

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.11, November 2014 – www.ijais.org

41

Comparative Study Load Balance Algorithms for Map

Reduce environment

Hesham A. Hefny

 Computer & Information Systems
Department, Institute of Statistical

Studies and Research,
 Cairo University, Egypt

Mohamed Helmy Khafagy
 Computer Science Department,

Fayoum University, Egypt

Ahmed M Wahdan
Computer & Information Systems

Department, Institute of Statistical
Studies and Research,
Cairo University, Egypt

ABSTRACT
MapReduce is a famous model for data-intensive parallel com-

puting in shared-nothing clusters. One of the main issues in

MapReduce is the fact of depending its performance mainly on

data distribution. MapReduce contains simple load balance

technique based on FIFO job scheduler that serves the jobs in

their submission order but unfortunately it is insufficient in real

world cases as it missed many factors that impact the perfor-

mance such as heterogeneity factor and data skewness, so Load

balancing is important to make all resources utilized evenly

and more efficiently. There are two main schemes in load bal-

ancing a- Static Load Balancing Schemes b- Dynamic load

balancing. The main aim of this work is to study and compare

existing Load Balance algorithms also to illustrate the features

of Load Balance algorithms

Keyword
Static Load Balance, Map reduce,Dynamic Load Balance,static

load balance,comparative study

1. INTRODUCTION
In order to handle huge data sets, using parallel processing

tasks running on large clusters of computers, utilizing their

combined resources is necessary. However, since developing

such parallel programs from scratch is very difficult job and

causing errors, programming models that support the parallel-

ization automatically of processing jobs have gained a lot of

importance in recent years. [1]

MapReduce is important for data-analysis in parallel computa-

tion in shared-nothing clusters. Its open-source implementation

Hadoop is very famous and establishes the basis of many paral-

lel algorithms in the last years [2] [3] [4] .

According to key/value data model, MapReduce allows pro-

grammers to define complex functions which are wrapped by

map or reduce functions (second order functions) that guaran-

tee that the input data is passed correctly to the user function

parallel instances at runtime.

In MR, much of the processing is done by black-box user code.

The computation is expressed using two functions:

Map (k1,v1) list(k2,v2);

Reduce (k2,list(v2)) list(k3,v3). [2]

A Map Reduce Dataflow depend on three further functions.

First, the PART function that partitions the map output and

distributes it to the unused reduce tasks. Second COMP func-

tion that help in sorting all keys. Finally, GROUP function that

for each reduce task it groups results to determine the data

blocks for each reduce function call.[5] [6] Load balancing is

used to make all resources are utilized evenly[7].

To balance load distribution, the load can be migrated from the

source nodes (over utilized) to the underutilized one. [8]

The cost-effectiveness and scalability of MR implementations

Relies on load balancing approaches to utilize available nodes.

This is particularly challenging for data-analysis tasks where

non balanced data can make some nodes bottlenecks.

Hadoop framework supplies a simple job scheduler FIFO

which serves the jobs in order of their submissions. The se-

quential scheduler could ease the management of job to some

extent and sometimes it is efficient when the framework deals

with the job queue but in some cases this is not sufficient

enough.

Unbalanced reducer workloads lead to high runtime differ-

ences, poor parallelism and the overall runtime increases.

Hadoop framework performance is degraded on heterogeneous

clusters due to load imbalance. There are four issues in imbal-

ance:

 Imbalance in input splits,

 Imbalance in computations,

 Imbalance in partition sizes and

 Imbalance in heterogeneous hardware.

The rest of this paper is organized as follows section 2 describe

and study Static Load Balancing algorithms, section 3 describe

and study dynamic Load Balancing algorithms, section 4 de-

scribe comparative analysis of Load Balancing algorithms in

environment of Map Reduce and finally section 5 shows the

conclusion and future work.

2. STATIC LOAD BALANCING TECH-

NIQUES
In these type decisions are made before starting the execution.

The system performs several experiments to collect infor-

mation like execution time on a single processor, memory us-

age and so on. [9][10]

There are three categories:

Min-Min algorithm: first it finds the smallest fitness value of

all the machines for each subtask. Then it finds the smallest

value among the first step results. This algorithm is recursive

and the end point occurs when the dispatch of all the subtasks

happens. Both Levelized Weight Tuning (LWT) and Bottom

Up algorithm are based on the DAG (Directed Acyclic Graph)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.11, November 2014 – www.ijais.org

42

where subtasks dependencies are represented and dispatch

these subtasks level-by-level, top to bottom or bottom to up,

Searching algorithms: uses search tree to find the best solution,

it assures that the complexity is acceptable. The tree depth

depends on the number of subtasks or available machines

number. One example is A* algorithm.

Machine learning algorithms: widely used static load balancing

algorithms. Its idea to randomly generate some dispatch pat-

terns and generate new patterns from them. Let the fittest pat-

terns survives in each step, then it generates new patterns in the

next step.

All these algorithms consider execution time and energy cost.

[10]

2.1 Cogset load balance
This part describe a static load balancing technique It depends

on the replication of the data[11] partition on many nodes and

uses this structure in load balancing. It transfers load between

neighbor nodes. The key step in this algorithm is selecting

which partition to process next, effectively implementing a

distributed scheduling algorithm. To select the next partition to

be processed, the node estimates the total amount of work re-

maining for itself, and for its neighbors, then selects the node

with most work remaining, and determines which of the re-

maining partitions hosted by that node has the highest estimat-

ed processing cost, this partition will be the selected one [12]

3. DYNAMIC LOAD BALANCING

TECHNIQUES
It applies load balancing and calculating cost during runtime,

these algorithms must have less complexity than static algo-

rithms. It is not recommended to use calculation intensive algo-

rithms because the best solution at given instant may change

according to new events. It is recommended to reach an effec-

tive solution in a short time. This can be done by two ap-

proaches according to the execution

Direct: it selects final destination node in one step.

Iterative: it determines the final destination node through sev-

eral iterations [8]

Dynamic Load balancing can be done either in distributed or

non- distributed way In the distributed one, the algorithm is

performed by all nodes existed in the system and the load bal-

ancing task is shared between them.

Nodes can interact to reach load balancing in two methods:

cooperative where nodes work together and non-cooperative

where nodes are working independently. [13]

3.1 Adaptive MapReduce using Situation-

Aware Mappers
In Adaptive MapReduce using situation aware mappers, the

technique is based on breaking an assumption in MapReduce

that all the mappers are independent, here the mappers are

communicated asynchronously through a metadata store that is

distributed so they are aware of the global state. The adaptive

techniques are packaged as a library that can be used by

Hadoop developers through an API this algorithm doesn’t

change the original MR APIs. It adds new runtime options to

Hadoop to make them adaptive to the runtime environment.

Adaptive algorithms are better in performance and more stable,

they show resilience to tuning errors and changing runtime

conditions. All systems offer various query “hint” mechanisms

not normal cost-based optimizers. So using adaptive run-time

algorithms is a logic choice. MapReduce can be adaptive and

more flexible by providing the communication method be-

tween mappers. [14]

 In this technique they are using asynchronous communication

channel between mappers, transactional, distributed meta-data

store (DMDS). So, the mappers can post some metadata about

their state and be aware of the state of all other mappers (“situ-

ation-aware mappers” (SAMs)). SAM tasks can alter their

execution, at runtime, depending on the global state.

SAMs are used in a number of adaptive techniques:

 Adaptive Mappers dynamically control the check-

point interval to balance between performance, load

balancing, and fault tolerance. After every split, AMs

make a decision either to checkpoint or take another

split and join it to already processed one(s). So the

obtained result is: Minimum task startup overhead

and dynamic load balancing.

 Adaptive Combiners use hash-based aggregation of

map outputs with frequent keys and keeping the sort-

based aggregation as a fallback option for non-

frequent ones In case of a cache miss there are 2 re-

placement policies. No Replacement (NR), Least Re-

cently Used (LRU). They maintain the benefit of

shuffling and combine data in the reducers, while

overhead eliminated.

 Adaptive Sampling uses map outputs to produce a

sample of their keys and aggregates them in the glob-

al histogram. AMs are producing samples in separate

files and when reach the condition needed to stop, the

first mapper discovers that this condition is satisfied

is nominated as leader and collects all samples in the

global histogram. AS dynamically decides when to

stop sampling. It eliminates the need for the stage of

sampling to be rerun un the main query phase and

dynamically determine when to stop , Adaptive Parti-

tioning dynamically partitions map outputs based on

the histogram produced from sampling phase.

 Adaptive Partitioning During job evaluation, AP de-

termines the partitioning function. The main idea is

for mappers to start processing data, but not produce

any output. The AP piggybacks on AS, which aggre-

gated map outputs into a histogram. This happens at a

leader mapper. [14]

3.2 Block-based Load Balancing for Entity

Resolution with MapReduce
ER (entity resolution) is the task of identifying entities refer-

ring to the same real-world object.

ER techniques compare pairs of entities by which is insuffi-

cient in Large Datasets [15].

Evaluating various similarity measures using Cartesian product

is the approach used here. The complexity of this approach is

O(n2) Using the blocking techniques is good for improving the

efficiency. They utilize a blocking key depending on values of

one or many entity attributes this will lead to partition the input

data. The matching id limited to entities of the same block. [16]

3.2.1 Block-Based Load Balancing
In ER the input is a set of entities and the output are the entity

pairs that are considered to be the same. ER is processed within

two MR jobs. Both jobs are based on the same number of map

tasks and the same partitioning of the input data. Block distri-

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.11, November 2014 – www.ijais.org

43

bution matrix (BDM) is calculated by the first job. It specifies

the entities number for each block separated by input partitions.

The matrix is used by the map phase of the second Map Re-

duce Job.

BlockSplit generates one or several coincide tasks per block

and distributes matched tasks among reduce tasks.

It uses the following:

In a single match task, small blocks are processed similar to

MR implementation while large blocks are split into m sub

blocks.

BlockSplit determines the number of comparisons per match

task and assigns matches tasks in descending size among re-

duce tasks [17] as in. Fig(1) that shows an overview of the MR

matching process with block based load balancing

3.3 Load Balancing in MapReduce based on

Scalable Cardinality Estimates

Data skew is very common in distributed databases systems

and solutions for operations like joins and group-

ing/aggregation have been proposed [18][19][20] but these

solutions are not applicable for MapReduce.

Scalable cardinality estimates algorithm uses the idea of ap-

proximately global histogram to address this problem.

Depending on their cost, the clusters are grouped into partitions

that are distributed to the reducers. The cost of a partition is the

sum of the costs of its clusters. This estimation is difficult due

to the face that each mapper sees only a portion of the data.so a

controller should be used to estimate all the costs which is

based on short summaries. In addition, not all mappers do nec-

essarily run at the same time.

Thus the controller cannot incrementally retrieve information

as is done. Scalable cardinality estimates algorithm discusses

TopCluster, a sophisticated distributed monitoring approach for

MapReduce systems.

Fig 1 Overview of the MR matching process with block based load balancing [17]

TopCluster requires one parameter, the cluster threshold (),

which controls the size of the local statistics that are sent from

each mapper to the controller. The result is a global histogram

of (key, cardinality) pairs.

TopCluster guarantees:

Completeness: All clusters with cardinalities above the cluster

threshold are in the global histogram.

Error Bound: The approximation error of the cluster cardinali-

ties is bound by /2.

Getting the largest clusters with high precision is critical for

accurate cost estimation.

Also it provides an automatic good value for based on skew

in data

3.3.1 Exact Global Histograms
Global Histogram

The exact global histogram stores all information required to

compute the exact cost for all partitions. This is not feasible for

large datasets. TopCluster algorithm is efficient and effective

approximation of the exact global histogram.

Local Histogram definition: Let Ii be the bag of all intermedi-

ate (key, value) pairs produced by mapper i. The local histo-

gram Li is defined as a set of pairs (k; v), where k {x | y((x,

y) Ii)} is a key in Ii and v is the number of tuples in Ii with

key k.

Global Histogram definition: Given m local histograms Li, 1 ≤

i ≤ m, of pairs (k, v), where k is the key and v is the associated

cardinality, and the presence indicator pi(k), which is true for k

if and only if k exists in Li

Pi(k) =

The global histogram G is the set {(k, v)} with

3.3.2 TOPCLUSTER
To determine the global histogram TopCluster algorithm uses 3

steps

 O
u

tp
u

t

M0

MR Job 2 Matching

BDM

In
p

u
t

P0

P1

Map

0
Red

0

Map

1
Red

1

Map0

Map1

P’0

P’1

Blocking

Red0

Red2

M1

M2

Additional output
(Entities + Keys) Red1

Load Balancing
Similarity computation

MR Job 1 Analysis
Count occur-

rences

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.11, November 2014 – www.ijais.org

44

Local histogram (mapper): a local histogram Li is maintained

on mapper i for each partition

Communication: For each partition it sends the presence indi-

cator for all local clusters and the histogram for the largest

local clusters (histogram head) to the controller.

Global histogram (controller): The controller approximates the

global histogram using aggregation of the heads of local histo-

grams and by estimation cardinality for all clusters that are not

in the local histograms. [21]

3.4 Improving MapReduce Performance

through Data Placement in

Heterogeneous Hadoop Clusters
The current Hadoop implementation has 2 assumptions, com-

puting nodes in a cluster are homogeneous Most maps are data-

local (Data locality has not been considered,).

Unfortunately, both assumptions are not satisfied in virtualized

data centers[22].

Data placement in a heterogeneous environment algorithm

addresses the problem of placing data across nodes to achieve a

goal that each node has a balanced data.

Data locality is a determining factor for the MapReduce per-

formance. In a heterogeneous cluster nodes with higher per-

formance can complete processing their local data faster than

lower performance ones.

After the fast node finished processing their own data, it has to

deal with unprocessed data in a far slow node. The expense of

this data transferring from slow to fast nodes is high if the

amount of moved data is huge.

The proposed algorithm discusses a data reorganization and

redistribution algorithms in HDFS.

The MapReduce program routes queries to a name-node, which

in passes the file requests to the correct data nodes. Then, they

input large amount of data to Map functions. File fragments

of the file are stored on multiple data nodes within the cluster

during writing new data to a file in HDFS.

It is powerful to move data processing tasks to nodes where

application data are located if the cluster has nodes with a local

disk for each one, To improve the performance of Hadoop in

heterogeneous clusters, data movement between fast and slow

nodes should be minimized.

This can be done by a data placement scheme that balance data

storage across nodes based on their computing capacities.

Making a complete replica of the data on each node is not suit-

able due to waste of resources and this solution is very expen-

sive.

To address limitations of the data-replication approach, the

algorithm is using an approach for files partitioning and distri-

bution across multiple nodes in a Hadoop cluster without du-

plication.

In this mechanism, two algorithms are implemented and incor-

porated into Distributed file system [23, 24, 25] like

HADOOP’s HDFS. The first algorithm is initially distribute

file fragments to heterogeneous nodes in the cluster. Then,

these file fragments are distributed to the computing nodes.

The second algorithm is used to reorganize file fragments; this

will solve the problem of data skew.

The initial data placement starts by dividing a large input file

into a number of equal sized fragments.

Then, assigns fragments to nodes in a cluster in accordance to

the nodes’ data processing speed.The calculation of nodes

speed is done by computing ratio. After placement, Input file

fragments distributed [26]

3.5 Randomized Hydrodynamic Load

Balancing:
Randomized Hydrodynamic Load balance algorithm uses the

hyper approach for dynamic load balance Here the load balanc-

ing algorithm balance the disk space usage on HDFS cluster

when some data nodes became full or when new empty nodes

joined the cluster. The balancer starts with a threshold value, (a

fraction from 0% to 100%).

With smaller threshold values the cluster will become more

balanced and the balancer will take longer time. The cluster is

considered balanced if for each data node, The difference of

the node utilization and the cluster utilization <= threshold

value Utilization of the node: used space of the node/total ca-

pacity of the node Utilization of the cluster: used space of the

cluster/total capacity of the cluster Moving the blocks from the

highly utilized data nodes to the seedy used ones is made by

iterations.

Depending upon the utilization rating of each node, nodes are

classified as

 Highly-utilized.

 Average-utilized

 Under-utilized.

The algorithm steps:

The module gets neighborhood details:

When a DataNode load reaches the threshold level, it sends a

request to the NameNode which had information about the load

levels of the nearest neighbors of this node.

The details about the freest neighbor nodes are sent to the re-

quester DataNode after comparing Loads by the NameNode.

Each DataNode compares its own load amount with the sum of

the load amount of nearest neighbors.

If a DataNode's load level is greater than the sum of its neigh-

bors, then load-destination nodes (direct neighbors and other

nodes) will be chosen at random.

Load requests are then sent to the origin nodes.

Last, the request is received.

Buffers are preserve at every node to received load

A message passing interface (MPI) manages this buffer.

A main thread will listen to the buffered queue and will service

the requests it receives.

The nodes enter the load-balancing-execution phase. [27]

3.6 Resource-Aware Adaptive Scheduling for

MapReduce Clusters
This work present RAS, a Resource-aware Adaptive Scheduler

for MapReduce to increase resource utilization which is guided

by completion time goals. It also addresses the system admin-

istration problem of configuring the number of slots for each

machine. [28]

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.11, November 2014 – www.ijais.org

45

Resource-Aware Adaptive Scheduling algorithm has the fol-

lowing features:

Extends the abstraction of “task slot” to “job slot” that is relat-

ed to a job with market profile.

Leverages resource profiling information for better resource

utilization Dynamically allocating resources to jobs to Adapt to

change in resource demand At decision related to resource-

aware scheduling it differentiate between map and reduce tasks

RAS is a combination between resource awareness which is

used to determine task placement on Task-Trackers over time

and continuous job performance management the algorithm

uses this information to determine the number of parallel tasks

for each job depending on performance.

Most of the logic behind RAS resides in the Job-Tracker in

each job submitted there are two pieces of information config-

ured in the job configuration file Job completion time goal

(optional) Resource consumption profile Active jobs list and

active tasks list are maintained in the Job-Tracker. Information

stored for each active job includes their submitted time infor-

mation and state information like number of pending tasks.

Regarding task-tracker it stores its resource capacity.

When the task completed, the Task-Tracker notifies the Job

Status Updater, which triggers an update of pending maps and

reduces in the job descriptor. The Job Status Updater also has

the information about the average task lengths; this information

is used to estimate the completion time for each job.

Placement Algorithm and the Job Utility Calculator are consid-

ered the core of RAS. They operate in control cycles of period

T. They produce a new placement matrix P that will be active

until reaching (current time + T). If it is required from the sys-

tem to change in the task and respond fast to new job submis-

sions. To choose the best placement choice available, the Job

Utility Calculator evaluates a value for utilization to input

placement matrix then it is used by the Placement Algorithm.

Placement decisions are used by the Task Scheduler. The Task

Scheduler schedules tasks using Placement Controller decision.

After task completion, Task Scheduler selects a new task to

execute in the free slot. fig(2) shows Resource-Aware Adaptive

Scheduling system architecture [29]

Fig 2 Resource-Aware Adaptive Scheduling system architecture [29]

Job submis-

sion

Completion time

goal

Job profile (#map,

#Red, resource de-

mand)

System description

List of task trackers & resource capacities

Placement control loop

Operation in control

cycles of period

Job utility

calculator

Placement

algorithm

Task scheduler

Job completion

time estimator

Dynamic list of jobs in

the system and their

associated profile and

current status

Job status updater

Task trackers

Running tasks for multiple

jobs

Assign tasks to meet requirements Task completion

Updates Average task length

Job tracker

Evaluate placement in this

round

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.11, November 2014 – www.ijais.org

46

Fig 3 Resource-Aware Adaptive Scheduling system architecture [25]

3.7 Mesh Simplification Algorithm
Mesh algorithm suggests an algorithm of load balancing based

on hashing key values over a certain range then construct a

histogram contains these hash values which are then assigned

to reducers

This task is done over sample data randomly taken it suggests

25% of the input data as sample. Then it uses this histogram to

assign data to reducers. The master data and histogram are

available in the master node after that it uses the results from

previous phases to do the real map-reduce task

The reducers’ inputs are decided by the custom Partitioner

which uses the partitions provided in the partition file [30]

fig(3) shows Mesh Simplification algorithm

3.8 Dynamic Load Balancing Schemes in

Stream Based Scenarios
Stream based scenarios usually involve a leveled network and

each level of network is responsible for particular operations.

Each task includes a series of operations and each operation

can be performed by one level in the network. These tasks are

unpredictable. The network does not have previous knowledge

how many tasks will arrive over the next few seconds. Event

simulation is also not synchronized during execution.

So it is recommended to use machine learning algorithms as

they tend to perform much better.

Ant-colony algorithm is one example for stream-based scenari-

os dynamic load balancing. The suggested algorithm is based

on three types of ants with different functionalities. The modi-

fied algorithm keeps store more information but the main idea

still involves searching the path randomly and leaving phero-

mones in the path while passing by.

Unlike other systems, extremely selfish behavior in this system

is acceptable. The goal of the algorithm here is to reach the

minimum average latency. The first task should be served as

fast as it can because nobody knows how many other tasks may

arrive in the near future. Also, the algorithm usually does not

work as efficiently in the beginning as it is in the learning

phase. [9][31]

3.9 Variable-sized map and locality-aware

reduce on public-resource grids
Variable-sized map and locality-aware reduce on public-

resource grids discusses Ussop algorithm.

The Ussop portal chooses several grid nodes to run the applica-

tion when this MR application is submitted to portal. It nomi-

nates one node as the master of the application and the others

as workers. Each idle worker requests a map reduce task from

the master.

As the grid nodes used by Ussop are chosen on market, the

input data cannot be stored in these grid nodes in advance. The

input data is come from the user’s node that submitted the job

or from remote replica.

The grid nodes are usually from various geographically distrib-

uted sites and they are heterogeneous and non-dedicated.

3.9.1 Variable-sized map scheduling (VSMS)
During the execution, a task may be performed at the different

rate even if it is executed by the same worker all the time. The

speculative execution scheme is not robust enough for the

Ussop.

Ussop has to balance the workload between all workers by

adjusting the size of a task dynamically according to compu-

ting capability of the workers. Also it can avoid misjudging a

poor performance node as a faulty one. Ussop uses the varia-

ble-sized map scheduling algorithm (VSMS) to determine the

suitable size of the task that should be assigned to each worker.

VSMS is based on the concept that the master should assign

coarser-grained tasks to the workers with more powerful com-

puting availability.

The VSMS algorithm consists of two procedures.

When a given worker requests a map task, the master re-

Triangle index with the representative

vertex coordinates of the triangle

(key value) pair with key as triangle in-

dex

Indexed triangle with vertex coordination

3 (key, value) pairs are emitted in each

triangle

(key, value) pair is emitted with representa-

tive vertex if all 3 vertices of the triangle are

in diff grid cells

Triangular Mesh

Map phase

Reduce phase

Map phase

Reduce phase

Simplified

Mesh

1st layer of MR

2nd layer of MR

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.11, November 2014 – www.ijais.org

47

estimates the appropriate map task size

Each worker updates its current computing power and the es-

timated remaining time of task every (n) seconds.

VSMS assumes that the progress of a map task is proportional

to how much input data has been processed.

So the computing power (CP) is how much input data can be

processed by the worker per second MB/s

3.9.2 Locality-aware reduce scheduling (LARS)
Ussop uses a just-in-time scheduling algorithm called locality-

aware reduce scheduling (LARS). When a worker requests a

reduce task, the master uses the LARS algorithm to choose an

appropriate reduce task, and assign it to the work.

When the reduce task is assigned to the node, LARS starts

input data transfer. This algorithm aims to minimize the data

transfer cost. The master knows that which non-assigned task

processes the largest local region. Then it assigns the reduce

task which processes the largest local region to the idle worker.

So each node can avoid transferring large local regions that the

node owns to other nodes.

3.10 Ant colony Optimization
One of the most successful and widely recognized algorithmic

techniques based on ant behavior is the ability to find the

shortest paths.

 Ant based control system was designed to solve the load bal-

ancing in the cloud environment. Each node in the network was

configured with Capacity Probability of being a destination.

Pheromone: probability routing table.

Every row in this table defines the routing preference for each

destination, and each column represents the possibility of se-

lecting the next hop from neighbors. Ants are started with a

random target from the node.

In this approach, incoming ants update the entries.

The updated routing information can influence the routing ants

that have as their destination. This approach for updating the

pheromone is only for routing in symmetric networks.

If there is no pheromone it makes a random decision. Paths

from its colony are preferable.

In the case of load balancing in cloud environment, as the web

server demands increases or decreases, the Services are as-

signed dynamically to regulate the changing demand of the

user. Virtual Server (VS) is a group of all servers with virtual

queue. Each server processing a request from its queue calcu-

lates a reward. The server after processing a request can post

their profit in the pheromone table. The server can choose a

queue of a virtual server by a probability. A server serving a

request, calculating its reward and compare it with the colony

reward and then set the probability.

One limitation of this solution is that it will be more efficient if

cluster is formed in the cloud. So, the research work can be

proceeded to implement the total solution of load balancing in

a complete cloud environment [32]

3.11 The Partition Cost Model
It considers both skewed data distributions and complex reduc-

er side algorithms. Based on cost for each partition they are

distributed on reducers so work in reducers is balanced. The

cluster cost, is a function of the cluster cardinality and the

complexity of the reducer side algorithm. The reducer com-

plexity is a user parameter but the cluster cardinalities are mon-

itored by the framework.

Two algorithms have been developed to use the partition cost

model: fine partitioning which splits the input data into n parti-

tions. N is larger than reducers number, the goal here is to dis-

tribute the partitions in a way that makes similar execution

times for all reducers. Fine partition algorithm achieves load

balancing by allocating costly partitions to different reducers.

The second algorithm is dynamic fragmentation where each

mapper splits expensive partitions locally during their creation;

replication of tuples can be done at necessity. So, the partitions

cost distribution is more uniform and better load balancing can

be achieved easier for highly skewed data.

In partition cost model, the reducer workload should be distrib-

uted evenly to all nodes participating in the model. By doing

so, it maximizes utilization of resources. In addition to that, it

minimizes the job completion time due to load balancing, as

parallel processing is used better. [33][34]

3.12 Load Balancing Methodology based

on Divisible Load Theory
Divisible Load Theory (DLT) [35] describes a divisible data set

as one that can be split into several independent splits or

chunks of random size to be parallelly processed.

LB based on DLT algorithm monitors the processing time of

data splits to specify their schedule order for future examina-

tions, and to adapt the partition factor dynamically

When partitioning costs are high, multiple data set partitions

are created by using different partition factors before the appli-

cation execution, and then select the most suitable one accord-

ing to the situation and circumstances.

Communication cost, usage of memory and the resources

availability are considered besides the time of processing.

The algorithm includes:

 The creation of multiple data set splits before the ap-

plication run in case of high partitioning cost.

 The monitoring of the processing time

 The changing of the data splits orders and distribu-

tion during the application execution

 The partition factor selection according to the moni-

tored efficiency

Number of processing nodes expectation and assessment for

better efficiency. [36]

The algorithm determines (i) the number of proportions for

dividing the initial workload; (ii) the data chunks scheduling

strategy; and (iii) the processing node number.

There are two phases

Phase1: generating an initial partition of the data set. If the

generation of a new partitions cost is high then it went to gen-

erate alternative partitions before the execution and chose the

most suitable one during the execution.

Phase2: measuring and evaluating the performance for tuning.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.11, November 2014 – www.ijais.org

48

Table 1 comparative study of load balance algorithm in MR

S:Static D:Dynamic Y:Yes N :No F:Fixed V:variable

4. COMPARATIVE ANALYSIS OF AL-

GORITHMS
Table 1 summarizes the algorithms that discussed in this paper,

Cogset is the static algorithm discussed. It is based on the rep-

lication and choose the next partition to process. Adaptive

MapReduce using situation-aware mapper has a good tech-

nique of communicating all the mappers with each other it uses

ZooKeeper as DMDS to manage this asynchronous communi-

cation it also uses the high availability by using two or more

zookeeper servers it uses sampling and histogram. In the block

based balancing for ER MR it is based on dividing large blocks

into sub-blocks and then treat the small blocks as normal MR.

Load Balancing in MapReduce Based on Scalable Cardinality

Estimates uses the TopCluster algorithm to estimate the ap-

proximate histogram as the exact histogram is expensive. Im-

proving MapReduce Performance through Data Placement in

Heterogeneous Hadoop Clusters addresses the heterogeneity in

hardware by distributing the file fragments over the nodes and

redistribution if new conditions occurred. Randomized Hy-

Algorithm

t
y

p

e

Component

MR
pahs

es

using
saved

data

Sampl-
ing

data
awareness

avaialbility scalability suitable

application
hetrogenity target

time

data

size

commun

icate

Adaptive

MR

using

Situation-

Aware

Mappers

D Adaptive

Combine

Sampling
partitioning

1 Y Y Y Y Y - N N F Y

Block-

based for

Entity

D BDM
Blocksplit

2 N N Y N Y Entity
resolution

N N V N

Scalable

Cardinali

ty

Estimates

D TopCluster

Global

histogram
Local

histogram

1 Y Y N N Y - N N F Y

shortest

path

D initially
distribute

fragments

initially
distribute

fragments

1 N - N N Y hetrogeni
ous

cluster

Y N F N

Randomi

zed

Hydrody

namic

H normal
hadoop

structure

with MPI

1 N N N N Y - N N F N

cogset S depends on

data

replication

1 Y N N Y N Replicatio

n
N N F N

Resource

-Awar

D job slots

resoutce

awareness
resoutce

awareness

1 N N N N Y - Y Y F N

mesh

simplific

atio

D hashing key

histogram
partitioner

2 Y Y N N Y - - N F N

Stream

Based

D machine
learning

1 N N N N Y network
streaming

Y N F N

locality-

aware

D USSOP

VSMS

LARS

1 N N N N Y hetrogeni

ous

clusters

Y N V N

Ant

colony

D shortest
path

random
decisio

1 N N N N Y cloud
applicatio

ns

Y N F N

partition

cost

D fine

partitioning
1 N N Y N Y skewed

data
N Y V N

LB based

on DLT

D decision

made
1 N N Y N Y N Y V N

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.11, November 2014 – www.ijais.org

49

drodynamic Load Balancing uses the balancing of the HDFS

space it uses a threshold from 0% to 100% the smaller the

threshold the more balanced cluster and the longer time used

for balancing. RAS is using the concept of job slot and it con-

tains profile for hardware and the target time needed as option-

al parameter. Placement Algorithm and the Job Utility Calcula-

tor are considered the core of RAS they are estimated periodi-

cally. Mesh simplification algorithm uses two phases the first

one is for 25% sampling and the other one is for real task per-

formance. Dynamic Load Balancing Schemes in Stream Based

Scenarios uses the machine learning. In Variable-sized map and

locality-aware reduce on public-resource grids the map size is

variable USSOP portal uses several nodes for the application

and nominate one of them as master of the application. Idle

nodes request the data from the master. Ussop has to balance

the workload between all workers by adjusting the size of a

task dynamically according to computing capability of the

workers. It also uses locality-aware reduce scheduling (LARS).

When a worker requests a reduce task, the master uses the

LARS algorithm to choose an appropriate reduce task, and

assign it to the work. In ACO, each node in the network was

configured with Capacity Probability of being a destination.

Pheromone is the probability and based on the value it finds the

shortest bath. Partition cost model considers both skewed data

distributions and complex reducer side algorithms. Two algo-

rithms are used, fine partitioning and dynamic fragmentation.

The reducer workload is distributed evenly to all nodes partici-

pating in the model. LB based on DLT monitors the processing

time of data splits to specify their schedule order for future

examinations, and to adapt the partition factor dynamically.

5. CONCLUSION AND FUTURE WORK
In this paper the load balancing techniques are studied in Map

Reduce environment and made a comparison between them

from some aspects. there are suggestions for enhancing some

algorithms as future work to reduce the cost of load balance

also it is suggested to implement the join algorithms using

several bnchmarks[37,38] and conduct performance measure-

ment. The suggested enhancement is to use data similarity to

estimate the execution plan based on previous runs based on

histogram and taking samples from runs it is possible to deduce

the optimum execution plan for this run which reduce execu-

tion time.

6. REFERENCES
[1] A. Alexandrov, S. Ewen, M. Heimel, F. Hueske, O. Kao,

V. Markl, et al., "MapReduce and PACT - Comparing

Data Parallel Programming Models," 2010.

[2] R. Vernica, M. J. Carey, and C. Li, "Efficient parallel set-

similarity joins using MapReduce," Proceedings of the

2010 international conference on Management of data,

2010.

[3] J. Cohen, "Graph Twiddling in a MapReduce World,"

2009.

[4] "http://lucene.apache.org/mahout/."

[5] L. Kolb, A. Thor, and E. Rahm, "Load Balancing for

MapReduce-based Entity Resolution."

[6] "hadoop", http://hadoop.apache.org."

[7] Ebada Sarhan, Atif Ghalwash,Mohamed Khafagy ,Queue

Weighting Load-Balancing Technique for Database

Replication in Dynamic Content Web Sites ",APPLIED

COMPUTER SCIENCE (ACS'09) University of

Genova, Genova, Italy, 2009, Pages 50-55

[8] R. Mishra and A. Jaiswal, "Ant colony Optimization: A

Solution of Load balancing in Cloud," International

journal of Web & Semantic Technology, vol. 3, pp. 33-50,

2012.

[9] Z. Sui and S. Pallickara, "A Survey of Load Balancing

Techniques for Data Intensive Computing," 2011.

[10] S. Shivle, R. Castain, H. J. Siegel, A. A. Maciejewski, T.

Banka, K. Chindam, et al., "Static mapping of subtasks in

a heterogeneous ad hoc grid environment," Proc. of 13th

HCW Workshop, IEEE Computer Society, 2004.

[11] Ebada Sarhan, Atif Ghalwash,Mohamed Khafagy,Agent-

Based Replication for Scaling Back-end Databases of

Dynamic Content Web Sites”,ICCOMP'08 Proceedings of

the 12th WSEAS international conference on Computers

WSEAS,GREECE 2008 Pages 857-862

[12] S. V. Valvåg, "Cogset: A High-Performance MapReduce

Engine," 2011.

[13] D. Escalante and A. J. Korty, "Cloud Services: Policy and

Assessment," EDUCAUSE Review, vol. 46, 2011.

[14] R. Vernica, A. Balmin, K. S. Beyer, and V. Ercegovac,

"Adaptive MapReduce using Situation-Aware Mappers,"

2012.

[15] R. Baxter, P. Christen, and T. Churches., "A comparison

of fast blocking methods for record linkage," Workshop

Data Cleaning, Record Linkage, and Object

Consolidation, 2003.

[16] H. K¨opcke, A. Thor, and E. Rahm, "Evaluation of entity

resolution approaches on real-world match problems,"

PVLDB, vol. 3, 2010.

[17] L. Kolb, A. Thor, and E. Rahm, "Block-based Load

Balancing for Entity Resolution with MapReduce," 2011.

[18] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S.

Seshadri, "Practical Skew Handling in Parallel Joins,"

1992.

[19] J. W. Stamos and H. C. Young, "A Symmetric Fragment

and Replicate Algorithm for Distributed Joins,," IEEE

TPDS, vol. 4, 1993.

[20] W. P. Yan and P.-A. Larson, "Eager Aggregation and

Lazy Aggregation," vldb, 1995.

[21] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, "Load

Balancing in MapReduce Based on Scalable Cardinality

Estimates."

[22] Ebada Sarhan, Atif Ghalwash, Mohamed Khafagy, Queue

weighting load-balancing technique for database

replication in dynamic content web sites, Proceedings of

the 9th WSEAS International Conference on APPLIED

COMPUTER SCIENCE 2009

[23] Khafagy, M.H. ; Feel, H.T.A.,Distributed Ontology Cloud

Storage System” IEEE,Proceedings of the 2012 Second

Symposium on Network Cloud Computing and

Applications Pages48-52

[24] al Feel, H.T. ; Khafagy, M.H.OCSS: Ontology Cloud

Storage System”,IEEE Network Cloud Computing and

Applications (NCCA), 2011 First International

Symposium on Pages 9-13

http://lucene.apache.org/mahout/
http://hadoop.apache.org./
http://www.wseas.us/conferences/2009/genova/acs
http://www.wseas.us/conferences/2009/genova/acs
http://193.227.31.6/stfsys/stfPdf/255/2065/201212262453.pdf
http://193.227.31.6/stfsys/stfPdf/255/2065/201212262453.pdf
http://193.227.31.6/stfsys/stfPdf/255/2065/201212262453.pdf
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Khafagy,%20M.H..QT.&newsearch=true
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Feel,%20H.T.A..QT.&newsearch=true
http://dl.acm.org/citation.cfm?id=2476785
http://dl.acm.org/citation.cfm?id=2476785
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.al%20Feel,%20H.T..QT.&searchWithin=p_Author_Ids:38233427300&newsearch=true
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Khafagy,%20M.H..QT.&searchWithin=p_Author_Ids:38096545600&newsearch=true
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Khafagy,%20M.H..QT.&searchWithin=p_Author_Ids:38096545600&newsearch=true

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No.11, November 2014 – www.ijais.org

50

[25] Haytham Al Feel, Mohamed Khafagy, Search content via

Cloud Storage System. International Journal of Computer

Science Issues (IJCSI)bVolume 8 Issue 6, 2011

[26] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, et al.,

"Improving MapReduce Performance through Data

Placement in Heterogeneous Hadoop Clusters," 2010.

[27] K. A. Venkatesh, K. Neelamegam, and R. Revathy,

"Using MapReduce and load balancing on the cloud

Hadoop MapReduce and virtualization improves node

performance," 2010.

[28] J. Polo, D. Carrera, Y. Becerra, M. Steinder, and I.

Whalley, "Performance-driven task co-scheduling for

MapReduce environments," Network Operations and

Management Symposium IEEE, pp. 373-380, 2010.

[29] J. a. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley,

M. Steinder, et al., "Resource-Aware Adaptive Scheduling

for MapReduce Clusters," 2011.

[30] S. C. Racha, "Load Balancing Map-Reduce

Communications for Ecient Executions of Applications in

a Cloud," 2012.

[31] G. T. Lakshmanan and R. Strom., "Biologically-inspired

distributed middleware management for stream processing

systems," ACM Middleware conference, 2008.

[32] Y.-L. Su, P.-C. Chen, J.-B. Chang, and C.-K. Shieh,

"Variable-sized map and locality-aware reduce on public-

resource grids," Future Generation Computer Systems,

vol. 27, pp. 843-849, 2011.

[33] J. Dean and S. Ghemawat, "MapReduce: Simplified Data

Processing on Large Clusters.," CACM, 2008.

[34] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, "The

Partition Cost Model for Load Balancing in MapReduce,"

2012.

[35] Bharadwaj, R. V., T.G., and D. Ghose, "Scheduling

Divisible Loads in Parallel and Distributed Systems,"

IEEE Computer Society Press, Los Alamitos, 1996.

[36] C. Rosas, A. Sikora, J. Jorba, A. Moreno, and E. César,

"Improving Performance on Data-Intensive Applications

Using a Load Balancing Methodology Based on Divisible

Load Theory," International Journal of Parallel

Programming, vol. 42, pp. 94-118, 2012.

[37] Ebada Sarhan, Atif Ghalwash, Mohamed Khafagy,

Specification and implementation of dynamic web site

benchmark in telecommunication area, Proceedings of the

12th WSEAS international conference on Computers 2008

Pages 863-86

[38] www.tpc.org

http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=16940784&AN=73204422&h=rjKsswd8mNfL7PTjy8cGCFIvD%2BxQ2LAJeHgiiBO1ajXNwe5A3YrSAz2eO54m37MkrHrB96Z%2FyQhgQQ82SB%2FOIA%3D%3D&crl=c
http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=16940784&AN=73204422&h=rjKsswd8mNfL7PTjy8cGCFIvD%2BxQ2LAJeHgiiBO1ajXNwe5A3YrSAz2eO54m37MkrHrB96Z%2FyQhgQQ82SB%2FOIA%3D%3D&crl=c
http://dl.acm.org/citation.cfm?id=1513752
http://dl.acm.org/citation.cfm?id=1513752

