

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 1, April 2014 – www.ijais.org

42

An Efficient Technique for Computing Shortest Path

Tree in Dynamic Graphs

Neeraj Kumar Maurya
Lecturer TCET
IT department

Kandivli(E),Mumbai.400101 ,

India

R. R. Sedamkar, Ph. D

H.O.D. Computer Engineering Department
Thakur College Of Engineering And Technology

Mumbai 400 101
India

Abstract

This paper proposes an efficient technique for computing

shortest path in dynamic graph. Which finds shortest path in a

given graph which is static or intended to change its weight

frequently. If that graph is static i.e. not changing its weight

then SPT is being calculated once and that remains same. If

graph is dynamic i.e. changing its weight then this technique

finds new SPT with traversing minimum number of nodes or

vertices. This technique extends a few state-of-the-art

dynamic SPT algorithms to handle multiple edge weight

updates, and find the SPT. A function based on the location

of current node/ state is used to vary the cost of the goal node

and the search is done with minimum the state space and

exploring only affected nodes, by using these approaches

problem is solved in minimum time. Based on experimental

results on sample data set we propose to device an algorithm

which efficiently handles different traffic conditions. The

performance of this algorithm is measured on the basis of

Graph size, number of changed edge (NCE). To evaluate the

proposed dynamic algorithm, comparison is done with the

well-known static Dijkstra algorithm. Where proposed

algorithm’s complexity is O(bd) in worst case O(E) in average

case and O(1) in best case.

General Terms

Shortest Path Tree (SPT), Dynamic Tree, directed graph.

Keywords

 Dynamic Dijkstra, Dynamic Graph, Graph, Directed Graph.

1. INTRODUCTION

Graph is a collection of nodes (vertices) and Edges. Directed

Graph is a graph is one in which the direction is also given to

all the edges, which shows that how one can travel from one

node to another. If any edge E is having direction from Vertex

V1 to Vertex V2, then one can travel from V1 to V2 but not

vice versa. Weighted directed graph is a graph in which all the

edges having their weight, i.e. travelling time or distance.

Connected Graph is one in which there exist at least one path

from any vertex to any other vertex.

Travelling time can be reduced by choosing shortest path

from source to destination. But searching for shortest path is

also a big concern, since for n number of vertices one will

have to scan for all the vertices and their connectivity. For any

connected graph there would be at least n-1 edges for n

number of Vertices. For fully connected graph n(n-1)/2 edges
are required. To find SPT complexity will be O(n2). This

approach will give us the solution but is not efficient for large

graph, and if that graph is dynamic i.e. where edges are

changing its weight frequently then to compute entire SPT

doesn’t seem a good solution, since here system is

recompiling that algorithm from the start vertex even that is

not required.

Where the graph is changing its parameter like weight

assigned to the edges is known as dynamic graph. Proposed

paper is going to give an idea that how we can get SPT

without exploring unaffected vertices again and how we can

use heuristic information to cut down the cost.

2. RELATED WORK

2.1 Fully Dynamic Algorithm

Frigioni et al.[1] proposed a fully dynamic algorithm, for

finding Shortest Path Tree in the given dynamic graph. In this

algorithm each node has to maintain information of its parent

node which restrict the number of nodes to be scanned each

time when ever weight changes. It follows the same approach

as Dijkstra’s algorithm does but this is with minimum number

of node search. According to author this algorithm is having

less theoretical complexity but the data structures used are

complex which makes the system inefficient, since its time

consuming. This is shown experimentally in [2] by Frigioni

that it is performing well.

2.2 BallString

Narváez et al. [3] propose an algorithm for SPT, where its

finding SPT for the given graph and at the same time if any

changes in weights occur it re-arranges themselves. And this

is having a central idea of Ball and string model where some

balls are tied together and any one of these is picked up and

automatically all the balls are arranged with SPT i.e. all

stretched strings shows travelling path between nodes. If any

thread is shortened then all the affected nodes will set itself. In

[4] one intelligent approach is proposed to recompute the SPT

for the multiple weight changes in any dynamic graph. Here

algorithms is called ball-string model since affected nodes are

rearranging them in natural way with minimum complexity

and in economical way, its really a great idea. This approach

reduces unnecessary changes for any update in edges and do

not process those parts which is not affected in any case i.e.

after evaluating SPT again will give same results for those

nodes.

In [5] this is shown that unfortunately this algorithm does not

work correctly for multiple weight changes and updates.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 1, April 2014 – www.ijais.org

43

2.3 DynamicSWSF-FP

Ramalingam and Reps in [5] propose a fully dynamic

algorithm, DynamicSWSF-FP, Where they have given

algorithm to update the SPT for any changes in edges. Here

tree is used to compute minimum number of steps to derive

any terminal strings from one or more non-terminal strings by

using production rules. Here a graph is generated which can

vary its edge weight. The main approach is given as follows:

At any instant, a “right-hand side” (rhs) value, which

maintains every vertex in the Graph(G) and denoted as

rhs(v). this tracks the shortest distance which v gets by their

all parents. dv is the shortest distance information for each

vertex v in G, and one equality is represented as dv=rhs(v)

before any input edge weight updates. As soon as edge weight

is updated, DynamicSWSF-FP updates affected vertices, and

it tries to access minimum number of edges and makes it

equal to rhs(v) again.

A disadvantage of DynamicSWSF-FP is that it computes the

rhs value too often, which leads to a high number of edge

visits. In the same paper [6], the authors suggest some

improvement on computing rhs values incrementally. The

authors maintain a heap for each affected vertex. The

improved algorithm is proven to be correct, but too many

heaps may not be practical.

3. PROPOSED ALGORITHM

Here proposed system is dividing the graph in basically two

parts one is which is not affected from the weight changes and

other is affected. For this following algorithm is used.

In proposed algorithm, updation of the tree is divided into

four parts.

If weight of any edge is increasing and that is not the part of

SPT.

If weight of any edge is increasing and that is part of SPT.

If weight of any edge is decreasing and that is not part of SPT.

If weight of any edge is decreasing and that is part of SPT.

3.1 Dynamic Graph
All the above given cases may occur one by one or all

together. For these mentioned cases we have implemented our

algorithm and tested for multiple edge weight changes with all

combinations.

Our focus is to just update only affected part of the tree. If we

shall do that then the size of tree which is to be updated will

de reduced drastically, and it shall reduce time required to

compute SPT for new updated graph. If we talk about the time

complexity to find SPT then, first time it will take same time

as Dijkstra’s SPT time, because at that time no SPT is

calculated before and it will be calculated according to the

Dijkstra’s algorithm only. But for the next and so forth when

any updation will occur then it shall visit only affected part

and give new SPT for that graph.

The question which may arise is why the weight of the edges

will increase? The reason is traffic or any other variable factor

which changes or may change with time and usage, or it may

be the failure of access of that link (edge), because of which

one will have to select new path to travel. So the weight of the

edges may increase or decrease.

For this type of approach some papers and research works are

referred which are discussed in further sections. Some of them

algorithms like Ball-and-String model and FMN algorithm are

semi-dynamic(either working for increasing or decreasing

weights) and some are not correct. Here the proposed

algorithm is fully-dynamic algorithm and working with all

conditions.

3.2 Used Datastructures and Algorithm
Our concern is to find new SPT whenever there is any change

in the existing graph. And these changes may occur in some

possibilities. Here in proposed algorithm the problem has

been divided in four sub problems.

1. Weight of any edge is increasing and that edge is part of

existing SPT.

2. Weight of any edge is increasing and that edge is not part

of existing SPT.

3. Weight of any edge is decreasing and that edge is part of

existing SPT.

4. Weight of any edge is decreasing and that edge is not part

of existing SPT.

For all these, case sections are proposed separately, and only

affected part of the graph is focused so that time could be

minimized.

Variables and data structures which are used in algorithm are

as follows:-

 settledNodes having set of vertex which are settled.

 unSettledNodes having set of vertices which are

traversed but not connected to tree yet.

 nonVisitedNodes having set of vertices which are never

visited and not connected to the graph having source.

 predecessors used to store vertices and their

predecessor.

 distance is used to map distance of that node from

source.

Methods used:-
 removeSettled(Vertex): this method will be used to

remove settled vertex from the settledNodes if that is

affected by the weight change.

 executeAfterChangeD(Vertex, int): this method will

be called when the weight of any edge is decreased and

edge is in SPT by passing its destination vertex and

difference in weight.

 executeAfterChangeI(Vertex): this method will be

called when weight of any edge is increasing and that

edge is present in SPT.

 executeAfterChangeDecreaseNotConnected

(Vertex): this method will be called when weight of any

edge is decreasing and that edge is not present in SPT.

If weight of any edge is increasing and that edge is not

present in SPT then just weight of edge will be updated.

Now we will look into the methods that what actually are

they doing?

1. executeAfterChangeD(Vertex source, int diff)

1. Extract neighbour of that source node and store them in

neighbor list

2. If the predecessor of that neighbor is this source

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 1, April 2014 – www.ijais.org

44

Then

 just update the distance of that node by

passed diff value.

 Call

 executeAfterChangeD(Vertex node, int

diff)

Else

 If that node is not successor of this source

node in SPT

 Then

 Check the distance of node if it’s

decreasing

 Then

 Make that node unsettled. And

start calculating SPT for that section

3. End.

2. executeAfterChangeI(Vertex source)

1. Make unsettle this source node and calculate its shortest

distance

2. For all successive nodes do the same by calling and pass

this current node as source

executeAfterChangeI(Vertex source).

3.executeAfterChangeDecreaseNotConnected(Vertex

source)

1. Find all parent node of this source node.

2. With all parent nodes check it’s distance and select

minimum one.

3. Change its predecessor to that parent node.

4. Now take all successors one by one and update their

costs.
5. Stop.
4. EXPERIMENTAL PROOF AND

EXAMPLES

4.1 Proofs
In experiment one randomly generated graph having given

number of nodes and random number of edges is considered.

And the SPT of that graph is found by using both the

algorithms one which we have proposed and other is well

known Dijkstra’s algorithm.

Now have a look on all the cases one by one and analysis on

time taken by proposed algorithm. Let us say weight of edge

from node 0 to node 2 is updated to 2 from 6. Then in this

case only encircled part of the tree will be traversed first, their

distances from the source node will updated by 4 i.e. the

difference in weight. In this case these nodes which are

present in successor to that edge will not change their parent

since they are already forming SPT and if weight is
decreasing in that SPT then it is going to be remain same.

The proof can be given as follows.

1. Case 1. If weight of any edge is increasing and

that is not the part of SPT
As in Fig.2 two node are there which are present in SPT

with cost c and c*. Here c+w > c* therefore node with

cost c* is not attached in success of cost c.

In such case any increment in w will not make any

changes in SPTs.

Lemma:- If edge increases its weight from w to w+d then

since c+w > c* => c+w+d > c*, no need to scan any node

further just update weight of that edge and stop.

2. Case 2. If weight of any edge is increasing and

that is part of SPT.
With the reference of Fig: 3 nodes n1 and n2 are two

nodes present in SPT with different-different sub trees. In

this case if cost c increases to c+d then all its successors

will get unsettled i.e. need to check all the nodes present

in that subtree.

Lemma: c < c*+w and in case if c+d > c*+w because

here d is always positive so it may occur or some where

any other successive node it may be and at that time those

nod will get unsettled will need to be attached to its some

other parent nodes having minimum cost.

3. Case 3. If weight of any edge is decreasing and

that is not part of SPT
When weight of that edge decreases which is not present

in SPT then in that case node which is successor to that

edge is to be checked and if this cost is not less than

previous cost of that node then we will just update edge

weight and stop there only. And in case if this newly

calculated cost is less than previous cost then that node

will get unsettled and get its new parent this parent is the

origin of that edge. And no need to do any other changes

for further successive nodes. But those nodes which are

successors of that subtree nodes but not present in that

subtree for that SPT, may get attached to them since here

it is possible to get other minimum cost path due to

decrease in weights in predecessor’s edge, so here we will

have to check all those nodes also which are successors of

those nodes which are present in that SPT subtree.

Lemma:we shall consider situation in Fig.1. where n1, n2

and n3 are in same subtree and n2, n5 are in other subtree.

It is sure that c+c* < c’+w that’s why that is in other

subtree. If weight w decreases by d then it may be the case

that c+c* > c’+w-d and in that case n3 will change its

parent node to n2. And n4 is having its minimum cost via

n3 i.e. c+c*+c” is smaller than all other costs which are

reachable to n4. Or we can say c” is already shortest path

from n3 and edge from n2 to n3 is not present in SPT but

after decreasing its weight it may give minimum cost but

this is not going to affect subtree having root n3, so no

need to check for its successors.

Now taking case of node n5, assume there is any edge

from n4 to n5 with weight w’, previously n5 was not

present as a successor of n4 in that subtree in which n4 is

present but when w reduces by some weight d then it may

be the case that c’+w-d+c”+w’< c’+c’*, and n5 will get

attached to n4.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 1, April 2014 – www.ijais.org

45

Fig 1: Edge from n2 to n3 is not in SPT and

weight w decreases its weight by d.

4. Case 4. If weight of any edge is decreasing and

that is part of SPT

If cost of any node from the source is c* and the edge at

the destination of which this node is attached decreases its

weight by d, then node having cost c* will have now c*-d

which is again minimum.

Fig 2: SPT having two subtrees with costs c and

c* for two distinct nodes.

Before updation of cost=c*. and this is present in SPT i.e.

c*< c+w. here c*decreases to c*-d.

c*< c+w => c*-d < c+w . it proves that nodes present in

that sub tree will not change their parents, but nodes

which are not present in that subtree may get updated

minimum cost so they may change their parent as

explained and proved in next paragraph.

Here n1 and n2 are two nodes of SPT but having different

subtrees.Node n2 is not successor of n1 since c*+w > c, if

c* decreases by d then c*-d+w < c may be the case, and in

this case n2 will get unsettled and attached to n1 and all its

successors will also be shifted and in case if c*-d+w > c

then that successor node will remain at same position as it

is having.

Fig 3: SPT having two subtrees with costs c and c* for two

distinct nodes n2 and n1 respectively. Node n2 is also

successor of n1 with cost w.

 4.2 Factors Evaluated

Graph Size: This is number of nodes (vertices) and

number of edges connecting them.

Number of edges updated: This is number of edges

changing its value, either increasing or decreasing.

4.3 Experimental Results
As per the proposed algorithm here one small sample is taken

as shown in Fig.4 having 19 vertices and 44 edges and

explained its complexity while travelling and updating SPT

when any edge or group of edges is updated.

The SPT generated of this graph is as shown in Fig.5 this is

simple Dijkstra’s algorithm since initially we have to compute

SPT by that only but after this when ever weight will change

then SPT is going to be calculated by proposed algorithm.

Considering all the cases one by one.

Case 1. If weight of any edge is increasing and that

is not the part of SPT
If weight of edge from 4 to 7 changes from 8 to 10which is

not in SPT then in this case as discussed in case 1 of section

IV. A. no node will be updated or traversed, just algorithm

will visit all the edges to find that edge and update its weight,

so it may have some time in order of O(1) in best case and

O(E) in worst case and average case where E is number of

edges present in that graph. And SPT is going to be remain

unchanged where as Dijkstra’s algorithm will take again O(n2)

where n is the number of nodes in that graph.

 Dijkstra’s

Algorithm

Proposed

Algorithm

No.Of vertices

visited

N*N=N
2

0

No.Of edges

visited

E E

Time

complexity

O(N
2
) in all

cases

O(1) in best case

O(E) in average

and worst case

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 1, April 2014 – www.ijais.org

46

Fig 4: Small Graph taken to show correctness and working

Fig 5: SPT for graph in Fig 4

Case 2. If weight of any edge is increasing and that

is the part of SPT

To explain this case if weight of edge from vertex 2 to 8

changes from 15 to 50 then the vertices 8, 13, 12 which are in

SPT shown in Fig 5 will get unsettled and may need to find

their new parents shown in fig 4 , for this process proposed

algorithm will visit nodes 2, 6, 9, 16, 8, 13 12 to make them

settle down. But to find all these nodes algorithm will need to

access all the Edges for 8, 13 and 12 which will take time in

order of 3*E i.e. O(E), and time complexity to settle down

vertices will be O(db) where d is the depth of that sub-tree and

b is the branching factor so complexity would be O(|E|+|db|).

To show algorithms correctness updated SPT is shown in fig.

6.

In Graph shown in Fig. 4 be updated and total number of

nodes traversed are 7, where as in Dijkstra’s all 19 vertices

will be traversed. Comparison matrix can be shown as

follows.

 Dijkstra’s

Algorithm

Proposed

Algorithm

No.Of vertices

visited

N*N=N
2

b
d

No.Of edges

visited

E b
d
 * E

Time

complexity

O(N
2
) in all

cases

O(b
d
) in best ,

average and

worst case

In the graph shown in Fig. 6 which is comparatively very

small graph from practical and real life graph. This graph is

having limited depth and nodes but in this also it is accessing

only 7 out of 19 nodes so only 36.8% of the graph need to be

traversed.

Case 3. If weight of any edge is decreasing and that

is not part of SPT

If any edge which is not present in SPT let us say from vertex

3 to 2 changes its weight from 14 to 3 then, in first step only

vertex 2 is needed to be checked if that is affected then need

to change parent of 2 to 3, and rest of the vertex will remain

as they are and the cost(distance from the source) of its sub-

tree will be updated after that all other nodes will get checked

which are successors of node 2, if they get affected then same

process will be repeated for their successors also, until we get

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 1, April 2014 – www.ijais.org

47

further successors unchanged. This resultant SPT is shown in

fig.7, to find all those vertices which are part of the subtree

from that source vertex here in example it is vertex 2,

algorithm will have to check all the vertices. There

complexity would be O(E+N).

If we compare proposed algorithm’s complexity with

Dijkstra’s algorithm then it would be as follows.

 Dijkstra’s

Algorithm

Proposed

Algorithm

No.Of vertices

visited

N*N=N
2

N

No.Of edges

visited

E E

Time

complexity

O(N
2
) in all

cases

O(E+N) in best ,

average and

worst case

Fig 6: SPT after changing weight of edge from vertex 2 to

vertex 8 from weight15 to 50.

Fig 7: SPT after changing weight of edge from vertex 3 to

vertex 2 from weight 14 to weight 3.

Case 4. If weight of any edge is decreasing and that

is part of SPT.

This case is considered for those edges which are decreasing

their weight and they are part of SPT, then proposed

algorithm will just update edge weight and distance of

vertices present in that sub-tree and halt but the structure of

SPT will have same structure. No other changes will be done.

To find sub-tree algorithm will scan all the edges (E) and only

those nodes which are in that sub-tree, so we can say that

complexity is O(E).

 Dijkstra’s

Algorithm

Proposed

Algorithm

No.Of vertices

visited

N*N=N
2

Only subtree

No.Of edges

visited

E E

Time

complexity

O(N
2
) in all

cases

O(E) in best ,

average and

worst case

Besides implementing our algorithm we have also

implemented Dijkstra’s SPT algorithm so that we could

compare results of our algorithm and Dijkstra’s algorithm

when we update the graph with multiple edges. In this section

we have discussed these results with multiple cases. Here we

have generated a graph randomly where we have given

number of vertices and edges are generated automatically to

generate a Graph having random weights.

X-axis represents number of edges changed, and y-axis

represents time taken to find new updated SPT by our

proposed algorithm and Dijkstra’s algorithm.

Fig 8: Comparative results with 2000 nodes and 5892

edges with mixed weight changes.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 7– No. 1, April 2014 – www.ijais.org

48

In Fig:4 the graph which is used is very dense and while

changing any edge we get almost constant depth of that SPT

tree, so here it may not show a high variation with different

number of edges, but where this depth is high this will show a

great difference in time.

5. CONCLUSION
For Dynamic Shortest Path computation some previous

algorithms were there but either they were static or semi-

dynamic or if fully then were fail to correctly process multiple

edge weights. Proposed algorithm is easy to understand and

correctly processing multiple weights. This algorithm is

working efficiently for multiple weight change and even if all

the conditions are given together as an input then also it is

more efficient and computing SPT correctly.

As Compared with Dijkstra’s algorithm this algorithm is

showing less time complexity in order of O(E) in most of the

cases and in some cases O(bd) where E is the number of edges

present in that graph, d is depth of that affected sub-tree and b

is branching factor of the graph, which shows tremendous

time reduction for any dense and big network or graph.

Algorithm will show a great change and time reduction if

graph will be dense and having high depth. Purpose of this

study is to give time efficient algorithm for dynamic graphs

where weights of the edges are changing frequently.

Algorithm avoids those vertices to traverse which are not

likely to be affected with any changes in edge weights. This

proposed algorithm gives minimum complexity as compare to

Dikstra’s algorithm which has been already mentioned in

previous topics with analysis.

6. ACKNOWLEDGEMENT
I take this opportunity to express my profound gratitude and

deep regards to my guide (Professor R.R. Sedamkar) for his

exemplary guidance, monitoring and constant encouragement

throughout the course of this paper. The blessing, help and

guidance given by him time to time shall carry me a long way

in the journey of life on which I am about to embark.

 I am obliged to my younger sister Ms. Shristi Maurya (Tata

Consultancy Services), for the valuable help in

implementation and moral support. I am grateful for their

cooperation during the period of my assignment.

7. REFERENCES
[1] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni,

“Fully Dynamic Algorithms for Maintaining Shortest

Paths Trees,” J. Algorithms, vol. 34, no. 2, pp. 251-281,

2000.

[2] D. Frigioni, M. Ioffreda, U. Nanni, and G. Pasquale,

“Experimental Analysis of Dynamic Algorithms for the

Single-Source Shortest- Path Problem,” ACM J.

Experimental Algorithms, vol. 3, p. 5, 1998.

[3] P. Narva´ez, K. Siu, and H. Tzeng, “New Dynamic

Algorithms for Shortest Path Tree Computation,” ACM

Trans. Networking, vol. 8, no. 6, pp. 734-746, 2000.

[4] P. Narva´ez, K. Siu, and H. Tzeng, “New Dynamic SPT

Algorithm Based on a Ball-and-String Model,” ACM

Trans. Networking, vol. 9, no. 6, pp. 706-718, 2001.

[5] Edward P.F. Chan and Yaya Yang,”Shortest Path Tree

Computation in Dynamic Graph,”IEEE Transaction On

Computers, vol 58. No.4., April 2009.

[6] G. Ramalingam and T.W. Reps, “An Incremental

Algorithm for a Generalization of the Shortest-Path

Problem,” J. Algorithms, vol. 21, no. 2, pp. 267-305,

1996.

[7] E.W. Dijkstra, “A Note on Two Problems in Connection

with Graphs,” Numerical Math., vol. 1, pp. 269-271,

1959.

[8] B. Xiao, Q. Zhuge, and E.H.-M. Sha, “Efficient

Algorithms forDynamic Update of Shortest Path Tree in

Networking,” J. Computers and Their Applications, vol.

11, no. 1, 2003.

[9] G. Ramalingam and T.W. Reps, “On the Computational

Complexity of Dynamic Graph Problems,” Theoretical

Computer Science, vol. 158, nos. 1-2, pp. 233-277, 1996.

[10] G. Ausiello, G.F. Italiano, A. Marchetti-Spaccamela, and

U. Nanni,“Incremental Algorithms for Minimal Length

Paths,” J. Algorithms,vol. 12, no. 4, pp. 615-638, 1991.

