

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 9, March 2014 – www.ijais.org

16

Design and Development of Vedic Mathematics based

BCD Adder

C. Sundaresan
School of Information Sciences,

Manipal University, Manipal,
India

Somashekara Bhat
Manipal Institute of Technology,

Manipal University,
Manipal, India

CVS Chaitanya
School of Information Sciences,

Manipal University, Manipal,
India

J Mohan Kumar
School of Information Sciences,

Manipal University, Manipal,
India

PR Venkateswaran
Welding Research Institute,

BHEL, Tiruchirappalli,

India

ABSTRACT

In a conventional Binary Coded Decimal (BCD)

representation is used in the scientific and computing

calculation. Now they are also started to have impact in the

processing unit. The only overhead in the converting the value

from decimal to binary, processing and converting back to

decimal. The direct reproduction of decimal value in

computation produces the significant improvement in

conversion and processing time. This paper is the extended

version of Alp Arslan Bayracci and Ahmet Akkas et al of

reduced delay Binary Coded Decimal (BCD) adder. When the

design is simulated for the corner cases, the design was not

responding as expected and we have proposed the modified

design.

Keywords

BCD adder, decimal adder, higher valence adder, adder.

1. INTRODUCTION
Human beings have preferred decimal numbers for all

calculations although binary numbers are used as default base

in all computers because of the storage and speed efficiency

of binary hardware [1]. The efficiency of binary numbers was

given in the report by John von Neumann at the Institute for

Advanced Study [2]. Subsequently, the designers have

preferred binary computers because of the speed and the

simplicity of binary arithmetic. But nowadays, demand for the

decimal arithmetic hardware in financial and commercial

applications increasing. This is due to three reasons, as stated

in the paper of Cowlishaw [3]

First, most of the commercial databases uses decimal format

to store data than data in binary format. Therefore, if the

binary hardware is used in processing the decimal data, then

first decimal data is converted to binary format and once after

it has been processed; later the binary data is converted back

to decimal format. However, the hardware takes considerable

amount of delay in the process of conversion between decimal

and binary formats [1].

Second, representation of fractional decimal numbers in

binary format will not be exact and hence, the approximate

representations of fractional numbers are used in binary

arithmetic operations. Thus for most financial and commercial

applications representing the decimal numbers in binary

format is not tolerable.

Third, nowadays all financial applications use decimal

software in order to get the exact results. This decimal

software will be running on binary hardware, but the major

drawback is that the speed of decimal software is less than the

binary implementation in hardware [3]. When decimal

software is used in applications like Internet-based warehouse,

the software spends more than 50% of its processing time in

decimal arithmetic, but for few applications overhead can

even reach up to 90%.

In all arithmetic unit’s adder is used for addition of both

binary and decimal formats numbers. Therefore many

addition techniques have been invented, even for the decimal

addition to make addition faster. This paper introduces the

modified reduced delay BCD adder, also gives details about

previously proposed reduced delay BCD adder and other five

decimal adders.

The remainder of this paper is organized as follows: the paper

initiates with the Literature review where most of the

available the decimal adder is discussed, followed by the

Modified Reduced Delay BCD adder design where it

discusses about the proposed design and brings out the

difference between the proposed design and reduced delay

BCD adder, followed by results and discussion and finally the

conclusion.

2. LITERATURE REVIEW
In this section, let us discuss the different decimal adders

available in the literature and in the market. Conventional

decimal adder was designed first as in [4]. It consists of two

4-bit binary adders for carry detection and correction logic

between them. An addition on the inputs is carried out by the

first stage 4-bit adders. The result of the addition is analyzed

to check whether output is equal to ‘9’ or greater than ‘9’

means carry generated. If the carry out is asserted, then result

is added with value ‘6’ to correct the result else it directly

provided as the result. The carry output produced is used as a

carry input for the number that follows. This nature of the

design dictates the performance of the design ie., the ripple

effect of the every stage dictates the result performance for the

higher valence adder. This is the main shortcoming of the

conventional decimal adder.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 9, March 2014 – www.ijais.org

17

The second adder is one that could support both binary and

decimal additions as proposed in Hwang’s patent [5]. A

binary carry look-ahead adder (CLA) is used to add two input

operands. Unlike binary addition, decimal addition will

require correction at the output. Therefore, for decimal

addition, the final corrected result is obtained from the binary

addition result in CLA and the carries generated

(C[4],C[8],C[12],...). For the correction procedure, digit

generate and digit propagate signals are computed for each

digit. The digit generate signal dictates if the 4-bit result is in

the range of [10, 15] and the digit propagate signal denotes if

the 4-bit result is 9. These signals are used in CLA network

and output is generated which is ORed with the carries from

the binary CLA. Correction with addition of value 6 is

performed based on the output from the OR gate mentioned

above. Finally, carry out from each digit addition is

considered to be decided whether an addition 1 is to be added

to the output value for correction or not.

Third one employs redundant binary coded decimal (RBCD)

which is based on [6]. In this adder, addition operation

happens basically in three levels. Initially, BCD inputs are

converted in RBCD format. Output is calculated using the

operands in RBCD format in the second level. Finally the

result is converted back to BCD. Conversion of output back to

BCD from RBCD is based on carry propagation and hence the

delay incurred by this step is directly proportional to the input

operand lengths, whereas, the delay for the first two steps is

constant and does not have dependence on the length of the

operands. Hence, more the number of times the constant-time

addition are used, more fruitful the RBCD adder is [8].

Adder proposed by Schmookler et al. [7] is the fourth one

worked out in this paper. One unique feature of this decimal

adder that it determines the decimal carries before any

addition operation, similar to the way CLA works. Two

signals named K and L are computed for each decimal digit.

K and L indicates that the sum output value is greater than or

equal to 10, or greater than or equal to 8 respectively.

Moreover, these signal solely can be used to determine the

carries and the decimal addition result and hence making the

module free from addition correction logic.

The final decimal adder explored is used in [8] for 64-bit

decimal floating-point adder. Approach in this adder is – each

operands are added a value 6 before the addition operation. It

is essentially, a kind of pre-correction. This pre-corrected

operands are added with a Kogge-Stone binary adder [9].

Finally, depending on the value of the output, value 6 is

subtracted if required. This post correction unit is the one that

holds the responsibility of detection of the correction

requirement. Pre-correction and post-correction unit works in

parallel for all digits

3. MODIFIED REDUCED DELAY BCD

ADDER DESIGN
The conventional BCD adder [4] is very simple, but also very

slow due to the carry ripple effect. If the BCD addition is

analyzed carefully, we see that there are three cases :

Case 1:

The sum of two BCD digits is smaller than 9. In this case, it is

certain that there is no carry output even if there is a carry

4 4

Cout Sum[3:0]

sum[1] sum[2] sum[0] sum[3] sum[3] sum[3]

Carry
Generate

Carry
Propagate

Cin

N1 N2

4-Bit Binary Carry Look Ahead Adder

Cout Sum[3:0]

Figure 1: Carry Generate and Carry Propagate deign

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 9, March 2014 – www.ijais.org

18

input. Furthermore, the result for this digit does not require a

correction.

Case 2:

The sum of two BCD digits is greater than 9. In this case, a

correction is required. Moreover, a carry output is produced

regardless of the carry input.

Case 3:

The sum of two BCD digits is exactly 9. In this case, the input

carry determines whether a correction is required and whether

a carry output is produced.

Figure 1 shows how the CG and CP signals of a digit are

computed in our design. CG and CP signals are calculated

from the SUM and Carry outputs of the first stage CLA adder

using equations 1 and 2 respectively.

CP = Sum[3] . Sum[0] (1)

CG = Cout + Sum[3].Sum[2] + Sum[3].Sum[1] (2)

In the modified Adder-Analyzer block an additional input is

given which in first stage is connected to Carry In(Cin) and

for the remaining stages it is grounded. After having all CG

and CP values the output carry of each digit can be calculated

using carry network.

Carry Network can be a parallel prefix network which

performs their operations in a constant time, irrespective of

length of the inputs. In this paper Kogge-Stone prefix network

is used as carry network as in [10]. The output of the carry

network is used for correction of the output.

The integrated block diagram of Adder, Analyzer and Carry

Network is shown in Figure 2. The carry for subsequent

blocks are calculated in the carry network. The correction to

the sum output of first stage adder is done by adding 0, 1, 6 or

7 to it. For each sum output, the present carry network output

and previous carry network output determines the value to be

added for correction. Unlike reduced delay BCD adder [10] in

proposed adder Cin will not have a role in correcting the first

stage output. Figure 3 shows the block diagram for modified

reduced delay BCD adder which includes first stage CLA

adder, Carry Network and Correction logic.

There are two major differences between reduced delay BCD

adder and suggested one – First, for Adder and Analyzer

block an extra input is given which is connected to Cin in the

first stage and for subsequent stages this input is grounded.

Second, Cin is no more used to correct the sum output of first

stage adder.

4. RESULTS AND DISCUSSIONS
A scalable n-bit modified reduced delay BCD adder and

reduced delay are implemented in Verilog HDL and simulated

with different corner case inputs. In case of reduced delay

BCD adder, if the sum of first two digits is greater than 9 and

Cin is zero the output correction from binary to BCD is found

to be error some. Here two cases are mentioned which will

explain the above scenario.

If the sum of the first digits in the both the operands is greater

than 9 and Cin is one then the output is coming as expected,

but if the Cin is zero, even though the sum value is greater

than 9 the value added in the correction step is 4’b0000

instead of 4’b0110.

In the second case which is mentioned in Table 1, the first

digits from the two inputs are 6 and 6 respectively and the

sum output is ‘C’. Hence the correction value should have

been 4’b0110 i.e., 6, which would have given the value

4’b0010 and a carry. But since Cin is zero the correction value

is 4’b0000 which will lead to the erroneous output of ‘C’.

Similar is the case with first scenario also.

In case of modified reduced delay BCD adder the above

mentioned flaw is rectified by using Cin only in first stage

adder and not in correction logic. The results for the modified

reduced delay BCD adder can be observed in Table 2.

16

Cin

…...

...........

.

Cout

Adder + Analyser

4 4

4

BS[3:0] CG CP D

Adder + Analyser

4 4

4

Decision + Carry Network

BS[15:12] CG CP D

CV

16

Adder + Analyser

4 4

4

BS[7:4] CG CP D

BS[15:0]

Figure 2: Modified Reduced Delay BCD Adder with Carry

Network

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 9, March 2014 – www.ijais.org

19

The reduced delay BCD adder [10] and the modified reduced

delay BCD adder has been designed to support 64-bit and

128-bit decimal addition with BCD operands. All the adders

are designed using Verilog HDL and the designs are

optimized in synopsys design compiler using TSMC 65nm

library and the results of 64-bit and 128 bit presented in table

3.

When Reduced Delay BCD (RBCD) adder is compared for

delay with Modified Reduced Delay BCD adder (MRBCD),

delay decreases by 2.2%. In terms of area, when Reduced

Delay BCD (RBCD) adder is compared, Modified Reduced

Delay BCD adder (MRBCD), area increases by 2.6%. Power

calculations show that Reduced Delay BCD (RBCD) adder

shows an increase of 3.3% over Reduced Delay BCD adder

(MRBCD).

When simulations are repeated for 128 bit design, the results

are as in Table 3. In terms of delay, Modified Reduced Delay

BCD adder (MRBCD), delay decreases by 5%. For area

calculations, when Reduced Delay BCD (RBCD) adder is

compared, Modified Reduced Delay BCD adder (MRBCD),

area increases by 0.9%. Power calculations show, Modified

Reduced Delay BCD adder (MRBCD), power increases by

2.3%.

Table 1 Simulation results of Reduced Delay BCD adder

Inputs
Decimal

Values

Carry In

(Cin)
Sum Out

Carry Out

(Cout)

Expected

Sum Output

Expected Carry Out

(Cout)

A 9999

0 9082 1 9098 1

B 9099

A 9999

1 9099 1 9099 1
B 9099

A 6626 0 209C 1 2102 1

C[15]

64 64

‘0’
. . . .

‘0’

‘0’

Cin

‘0

’

N1 N2

Adder + Analyzer + Carry Network

4-bit Binary

Adder

CR [63:60]

4-bit Binary

Adder

CR [7:4]

4-bit Binary

Adder

CR [3:0]

C - Carry | BS - Binary Sum | CR - Corrected Result

BS[3:0} BS[7:4] BS[63:60] C[0] C[2] C[15]

Figure 3: Modified Reduced Delay BCD Adder

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 9, March 2014 – www.ijais.org

20

B 5476

A 6626

1 2103 1 2103 1

B 5476

Table 2 Simulation results of Modified reduced delay BCD adder.

Inputs
Decimal

Values

Carry In

(Cin)
Sum Out

Carry Out

(Cout)

Expected

Sum Output

Expected Carry Out

(Cout)

A 9999

0 9098 1 9098 1

B 9099

A 9999

1 9099 1 9099 1

B 9099

A 6626

0 2102 1 2102 1
B 5476

A 6626

1 2103 1 2103 1
B 5476

Table 3 Synthesis results of Reduced Delay BCD adder and Modified Reduced delay BCD adder for 64-bit & 128-bit

Parameters

64-bit 128-bit

Reduced Delay BCD

adder

Modified Reduced

Delay

Reduced Delay BCD

adder

Modified Reduced

Delay

Gate Count 445 452 942 950

Area 1187µm 1218µm 2493µm 2517.11µm

Delay 0.9ns 0.88ns 1.2ns 1.14ns

Dynamic Power 355.41µw 365.83µw 735.32pW 748.65pW

leakage Power 33.2µw 35.9µw 68.1pW 73.3pW

Total Power 388.61µw 401.73µw 803.42pW 821.95pW

5. CONCLUSION
A details study of reduced delay BCD adder was done and

few functional errors were identified when simulated with

corner cases. A modified reduced delay BCD adder has been

proposed by bringing in few changes in the normal reduced

delay BCD adder. The proposed design can handle all the

corner cases where the previous design failed.

6. REFERENCES
[1] W Buchholz Fingers or Fists? (The Choice of Decimal or

Binary Representation). Communications of the ACM,

vol.2, issue 12, pg 3–11, December 1959.

[2] A. H. Burks, H. H. Goldstein, and J. von Neumann.

Preliminary Discussion of The Logical Design of An

Electronic Computing Instrument. Technical report,

Institute for Advanced Study, June 1946.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 9, March 2014 – www.ijais.org

21

[3] M. F. Cowlishaw. Decimal Floating-Point: Algorism for

Computers. In Proceedings of 16th IEEE Symposium

onComputer Arithmetic, pages 104–111, June 2003

[4] M. M. Mano. Digital Design, pages 129–131. Prentice

Hall, third edition, 2002.

[5] I. S. Hwang. High Speed Binary and Decimal Arithmetic

Unit. United States Patent, (4,866,656), September 1989.

[6] B. Shirazi, D. Y. Y. Young, and C. N. Zhang. RBCD:

Redundant Binary Coded Decimal Adder. In IEEE

Proceedings, Part E, No. 2, volume 136, pages 156–160,

March 1989.

[7] M. S. Schmookler and A.W.Weinberger. High Speed

Decimal Addition. IEEE Transactions on Computers, C-

20:862– 867, Aug. 1971.

[8] J. D. Thompson, N. Karra, and M. J. SchulteB. A 64-Bit

Decimal Floating-Point Adder. In Proceedings of the

IEEE Computer Society Annual Symposium on VLSI,

pages 297– 298, February 2004.

[9] P. M. Kogge and H. S. Stone. A Parallel Algorithm for

The Efficient Solution of a General Class of Recurrence

Equations. IEEE Trans. on Computers, C-22(8), Aug.

1973.

[10] Alp Arslan Bayrakci and Ahmet Akkas. Reduced Delay

BCD Adder. IEEE, 2007.

