
 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 7– No. 1, April 2014 – www.ijais.org 

 

42 

An Efficient Technique for Computing Shortest Path 

Tree in Dynamic Graphs 

Neeraj Kumar Maurya 
Lecturer TCET 
IT department 

Kandivli(E),Mumbai.400101 , 

India 

R. R. Sedamkar, Ph. D 

H.O.D. Computer Engineering Department 
Thakur College Of Engineering And Technology 

Mumbai 400 101 
India 

Abstract 

This paper proposes an efficient technique for computing 

shortest path in dynamic graph. Which finds shortest path in a 

given graph which is static or intended to change its weight 

frequently. If that graph is static i.e. not changing its weight 

then SPT is being calculated once and that remains same. If 

graph is dynamic i.e. changing its weight then this technique 

finds new SPT with traversing minimum number of nodes or 

vertices. This technique extends a few state-of-the-art 

dynamic SPT algorithms to handle multiple edge weight 

updates, and find the SPT. A  function based on the location 

of current node/ state is used to vary the cost of the goal node 

and the search is done with minimum the state space and 

exploring only affected nodes, by using these approaches 

problem is solved in minimum time. Based on experimental 

results on sample data set we propose to device an algorithm 

which efficiently handles different traffic conditions. The 

performance of this algorithm is measured on the basis of 

Graph size, number of changed edge (NCE). To evaluate the 

proposed dynamic algorithm, comparison is done with the 

well-known static Dijkstra algorithm. Where proposed 

algorithm’s complexity is O(bd) in worst case O(E) in average 

case and O(1) in best case. 

General Terms 

Shortest Path Tree (SPT), Dynamic Tree, directed graph. 
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1. INTRODUCTION 

Graph is a collection of nodes (vertices) and Edges. Directed 

Graph is a graph is one in which the direction is also given to 

all the edges, which shows that how one can travel from one 

node to another. If any edge E is having direction from Vertex 

V1 to Vertex V2, then one can travel from V1 to V2 but not 

vice versa. Weighted directed graph is a graph in which all the 

edges having their weight, i.e. travelling time or distance. 

Connected Graph is one in which there exist at least one path 

from any vertex to any other vertex. 

Travelling time can be reduced by choosing shortest path 

from source to destination. But searching for shortest path is 

also a big concern, since for n number of vertices one will 

have to scan for all the vertices and their connectivity. For any 

connected graph there would be at least n-1 edges for n 

number of Vertices. For fully connected graph n(n-1)/2 edges 
are required. To find SPT complexity will be O(n2). This 

approach will give us the solution but is not efficient for large 

graph, and if that graph is dynamic i.e. where edges are 

changing its weight frequently then to compute entire SPT 

doesn’t seem a good solution, since here system is 

recompiling that algorithm from the start vertex even that is 

not required.  

Where the graph is changing its parameter like weight 

assigned to the edges is known as dynamic graph. Proposed 

paper is going to give an idea that how we can get SPT 

without exploring unaffected vertices again and how we can 

use heuristic information to cut down the cost. 

2.  RELATED WORK 

2.1  Fully Dynamic Algorithm 

Frigioni et al.[1] proposed a fully dynamic algorithm, for 

finding Shortest Path Tree in the given dynamic graph. In this 

algorithm each node has to maintain information of its parent 

node which restrict the number of nodes to be scanned each 

time when ever weight changes. It follows the same approach 

as Dijkstra’s algorithm does but this is with minimum number 

of node search. According to author this algorithm is having 

less theoretical complexity but the data structures used are 

complex which makes the system inefficient, since its time 

consuming. This is shown experimentally in [2] by Frigioni 

that it is performing well. 

2.2 BallString 

Narváez et al. [3] propose an algorithm for SPT, where its 

finding SPT for the given graph and at the same time if any 

changes in weights occur it re-arranges themselves. And this 

is having a central idea of Ball and string model where some 

balls are tied together and any one of these is picked up and 

automatically all the balls are arranged with SPT i.e. all 

stretched strings shows travelling path between nodes. If any 

thread is shortened then all the affected nodes will set itself. In 

[4] one intelligent approach is proposed to recompute the SPT 

for the multiple weight changes in any dynamic graph. Here 

algorithms is called ball-string model since affected nodes are 

rearranging them in natural way with minimum complexity 

and in economical way, its really a great idea. This approach 

reduces unnecessary changes for any update in edges and do 

not process those parts which is not affected in any case i.e. 

after evaluating SPT again will give same results for those 

nodes. 

In [5] this is shown that unfortunately this algorithm does not 

work correctly for multiple weight changes and updates. 
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2.3  DynamicSWSF-FP 

Ramalingam and Reps in [5] propose a fully dynamic 

algorithm, DynamicSWSF-FP, Where they have given 

algorithm to update the SPT for any changes in edges. Here 

tree is used to compute minimum number of steps to derive 

any terminal strings from one or more non-terminal strings by 

using production rules. Here a graph is generated which can 

vary its edge weight. The main approach is given as follows: 

At any instant, a “right-hand side” (rhs) value, which 

maintains every vertex in the Graph(G) and  denoted as 

rhs(v). this tracks the shortest distance which v gets by their 

all parents. dv is the shortest distance information for each 

vertex v in G, and one equality is represented as dv=rhs(v) 

before any input edge weight updates. As soon as edge weight 

is updated, DynamicSWSF-FP updates affected vertices, and 

it tries to access minimum number of edges and makes it 

equal to rhs(v) again.  

A disadvantage of DynamicSWSF-FP is that it computes the 

rhs value too often, which leads to a high number of edge 

visits. In the same paper [6], the authors suggest some 

improvement on computing rhs values incrementally. The 

authors  maintain  a  heap  for  each  affected  vertex.  The 

improved algorithm is proven to be correct, but too many 

heaps may not be practical. 

3.  PROPOSED ALGORITHM 

Here  proposed system is dividing the graph in basically two 

parts one is which is not affected from the weight changes and 

other is affected. For this following algorithm is used.  

In proposed algorithm, updation of the tree is divided into 

four parts. 

If weight of any edge is increasing and that is not the part of 

SPT. 

If weight of any edge is increasing and that is part of SPT. 

If weight of any edge is decreasing and that is not part of SPT. 

If weight of any edge is decreasing and that is part of SPT. 

3.1 Dynamic Graph 
All the above given cases may occur one by one or all 

together. For these mentioned cases we have implemented our 

algorithm and tested for multiple edge weight changes with all 

combinations. 

Our focus is to just update only affected part of the tree. If we 

shall do that then the size of tree which is to be updated will 

de reduced drastically, and it shall reduce  time required to 

compute SPT for new updated graph. If we talk about the time 

complexity to find SPT then, first time it will take same time 

as Dijkstra’s SPT time, because at that time no SPT is 

calculated before and it will be calculated according to the 

Dijkstra’s algorithm only. But for the next and so forth when 

any updation will occur then it shall visit only affected part 

and give new SPT for that graph. 

The question which may arise is why the weight of the edges 

will increase? The reason is traffic or any other variable factor 

which changes or may change with time and usage, or it may 

be the failure of access of that link (edge), because of which 

one will have to select new path to travel. So the weight of the 

edges may increase or decrease. 

For this type of approach some papers and research works are 

referred which are discussed in further sections. Some of them 

algorithms like Ball-and-String model and FMN algorithm are 

semi-dynamic(either working for increasing or decreasing 

weights) and some are not correct. Here the proposed 

algorithm is fully-dynamic algorithm and working with all 

conditions. 

3.2 Used Datastructures and Algorithm  
Our concern is to find new SPT whenever there is any change 

in the existing graph. And these changes may occur in some 

possibilities. Here in proposed algorithm the problem has 

been divided in four sub problems.  

1. Weight of any edge is increasing and that edge is part of 

existing SPT. 

2. Weight of any edge is increasing and that edge is not part 

of existing SPT. 

3. Weight of any edge is decreasing and that edge is part of 

existing SPT. 

4. Weight of any edge is decreasing and that edge is not part 

of existing SPT. 

For all these, case sections are proposed separately, and only 

affected part of the graph is focused so that time could be 

minimized. 

Variables and data structures which are used in algorithm are 

as follows:- 

 settledNodes having set of vertex which are settled. 

 unSettledNodes having set of vertices which are 

traversed but not connected to tree yet. 

 nonVisitedNodes having set of vertices which are never 

visited and not connected to the graph having source. 

 predecessors used to store vertices and their 

predecessor. 

 distance is used to map distance of that node from 

source. 

 
Methods used:- 
 removeSettled(Vertex): this method will be used to 

remove settled vertex from the settledNodes if that is 

affected by the weight change. 

 executeAfterChangeD(Vertex, int ): this method will 

be called when the weight of any edge is decreased and 

edge is in SPT by passing its destination vertex and 

difference in weight. 

 executeAfterChangeI(Vertex ): this method will be 

called when weight of any edge is increasing and that 

edge is present in SPT. 

 executeAfterChangeDecreaseNotConnected 

(Vertex): this method will be called when weight of any 

edge is decreasing and that edge is not present in SPT. 

If weight of any edge is increasing and that edge is not 

present in SPT then just weight of edge will be updated. 
 

Now we will look into the methods that what actually are 

they doing? 

1. executeAfterChangeD(Vertex source, int diff)  

1. Extract neighbour of that source node and store them in 

neighbor list 

2. If the predecessor of that neighbor is this source 
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Then  

       just update the distance of that node by 

passed diff value. 

       Call  

     executeAfterChangeD(Vertex node, int 

diff) 

Else 

       If  that node is not successor of this source 

node in SPT 

           Then  

            Check the distance of node if it’s 

decreasing 

               Then 

                        Make that node unsettled. And 

start calculating SPT for that         section 

              

3. End. 

    

2.  executeAfterChangeI(Vertex source)  

1. Make unsettle this source node and calculate its shortest 

distance 

2. For all successive nodes do the same by calling and pass 

this current node as source 

executeAfterChangeI(Vertex source). 

3.executeAfterChangeDecreaseNotConnected(Vertex 

source) 

1. Find all parent node of this source node. 

2. With all parent nodes check it’s distance and select 

minimum one. 

3. Change its predecessor to that parent node. 

4. Now take all successors one by one and update their 

costs. 
5. Stop. 
4.  EXPERIMENTAL PROOF AND 

EXAMPLES 

4.1 Proofs  
In experiment one randomly generated graph having given 

number of nodes and random number of edges  is considered. 

And the SPT of that graph is found by using both the 

algorithms one which we have proposed and other is well 

known Dijkstra’s algorithm. 

Now have a look on all the cases one by one and analysis on 

time taken by proposed algorithm. Let us say weight of edge 

from node 0 to node 2 is updated to 2 from 6. Then in this 

case only encircled part of the tree will be traversed first, their 

distances from the source node will updated by 4 i.e. the 

difference in weight. In this case these nodes which are 

present in successor to that edge will not change their parent 

since they are already forming SPT and if weight is 
decreasing in that SPT then it is going to be remain same. 

The proof can be given as follows. 

1. Case 1. If weight of any edge is increasing and 

that is not the part of SPT 
As in Fig.2 two node are there which are present in SPT 

with cost c and c*. Here c+w > c* therefore node with 

cost c* is not attached in success of cost c. 

In such case any increment in w will not make any 

changes in SPTs. 

Lemma:- If edge increases its weight from w to w+d then 

since c+w > c* => c+w+d > c*, no need to scan any node 

further just update weight of that edge and stop. 

2. Case 2. If weight of any edge is increasing and 

that is part of SPT. 
With the reference of Fig: 3 nodes n1 and n2 are two 

nodes present in SPT with different-different sub trees. In 

this case if cost c increases to c+d then all its successors 

will get unsettled i.e. need to check all the nodes present 

in that subtree. 

Lemma:  c < c*+w and in case if c+d > c*+w because 

here d is always positive so it may occur or some where 

any other successive node it may be and at that time those 

nod will get unsettled will need to be attached to its some 

other parent nodes having minimum cost. 

3. Case 3. If weight of any edge is decreasing and 

that is not part of SPT 
When weight of that edge decreases which is not present 

in SPT then in that case node which is successor to that 

edge is to be checked and if this cost is not less than 

previous cost of that node then we will just update edge 

weight and stop there only. And in case if this newly 

calculated cost is less than previous cost then that node 

will get unsettled and get its new parent this parent is the 

origin of that edge. And no need to do any other changes 

for further successive nodes. But those nodes which are 

successors of that subtree nodes but not present in that 

subtree for that SPT, may get attached to them since here 

it is possible to get other minimum cost path due to 

decrease in weights in predecessor’s edge, so here we will 

have to check all those nodes also which are successors of 

those nodes which are present in that SPT subtree. 

Lemma:we shall consider situation in Fig.1. where n1, n2 

and n3 are in same subtree and n2, n5 are in other subtree. 

It is sure that c+c* < c’+w that’s why that is in other 

subtree. If weight w decreases by d then it may be the case 

that c+c* > c’+w-d and in that case n3 will change its 

parent node to n2. And n4 is having its minimum cost via 

n3 i.e. c+c*+c” is smaller than all other costs which are 

reachable to n4. Or we can say c” is already shortest path 

from n3 and edge from n2 to n3 is not present in SPT but 

after decreasing its weight it may give minimum cost but 

this is not going to affect subtree having root n3, so no 

need to check for its successors. 

Now taking case of node n5, assume there is any edge 

from n4 to n5 with weight w’, previously n5 was not 

present as a successor of n4 in that subtree in which n4 is 

present but when w reduces by some weight d then it may 

be the case that c’+w-d+c”+w’< c’+c’*, and n5 will get 

attached to n4. 
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Fig 1: Edge from n2 to n3 is not in SPT and 

weight w decreases its weight by d. 
 

4. Case 4.  If weight of any edge is decreasing and 

that is part of SPT 

If cost of any node from the source is c* and the edge at 

the destination of which this node is attached decreases its 

weight by d, then node having cost c* will have now c*-d 

which is again minimum. 

 

Fig 2: SPT having two subtrees with costs c and 

c* for two distinct nodes. 

Before updation of cost=c*. and this is present in SPT i.e. 

c*< c+w. here c*decreases to c*-d. 

c*< c+w => c*-d < c+w . it proves that nodes present in 

that sub tree will not change their parents, but nodes 

which are not present in that subtree may get updated 

minimum cost so they may change their parent as 

explained and proved in next paragraph. 

Here n1 and n2 are two nodes of SPT but having different 

subtrees.Node n2 is not successor of n1 since c*+w > c, if 

c* decreases by d then c*-d+w < c may be the case, and in 

this case n2 will get unsettled and attached to n1 and all its 

successors will also be shifted and in case if c*-d+w > c 

then that successor node will remain at same position as it 

is having.  

 

Fig 3: SPT having two subtrees with costs c and c* for two 

distinct nodes n2 and n1 respectively. Node n2 is also 

successor of n1 with cost w. 

 4.2 Factors Evaluated 

Graph Size:  This is number of nodes ( vertices ) and 

number of edges connecting them. 

Number of edges updated:  This is number of edges 

changing its value, either increasing or decreasing. 

4.3  Experimental Results 
As per the proposed algorithm here one small sample is taken 

as shown in Fig.4 having 19 vertices and 44 edges and 

explained its complexity while travelling and updating SPT 

when any edge or group of edges is updated.  

The SPT generated of this graph is as shown in Fig.5 this is 

simple Dijkstra’s algorithm since initially we have to compute 

SPT by that only but after this when ever weight will change 

then SPT is going to be calculated by proposed algorithm. 

Considering all the cases one by one. 

Case 1.  If weight of any edge is increasing and that 

is not the part of SPT 
If weight of edge from 4 to 7 changes from 8 to 10which is 

not in SPT then in this case as discussed in case 1 of  section 

IV. A.  no node will be updated or traversed, just algorithm 

will visit all the edges to find that edge and update its weight, 

so it may have some time in order of O(1) in best case and 

O(E) in worst case and average case where E is number of 

edges present in that graph. And SPT is going to be remain 

unchanged where as Dijkstra’s algorithm will take again O(n2) 

where n is the number of nodes in that graph. 

 Dijkstra’s 

Algorithm 

Proposed 

Algorithm 

No.Of vertices 

visited 

N*N=N
2 

0 

No.Of edges 

visited 

E E 

Time 

complexity 

O(N
2
) in all 

cases 

O(1) in best case 

O(E) in average 

and worst case 
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Fig 4: Small Graph taken to show correctness and working

 

 

Fig 5: SPT for graph in Fig 4 

Case 2.  If weight of any edge is increasing and that 

is the part of SPT 

To explain this case if weight of edge from vertex 2 to 8 

changes from 15 to 50 then the vertices 8, 13, 12 which are in 

SPT shown in Fig 5 will get unsettled and may need to find 

their new parents shown in fig 4 , for this process proposed 

algorithm will visit nodes 2, 6, 9, 16, 8, 13 12 to make them 

settle down. But to find all these nodes algorithm will need to 

access all the Edges for 8, 13 and 12 which will take time in 

order of 3*E i.e. O(E), and time complexity to settle down 

vertices will be O(db) where d is the depth of that sub-tree and 

b is the branching factor so complexity would be O(|E|+|db|). 

To show algorithms correctness updated SPT is shown in fig. 

6. 

In Graph shown in Fig. 4 be updated and total number of 

nodes traversed are 7, where as in Dijkstra’s all 19 vertices 

will be traversed. Comparison matrix can be shown as 

follows. 

 Dijkstra’s 

Algorithm 

Proposed 

Algorithm 

No.Of vertices 

visited 

N*N=N
2 

b
d 

No.Of edges 

visited 

E b
d
 * E 

Time 

complexity 

O(N
2
) in all 

cases 

O(b
d
) in best , 

average and 

worst case 

 

In the graph shown in Fig. 6 which is comparatively very 

small graph from practical and real life graph. This graph is 

having limited depth and nodes but in this also it is accessing 

only 7 out of 19 nodes so only 36.8% of the graph need to be 

traversed.  

Case 3. If weight of any edge is decreasing and that 

is not part of SPT 

If any edge which is not present in SPT let us say from vertex 

3 to 2 changes its weight from 14 to 3 then, in first step only 

vertex 2 is needed to be checked if that is affected then need 

to change parent of 2 to 3, and rest of the vertex will remain 

as they are and the cost(distance from the source) of its sub-

tree will be updated after that all other nodes will get checked 

which are successors of node 2, if they get affected then same 

process will be repeated for their successors also, until we get 
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further successors unchanged. This resultant SPT is shown in 

fig.7, to find all those vertices which are part of the subtree 

from that source vertex here in example it is vertex 2, 

algorithm will have to check all the vertices. There 

complexity would be  O(E+N). 

If we compare proposed algorithm’s complexity with 

Dijkstra’s algorithm then it would be as follows. 

 

 

 Dijkstra’s 

Algorithm 

Proposed 

Algorithm 

No.Of vertices 

visited 

N*N=N
2 

N
 

No.Of edges 

visited 

E  E 

Time 

complexity 

O(N
2
) in all 

cases 

O(E+N) in best , 

average and 

worst case 

 

 

Fig 6: SPT after changing weight of edge from vertex 2 to 

vertex 8 from weight15 to 50. 

 

Fig 7: SPT after changing weight of edge from vertex 3 to 

vertex 2 from weight 14 to weight 3. 

Case 4.  If weight of any edge is decreasing and that 

is part of SPT. 

This case is considered for those edges which are decreasing 

their weight and they are part of SPT, then proposed 

algorithm will just update edge weight and distance of 

vertices present in that sub-tree and halt but the structure of 

SPT will have same structure. No other changes will be done. 

To find sub-tree algorithm will scan all the edges (E) and only 

those nodes which are in that sub-tree, so we can say that 

complexity is O(E).   

 Dijkstra’s 

Algorithm 

Proposed 

Algorithm 

No.Of vertices 

visited 

N*N=N
2 

Only subtree
 

No.Of edges 

visited 

E  E 

Time 

complexity 

O(N
2
) in all 

cases 

O(E) in best , 

average and 

worst case 

 

Besides implementing our algorithm we have also 

implemented Dijkstra’s SPT algorithm so that we could 

compare results of our algorithm and Dijkstra’s algorithm 

when we update the graph with multiple edges. In this section 

we have discussed these results with multiple cases. Here we 

have generated a graph randomly where we have given 

number of vertices and edges are generated automatically to 

generate a Graph having random weights. 

X-axis represents number of edges changed, and y-axis 

represents time taken to find new updated SPT by our 

proposed algorithm and Dijkstra’s algorithm.  

 

 

Fig 8: Comparative results with 2000 nodes and 5892 

edges with mixed weight changes. 
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In Fig:4 the graph which is used is very dense and while 

changing any edge we get almost constant depth of that SPT 

tree, so here it may not show a high variation with different 

number of edges, but where this depth is high this will show a 

great difference in time. 

5. CONCLUSION 
For Dynamic Shortest Path computation some previous 

algorithms were there but either  they were static or semi-

dynamic or if fully then were fail to correctly process multiple 

edge weights. Proposed algorithm is easy to understand and 

correctly processing multiple weights. This algorithm is 

working efficiently for multiple weight change and even if all 

the conditions are given together as an input then also it is 

more efficient and computing SPT correctly. 

As Compared with Dijkstra’s algorithm this algorithm is 

showing less time complexity in order of O(E) in most of the 

cases and in some cases O(bd) where E is the number of edges 

present in that graph, d is depth of that affected sub-tree and b 

is branching factor of the graph, which shows tremendous 

time reduction for any dense and big network or graph. 

Algorithm will show a great change and time reduction if 

graph will be dense and having high depth. Purpose of this 

study is to give time efficient algorithm for dynamic graphs 

where weights of the edges are changing frequently. 

Algorithm avoids those vertices to traverse which are not 

likely to be affected with any changes in edge weights. This 

proposed algorithm gives minimum complexity as compare to 

Dikstra’s algorithm which has been already mentioned in 

previous topics with analysis. 
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