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ABSTRACT
In recent years, the authors have proposed a number of Non-
homogeneous Poisson process (NHPP) software reliability growth
models (SRGMs) to analyse and measure the growth of software re-
liability during production process. This study works with a mathe-
matics methodology to evaluate and then rank some basic NHPP
SRGMs. Characteristics of ranking are: the fit of calculated oc-
currence failure times with real occurrence failure times; and the
fit of a predicted time of the next failure with a real one. From a
set of individual measures, the methodology mentioned will be de-
ployed. The implementation of some SRGMs with several real data
sets confirms that the ranking of SRGMs depends on the data sets.
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1. INTRODUCTION
Software permeates our daily life. There is probably no other
human-made material which is more omnipresent than software
in our modern society. It has become a crucial part of many
aspects of the society: home appliances, telecommunications,
auto-mobiles, air-planes, shopping, auditing, web teaching, per-
sonal entertainment, and so on. In particular, science and tech-
nology demand high-quality software for making improvements
and breakthroughs. However, as the functionality of computer
operations becomes more essential and more complicated and
critical applications increase in size and complexity, there is a
great need for looking at ways to qualify and predict the reliabil-
ity of computer systems in various complex operating environ-
ments.
The challenges in software reliability studies not only stem from
the size, complexity, difficulty, and novelty of software appli-
cations in various domains. It also relates to the knowledge,
training, experience and characters of the software engineers in-
volved. There are many techniques to work with the reliabil-
ity measure of software system. One of the most famous tech-
niques is using NHPP to model the occurrence time of failure
probabilistically [1, 2, 3, 4]. Despite the fact that software reli-
ability models based on NHPP have become successful tools in
software reliability engineering, not all of these models can be
adapted and work effectively on a specific problem. This prob-
lem can occur when maximum likelihood estimation (MLE) sys-
tem of equations can not be solved. Therefore, selecting an op-
timal SRGM to use in a particular case has been an interesting
area for researchers in domain of software reliability.

There are many ways to evaluate an object. Any measuring
methodologies have its advantages and limitations. There are
some following measures: mean square error, mean absolute er-
ror, mean difference error, accuracy of estimation, etc.. Some-
times, practitioner can not choose a good measure in a specific
case. So the authors introduce some mathematics procedure to
generate a generalised measure based on all of those.
From the need to rank SRGMs and an idea about generalised
measure mentioned above, the authors apply an mathematics
technique to calculate this measure based on real data sets. Base
on this result, some SRGMs will be ranked with two charac-
teristics: the fit of calculated occurrence failure times with real
occurrence failure times; and the fit of the predicted time of next
failure with the real one. Our paper’s organization is as follows:
after this introduction section, section 2 describes a technique for
using NHPP in SRGMs. Section 3 introduces ranking method-
ology and section 4 shows some experimental result. The last
sections summaries our work and provides some discussion on
extended ideas.

2. DESCRIPTION OF NHPP SRGMS
Let examine about NHPP SRGMs, one of the most basic tech-
niques in reliability theory of software system.

2.1 Non-homogeneous Poisson process (NHPP)
In probability theory, a stochastic process, known as random pro-
cess (widely used) is a collection of random variables; this is
often used to represent the evolution of some random value, or
system, over time. Let have some basic definitions as follows [5]:
Definition 1. Counting process
A stochastic process {N(t), t > 0} is called a counting process
if N(t) denotes the total number of events that occurred up to
time t with properties:

• N(t) ≥ 0,∀t ≥ 0.
• N(t) is an integer.
• N(t) is non-decreasing: if t1 ≤ t2 then N(t1) ≤ N(t2).
• If t1 < t2, then N(t2) − N(t1) is the number of events oc-

curred during the interval (t1, t2].

In probability theory, a Poisson process is a stochastic process
that counts the number of events.
Definition 2. Poisson process
A counting process {N(t), t ≥ 0} is called a Poisson process
with rate λ(> 0) if it has following properties:

• N(0) = 0.
• N(t) has independent increments (the numbers of occurrences

counted in disjoint intervals are independent with each other)
• N(t+ τ)−N(t) ∼ Poi(λt);∀τ, t > 0.
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Table 1. Characteristic functions of software system
a(t) Total number of faults
b(t) Fault detection rate
m(t) Expected number of fault detected by time t

(mean value function)
λ(t) Failure intensity

Definition 3. Non-homogeneous Poisson process
Non-homogeneous Poisson process is a Poisson process with rate
parameter λ(t) such that the rate parameter of the process is a
function of time.
The variance of the NHPP can be obtained as follows:

Var[N(t)] =

t∫
0

λ(τ)dτ (1)

And the auto-correlation function is given by

Cor(τ) = E[N(t)]E[N(t+ s)−N(t)] + E[N2(t)]

=

t∫
0

λ(τ)dτ

t+τ∫
0

λ(τ)dτ +

t∫
0

λ(τ)dτ (2)

2.2 General NHPP software reliability model
calculation

Let’s use some function to describe characteristics of system in
Table 1. By time t, the system has a(t) faults and m(t) faults
have been detected so it has a(t)−m(t) remaining faults. With
detection rate is b(t), the equation that describes relationship
among the number of faults detected in period ∆t, the total re-
maining faults of system and the fault detection rate is:

m(t+ ∆t)−m(t) = b(t)[a(t)−m(t)]∆t+ o(∆t) (3)

where o(∆t) is infinitesimal value with ∆t: lim∆t→0
o(∆t)

∆t
= 0.

Let ∆t→ 0:

∂

∂t
m(t) = b(t)[a(t)−m(t)] (4)

If t0 is the starting time of testing process, with initial condi-
tions m(t0) = m0 and limt→∞m(t) = a(t), Pham shows that
general solution of (3) is [1]:

m(t) = e−B(t)
[
m0 +

t∫
t0

a(τ)b(τ)eB(τ)dτ
]

(5)

where

B(t) =

t∫
t0

b(s)ds (6)

The reliability R(t), defined as the probability that there are no
failures in the time interval (0, t), is given by:

R(t) = Pr{N(t) = 0} = e−m(t) (7)

In general, the reliabilityR(x|t), the probability that there are no
failures in the interval (t, t+ x), is given by

R(x|t) = Pr{N(t+ x)−N(t) = 0} = e−[m(t+x)−m(t)] (8)

And its density is given by

f(x) = λ(t+ x)e−[m(t+x)−m(t)] (9)

Where

λ(t) =
∂

∂t
m(t) (10)

2.3 Some existing NHPP SRGMs
2.3.1 Goel Okumoto. The general assumptions of the GO
model are [2]:

(1) All faults in a program are mutually independent from the
failure detection point of view.

(2) The number of failures detected at any time is proportional
to the current number of faults in a program. This means that
the probability of the failures for faults actually occurring,
i.e., detected, is constant.

(3) The isolated faults are removed prior to future test occa-
sions.

(4) Each time a software failure occurs, the software error that
caused the failure is immediately removed, and no new er-
rors are introduced.

Especially, the GO-model assumes that the failure process is
modelled by an NHPP model with mean value function m(t)
given by

m(t) = a(1− e−bt), a > 0, b > 0 (11)

Where a is the expected total number of faults that exist in the
software before testing and b is the failure detection rate or the
failure intensity of a fault. Note that for this model: m(∞) = a
and m(0) = 0.
Sincem(∞) is the expected number of faults which will eventu-
ally be detected, the parameter a is then the final number of faults
that can be detected by the testing process. The quantity b which
is a constant of proportionality, can be interpreted as the failure
occurrence rate per fault. The intensity function λ(t) defined as
the derivative of m(t) is then

λ(t) =
∂

∂t
m(t) = abe−bt (12)

2.3.2 Yamada Delayed S-shaped. Let discuss about a stochas-
tic model for a software error detection process based on NHPP
in which the growth curve of the number of detected software
errors for the observed failure data is S-shaped, called delayed
S-shaped NHPP model [3].
The Yamada Delayed S-Shaped model is a modification of the
non-homogeneous Poisson process to obtain an S-shaped curve
for the cumulative number of failures detected such that the fail-
ure rate initially increases and later (exponentially) decays . It
can be thought of as a generalized exponential model with fail-
ure rate first increasing and then decreasing. The software er-
ror detection process described by such an S-shaped curve can
be regarded as a learning process because the testers’ skills will
gradually improve as time progresses.
The delayed S-shape model is based on the following assump-
tions:

(1) All faults in a program are mutually independent from the
failure detection point of view.

(2) The probability of failure detection at any time is propor-
tional to the current number of faults in a software.

(3) The proportionality of failure detection is constant.
(4) The initial error content of the software is a random variable.
(5) A software system is subject to failures at random times

caused by errors present in the system.
(6) The time between (i − 1)th and ith failures depends on the

time to the (i− 1)th failure.
(7) Each time a failure occurs, the error that caused the failure

is immediately removed and no other errors are introduced.

Assume

b(t) =
b2t

bt+ 1
(13)
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Where b is the error detection rate per error in the steady-state.
The mean value function is given by

m(t) = a[1− (1 + bt)e−bt], a > 0, b > 0 (14)

And the corresponding failure intensity function is

λ(t) = ab2te−bt (15)

2.3.3 Musa-Okumoto. Musa-Okumoto model has been ob-
served that the reduction in failure rate resulting from repair ac-
tion following early failures are often greater because they tend
to the most frequently occurring once [4], and this property has
been incorporated in the model. The mean value function and
intensity function of the model given as

m(t) = a ln(1 + bt), a > 0, b > 0 (16)

And

λ(t) =
ab

1 + bt
(17)

where a is the expected total number of faults to be eventually
detected and b is the fault detection rate.
There are some SRGMs introduced with different applications.
Because of the limitations in theoretical and numerical comput-
ing, each model focuses on some fields of real assumptions. So
practitioner need to analyse the application of each one in spe-
cific environment and evaluate them by experimental results to
support other practitioners.

3. RANKING METHODOLOGY
As mentioned earlier, there are some NHPP SRGMs that have
been introduced. Choosing one of them to apply in a specific
problem is the subject of this section [6].

3.1 Comparison criteria
There are several approaches to evaluate the fitting between cal-
culated values of SRGMs and a real data set. A set of used com-
parison criteria will be discussed as follows:

(1) The mean square error (MSE) is the average of the squares
of the difference between the estimated value and the ob-
served total number of detected software errors:

MSE =

k∑
i=1

[m(ti)−mi]
2

k − p
(18)

(2) The mean absolute error (MAE) is the average value of the
absolute errors:

MAE =

k∑
i=1

∣∣∣m(ti)−mi

∣∣∣
k − p

(19)

(3) The mean difference error (MDE) is similar to MAE, but not
using constant p:

MDE =

k∑
i=1

∣∣∣m(ti)−mi

∣∣∣
k

(20)

(4) The accuracy of estimation (AE) is the difference between
the estimated number of all software errors a with the total
number of all observed software errors Ma:

AE =
∣∣∣Ma − a

Ma

∣∣∣ (21)

(5) The noise reflects the change of failure intensity:

Noise =

k∑
i=1

∣∣∣λ(ti)− λ(ti−1)

λ(ti−1)

∣∣∣ (22)

(6) The predictive-ratio risk (PRR) is the total sum of the rel-
ative comparison between the estimated value and the ob-
served total number of detected software errors:

PRR =

k∑
i=1

m(ti)−mi

m(ti)
(23)

(7) The sum of squared errors (SSE) is the total sum of the dif-
ference between the estimated value and the observed total
number of detected software errors:

SSE =

k∑
i=1

[m(ti)−mi]
2 (24)

(8) The sum of difference (SD) is the total sum of the difference
between the estimated value s(ti) and the actual occurrence
time of each software error si:

SD =

k∑
i=1

|s(ti)− si| (25)

Note: k is the total number of records of the data set, and p is the
number of parameters of each SRGM.

3.2 Ranking procedure
To evaluate the quality of every SRGMs, some comparison cri-
teria have been introduced. Each of them has its advantages and
limitations. Therefore, it should be a mathematics method to cal-
culate a generalised measure that contains the contribution of ev-
ery criteria. This sub-section will present this ranking procedure
with four-step scenario.

3.2.1 Calculate measurements of every criterion of each
SRGM. Let us consider n SRGMs with m criteria. Therefore,
those measurements will be stored in (n+2)×mmatrix. In this
criteria value matrix, each element aij shows the value of jth

criterion of ith model. This matrix can be given as follows:

Criteria value matrix =

a11 a12 · · · a1m

a21 a22 · · · a2m

...
... · · ·

...
an1 an2 · · · anm

(Amin)1 (Amin)2 · · · (Amin)m
(Amax)1 (Amax)2 · · · (Amax)m

 (26)

Where:

• (Amax)j = maximum value of jth criterion
• (Amin)j = minimum value of jth criterion
• aij = value of jth criteria of ith model

3.2.2 Calculate the weight of each measurement. Contribution
of each criterion is different. So those measurements have to be
multiplied by a weight value. Lets consider the criterion of rating
with two cases as follows:

(1) Case 1: The smaller value of the criterion, the better quality
of the SRGM:

Criterion rating =
MaC−VC

MaC−MiC
(27)

(2) Case 2: The bigger value of the criterion, the better quality
of the SRGM:

Criterion rating =
VC−MiC

MaC−MiC
(28)

Where

• MaC = the Maximum value of this Criterion
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• MiC = the Minimum value of this Criterion
• VC = the Value of the Criterion

Let us consider Xij represents the rating of jth criterion of ith
SRGM. So have two equations from those cases:

Xij =
(Amax)j − aij

(Amax)j − (Amin)j
(29)

Or

Xij =
aij − (Amin)j

(Amax)j − (Amin)j
(30)

where i, j ∈ {1, 2, · · · , n}. This weight of criterion value can be
calculated by:

Wij = 1−Xij (31)

Then the weight matrix can be represented as:

Weight matrix =


W11 W12 · · · W1m

W21 W22 · · · W2m

...
... · · ·

...
Wn1 Wn2 · · · Wnm

 (32)

3.2.3 Calculate weighted value of each measurement.
Weighted criteria value is calculated by multiplying the weight
of each criterion with the criteria value i.e.

Aij = Wij × aij (33)

with i ∈ {1, 2, · · · , n} and j ∈ {1, 2, · · · ,m}. Then:

Weighted criteria value matrix =
A11 A12 · · · A1m

A21 A22 · · · A2m

...
... · · ·

...
An1 An2 · · · Anm

 (34)

3.2.4 Calculate generalised measure of each SRGM. The gen-
eralised measure of each SRGM is given as follows:

Zj =

m∑
i=1

Aij

m∑
i=1

Wij

(35)

where i ∈ {1, 2, · · · , n}. This measure is based on all of 8 cri-
teria that are introduced in previous sub-section. By using this
calculation, a smaller measurement represents a better fitting of
SRGM.

4. EXPERIMENTAL RESULT
Let see the computation as follows.

4.1 Implemented data sets
4.1.1 NTDS data set. The software data set listed below was
extracted from information about failures in the development of
software for the real-time multi-computer complex of the US
Naval Fleet Computer Programming Center of the US Naval
Tactical Data Systems (NTDS) [2]. The software consists of 38
different project modules. The time horizon is divided into four
phases: production phase, test phase, user phase, and subsequent
test phase. The 26 software failures were found during the pro-
duction phase, five during the test phase and; the last failure was
found on 4 January 1971. One failure was observed during the
user phase, in September 1971, and two failures during the test
phase in 1971. Data set is shown in Table 2 with:

• TBE is Time between errors: xk (days)
• CT is Cumulative time Sn =

∑
xk (days)

Table 2. Software failure data set (DS1)

Num TBE CT Num TBE CT
Production (checkout) phase

1 9 9 14 9 87
2 12 21 15 4 91
3 11 32 16 1 92
4 4 36 17 3 95
5 7 43 18 3 98
6 2 45 19 6 104
7 5 50 20 1 105
8 8 58 21 11 116
9 5 63 22 33 149
10 7 70 23 7 156
11 1 71 24 91 247
12 6 77 25 2 249
13 1 78 26 1 250

Test phase
27 87 337 30 9 405
28 47 384 31 135 540
29 12 396

User phase
32 258 798

Re-test phase
33 16 814 34 35 849

Table 3. Software failure data set (DS2)

Num TBE CT Num TBE CT
1 10 10 9 22 125
2 9 19 10 25 150
3 13 32 11 19 169
4 11 43 12 30 199
5 15 58 13 32 231
6 12 70 14 25 256
7 18 88 15 40 296
8 15 103

Table 4. Parameter estimation of SGRMs for DS1

Model Name MLE of Parameter
Goel Okumoto a = 29.428768 b = 0.0074023404

Goel Okumoto3 a = 33.993507 b = 0.0057901596

Musa Okumoto a = 15.593125 b = 0.0137961535
Musa Okumoto3 a = 23.397352 b = 0.008152455

Delayed S-shaped a = 27.408987 b = 0.018325329

Delayed S-shaped3 a = 27.49421 b = 0.018570999

4.1.2 IBM data set of Ohba. Data in Table 3 is about testing
an on-line data entry software package of IBM [7].

4.2 Ranking SRGMs with data set 1
4.2.1 Parameter estimation of DS1. Let have to use those cri-
teria to rank 3 different SRGMs:

(1) Goel-Okumoto model
(2) Goel-Okumoto model3

(3) Yamada Delayed S-shaped Model
(4) Yamada Delayed S-shaped Model3

(5) Musa-Okumoto Model
(6) Musa-Okumoto Model3

Model with super-script ”3” is the modification of each model re-
spectively by an additional assumption: instead of using n units
as input, the modification models only use n − 1. By using
MLE method, the estimated and optimal values of parameters
are given in Table 4

4
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Table 5. Weighted value of criteria of DS1

Weight value Goel Goel Musa Musa Delayed Delayed
value Okumoto Okumoto3 Okumoto Okumoto3 S-shaped S-shaped3

MSE 6.2 5.75 12.04 8.917 4.88 4.667
MAE 0.6 0.833 1.96 1.5 1.68 1.583
MDE 1.963 0.704 2.556 1.074 1.630 0.481
AE 0.090 0.259 0.422 0.133 0.015 0.018
Noise 2.286 1.372 1.615 1.046 3.173 2.439
PRR -2 0 0 0 1 1
SSE 155 138 301 214 122 112
SD 513.339 473.439 844.829 558.714 336.287 309.576

4.2.2 Weight value of criteria of DS1. Matrix of weight value
of criteria of DS1 given in Table 5.

4.2.3 Model permanent value and ranking of DS1. With the
values of criteria, a permanent value is calculated to rank those
models in Table 6.

4.3 Different ranking with different data sets
From the comparison of rankings of the six SRGMs based on
the values of all criteria, it is shown that the ranking of SRGMs
varies with respect to the selection of criteria. Lets change from
DS1 to DS2. By using weighted criteria methodology and base
on the above eight criteria, we carry out a ranking action for
four SRGMs that is given in Table 7. Those results show that
the ranks of four models differ from the rank which is concluded
using DS. No single model is the best suitable one for all com-
parison criteria. In order to avoid this problem, it is proposed to
apply weighted criteria methodology to analyse the performance
and rank the SRGMs based on all these eight criteria taken col-
lectively.

4.4 Ranking predictability of SRGMs
To calculate the accuracy of this application, 9 different data sets
and 3 modified models will be applied to generate sn value. The
accuracy testing is exhibited as following steps:

(1) Calculate ranking of modified models by using n − 1 units
in dataset.

(2) Calculate sn by using calculated parameters from previous
step.

(3) Calculate the absolute deviation (AD) between real sn and
calculated sn.

AD = |sn − ŝn| (36)

(4) Calculate new rank based on the value of absolute deviation
of each model.

(5) Compare the former and the later ranks.

And the results are in Table 8. Those results show that there are
no relationship between the fit of calculated occurrence failure
times and the fit of a predicted time of the next failure. Not all of
the models rated as 1st rank can predict the most precise value,
only 5 out of 9 cases are operated correctly. For example, model
Goel-Okumoto has established ranking in every data set. Model
Musa-Okumoto has 5

9
different ranking value in two areas, and

Delayed S-shaped has 4
9

.

5. CONCLUSIONS AND FUTURE WORKS
Our work focuses on the implementation of some SRGMs with
several real data sets to analyse and rank them. From experimen-
tal results, we summary that each SRGM has its own advantages
in specific conditions. More specifically, a SRGM can be better
in this case but do not supply a good value in another case. The

second part of our work introduces the predictability of SRGM
and evaluate this prediction among SRGMs.
The weighted criteria method uses a relatively simple mathemat-
ical formulation. To determine the priority of criteria, we need
to apply this weighted matrix method on many data sets. The
method has the flexibility to choose the criteria to obtain the fi-
nal decision. However, we need to conduct more improvements
to increase the accuracy of this calculation. We have proposal
for this problem: the assumptions of each model are different, so
that the relationship between system faults is not simultaneous
under different models’ vision. If we can get more information
about the system, such as the architecture and components, it is
more available to classify the data sets, therefore we can apply
the right group of models to calculate system faults.
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Table 6. Permanent values & ranking of DS1

Model Sum of Weight Sum of Weight Value Permanent Value Rank
Goel Okumoto 3.5806112 398.3093 111.2406 4
Goel Okumoto3 3.5611727 332.605 93.3976 3
Musa Okumoto 6.6277733 1163.468 175.5443 6
Musa Okumoto3 4.3656235 530.2611 121.4629 5
Delayed S-shaped 4.501992 191.7318 42.58821 1
Delayed S-shaped3 3.7265868 160.9457 43.1885 2

Table 7. Permanent values & ranking of DS2

Model Name Sum of Weight Sum of Weight Value Permanent Value Rank
Goel Okumoto 3.2196808 30.03869 9.329711 2
Goel Okumoto3 2.7756686 23.69441 8.536469 1
Musa Okumoto 2.4449615 26.675 10.91019 4
Musa Okumoto3 1.9075694 18.99226 9.956264 3
Delayed S-shaped 3.532439 67.42664 19.08784 6
Delayed S-shaped3 2.7938755 50.00858 17.89936 5

Table 8. Ranking predictability of SRGMs

Data set Factor Goel Okumoto Musa Okumoto Delayed S-shaped
015 Ohba AD 10.514099 11.996002 31.368652

Former Rank 1 2 3
Later Rank 1 2 3

021 Ehrlich AD 65.85895 78.40881 174.82648
Former Rank 1 2 3
Later Rank 1 2 3

027 Naval AD 63.91815 70.7272 16.135468
Former Rank 2 3 1
Later Rank 2 3 1

032 Musa6 AD 3.0061836 3.0768776 6.2299232
Former Rank 1 2 3
Later Rank 1 2 3

036 Musa14C AD 8.792725 5.8891907 22.966995
Former Rank 2 3 1
Later Rank 2 1 3

037 Musa17 AD 20.427448 20.511261 18.97799
Former Rank 1 3 2
Later Rank 1 2 3

040 Musa4 AD 39.090942 22.717957 203.45105
Former Rank 1 2 3
Later Rank 2 1 3

041 Musa27 AD 11.553833 11.781399 6.748337
Former Rank 2 1 3
Later Rank 2 3 1

043 Musa2 AD 8.81332 8.890347 5.233288
Former Rank 2 1 3
Later Rank 2 3 1
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