the 

suitable size of the task that should be assigned to each worker. 

VSMS is based on the concept that the master should assign 

coarser-grained tasks to the workers with more powerful com-

puting availability. 

The VSMS algorithm consists of two procedures. 

When a given worker requests a map task, the master re-
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estimates the appropriate map task size 

Each worker updates its current computing power and the es-

timated remaining time of task every (n) seconds.  

VSMS assumes that the progress of a map task is proportional 

to how much input data has been processed. 

So the computing power (CP) is how much input data can be 

processed by the worker per second MB/s 

3.9.2 Locality-aware reduce scheduling (LARS) 
Ussop uses a just-in-time scheduling algorithm called locality-

aware reduce scheduling (LARS). When a worker requests a 

reduce task, the master uses the LARS algorithm to choose an 

appropriate reduce task, and assign it to the work. 

When the reduce task is assigned to the node, LARS starts 

input data transfer. This algorithm aims to minimize the data 

transfer cost. The master knows that which non-assigned task 

processes the largest local region. Then it assigns the reduce 

task which processes the largest local region to the idle worker. 

So each node can avoid transferring large local regions that the 

node owns to other nodes. 

3.10 Ant colony Optimization  
One of the most successful and widely recognized algorithmic 

techniques based on ant behavior is the ability to find the 

shortest paths. 

 Ant based control system was designed to solve the load bal-

ancing in the cloud environment. Each node in the network was 

configured with Capacity Probability of being a destination.  

Pheromone: probability routing table. 

Every row in this table defines the routing preference for each 

destination, and each column represents the possibility of se-

lecting the next hop from neighbors. Ants are started with a 

random target from the node. 

In this approach, incoming ants update the entries.  

The updated routing information can influence the routing ants 

that have as their destination. This approach for updating the 

pheromone is only for routing in symmetric networks. 

If there is no pheromone it makes a random decision. Paths 

from its colony are preferable.  

In the case of load balancing in cloud environment, as the web 

server demands increases or decreases, the Services are as-

signed dynamically to regulate the changing demand of the 

user. Virtual Server (VS) is a group of all servers with virtual 

queue. Each server processing a request from its queue calcu-

lates a reward. The server after processing a request can post 

their profit in the pheromone table. The server can choose a 

queue of a virtual server by a probability. A server serving a 

request, calculating its reward and compare it with the colony 

reward and then set the probability.  

One limitation of this solution is that it will be more efficient if 

cluster is formed in the cloud. So, the research work can be 

proceeded to implement the total solution of load balancing in 

a complete cloud environment [32] 

3.11 The Partition Cost Model 
It considers both skewed data distributions and complex reduc-

er side algorithms. Based on cost for each partition they are 

distributed on reducers so work in reducers is balanced. The 

cluster cost, is a function of the cluster cardinality and the 

complexity of the reducer side algorithm. The reducer com-

plexity is a user parameter but the cluster cardinalities are mon-

itored by the framework.  

Two algorithms have been developed to use the partition cost 

model: fine partitioning which splits the input data into n parti-

tions. N is larger than reducers number, the goal here is to dis-

tribute the partitions in a way that makes similar execution 

times for all reducers. Fine partition algorithm achieves load 

balancing by allocating costly partitions to different reducers. 

The second algorithm is dynamic fragmentation where each 

mapper splits expensive partitions locally during their creation; 

replication of tuples can be done at necessity. So, the partitions 

cost distribution is more uniform and better load balancing can 

be achieved easier for highly skewed data. 

In partition cost model, the reducer workload should be distrib-

uted evenly to all nodes participating in the model. By doing 

so, it maximizes utilization of resources. In addition to that, it 

minimizes the job completion time due to load balancing, as 

parallel processing is used better. [33][34] 

3.12 Load Balancing Methodology based 

on Divisible Load Theory 
Divisible Load Theory (DLT) [35] describes a divisible data set 

as one that can be split into several independent splits or 

chunks of random size to be parallelly processed. 

LB based on DLT algorithm monitors the processing time of 

data splits to specify their schedule order for future examina-

tions, and to adapt the partition factor dynamically 

When partitioning costs are high, multiple data set partitions 

are created by using different partition factors before the appli-

cation execution, and then select the most suitable one accord-

ing to the situation and circumstances. 

Communication cost, usage of memory and the resources 

availability are considered besides the time of processing.  

The algorithm includes: 

 The creation of multiple data set splits before the ap-

plication run in case of high partitioning cost. 

 The monitoring of the processing time  

  The changing of the data splits orders and distribu-

tion during the application execution  

 The partition factor selection according to the moni-

tored efficiency  

Number of processing nodes expectation and assessment for 

better efficiency. [36] 

The algorithm determines (i) the number of proportions for 

dividing the initial workload; (ii) the data chunks scheduling 

strategy; and (iii) the processing node number. 

There are two phases 

Phase1:  generating an initial partition of the data set. If the 

generation of a new partitions cost is high then it went to gen-

erate alternative partitions before the execution and chose the 

most suitable one during the execution. 

Phase2: measuring and evaluating the performance for tuning.   
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Table 1 comparative study of load balance algorithm in MR 

S:Static D:Dynamic Y:Yes N :No F:Fixed V:variable 

 

 

 

4. COMPARATIVE ANALYSIS OF AL-

GORITHMS 
Table 1 summarizes the algorithms that discussed in this paper, 

Cogset is the static algorithm discussed. It is based on the rep-

lication and choose the next partition to process. Adaptive 

MapReduce using situation-aware mapper has a good tech-

nique of communicating all the mappers with each other it uses 

ZooKeeper as DMDS to manage this asynchronous communi-

cation it also uses the high availability by using two or more 

zookeeper servers it uses sampling and histogram. In the block 

based balancing for ER MR it is based on dividing large blocks 

into sub-blocks and then treat the small blocks as normal MR. 

Load Balancing in MapReduce Based on Scalable Cardinality 

Estimates uses the TopCluster algorithm to estimate the ap-

proximate histogram as the exact histogram is expensive. Im-

proving MapReduce Performance through Data Placement in 

Heterogeneous Hadoop Clusters addresses the heterogeneity in 

hardware by distributing the file fragments over the nodes and 
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drodynamic Load Balancing uses the balancing of the HDFS 

space it uses a threshold from 0% to 100% the smaller the 

threshold the more balanced cluster and the longer time used 

for balancing. RAS is using the concept of job slot and it con-

tains profile for hardware and the target time needed as option-

al parameter. Placement Algorithm and the Job Utility Calcula-

tor are considered the core of RAS they are estimated periodi-

cally. Mesh simplification algorithm uses two phases the first 

one is for 25% sampling and the other one is for real task per-

formance. Dynamic Load Balancing Schemes in Stream Based 

Scenarios uses the machine learning. In Variable-sized map and 

locality-aware reduce on public-resource grids the map size is 

variable USSOP portal uses several nodes for the application 

and nominate one of them as master of the application. Idle 

nodes request the data from the master. Ussop has to balance 

the workload between all workers by adjusting the size of a 

task dynamically according to computing capability of the 

workers. It also uses locality-aware reduce scheduling (LARS). 

When a worker requests a reduce task, the master uses the 

LARS algorithm to choose an appropriate reduce task, and 

assign it to the work. In ACO, each node in the network was 

configured with Capacity Probability of being a destination. 

Pheromone is the probability and based on the value it finds the 

shortest bath. Partition cost model considers both skewed data 

distributions and complex reducer side algorithms. Two algo-

rithms are used, fine partitioning and dynamic fragmentation. 

The reducer workload is distributed evenly to all nodes partici-

pating in the model. LB based on DLT monitors the processing 

time of data splits to specify their schedule order for future 

examinations, and to adapt the partition factor dynamically. 

5. CONCLUSION AND FUTURE WORK 
In this paper the load balancing techniques are studied in Map 

Reduce environment and made a comparison between them 

from some aspects. there are suggestions for enhancing some 

algorithms as future work  to reduce the cost of load balance 

also it is suggested to implement the join algorithms using 

several bnchmarks[37,38] and conduct performance measure-

ment. The suggested enhancement is to use data similarity to 

estimate the execution plan based on previous runs based on 

histogram and taking samples from runs it is possible to deduce 

the optimum execution plan for this run which reduce execu-

tion time.  
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