

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 6– No. 7, January 2014 – www.ijais.org

21

A New Effective Test Case Prioritization for Regression
Testing based on Prioritization Algorithm

 Thillaikarasi Muthusamy1

1
(Assistant Professor) Department of

computer science and Engineering,Faculty of
Engineering and technology

Annamalai University,Annamalai Nagar,
Tamilnadu,India-608002

 Seetharaman.K2, Ph.D
2
(Associate Professor) Department of

computer science and Engineering, Faculty of
Engineering and technology

Annamalai University,Annamalai Nagar,
Tamilnadu, India-608002

Abstract
Regression Testing is the process of executing the set of test

cases which have passed on the previous build or release of

the application under test in order to validate that the original

features and functions are still working as they were

previously. It is impracticable and in-sufficient resources to

re-execute every test case for a program if changes occur. This

problem of regression testing can be solved by prioritizing test

cases. A regression test case prioritization technique involves

re-ordering the execution of test suite to increase the rate of

fault detection in earlier stages of testing process. In this

paper, test case prioritization algorithm is proposed to identify

the severe faults and improve the rate of fault detection. This

proposed test case prioritization algorithm prioritizes the test

cases based on four groups of practical weight factor such as:

customer allotted priority, developer observed code execution

complexity, changes in requirements, fault impact,

completeness and traceability. The proposed prioritization

technique is validated with three different validation metrics

and is experimented using two projects. The effectiveness of

proposed technique is achieved by comparing it with un-

prioritized ones and by validation metrics.

Keywords
Regression Testing, Test case prioritization, Fault severity,

Rate of fault detection.

1. INTRODUCTION
Software regression testing is an activity which includes

enhancements, error corrections, optimization and deletion of

existing features. These modifications may cause the system

to work in-correctly. Therefore, Regression Testing becomes

Necessary in software testing process. One of the methods for

regression testing in which all the tests in

the existing test bucket or suite should be re-executed. This is

very expensive as it requires huge time and resources. Test

case prioritization is the important technique carried out in

regression testing. Prioritize the test cases depending on

business impact, critical & frequently used functionalities.

Selection of test cases based on priority will greatly reduce the

regression test suite. In this paper we propose a new approach

for test case prioritization for earlier fault detection in the

regression testing process.

In this paper, we proposed a new approach to test case

prioritization for quick fault detection based on practical

weight factors. We have implemented the proposed technique

using a banking application project and effectiveness is

calculated by using APFD metric.

2. TECHNIQUES REVISITED
This section describes the test case prioritization techniques to

be used in our empirical study are as follows:

Test case prioritization is an important regression testing

technique Test case prioritization approaches typically sort

existing test cases for regression testing according to attain

performance goals.

Badhera et al.[1] presented a technique to execute the

modified lines of code with minimum number of test cases.

The test case prioritization technique organizes the test case

in a test suite in an ordering such that fewer lines of code need

to be re executed thus faster code coverage is attained which

would lead to early detection of faults. Bixin Li et al.(2012)

proposed an automatic test case selection for regression

testing of composite service based on extensible BPEL flow

graph.

B. Jiang et al. [2] proposed an ART-based test case

prioritization uses the algorithm which accepts the test suite as

input and produces the output in prioritized order of test cases.

The basic idea behind is by building the candidate set of test

cases which in turn picks one test case from the candidate set

until all test cases have been selected.

Here two functions are used in this algorithm for calculating

the distance between a pair of test cases and for selecting a

test case from the candidate set. Calculation of distance is

mainly based on code coverage data. Then we find a

candidate test case is associated with the distance with the test

cases that have been already selected.

Dr. ArvinderKaur and ShubhraGoyal [3] proposed a new

genetic algorithm and prioritize regression test suite within a

time constrained environment on the basis of total fault

coverage. This algorithm is automated and the results are

analyzed with help of Average Percentage of Faults Detected

(APFD).

Hong Mei et al. [4] proposed a new approach for prioritizing

test cases in the absence of coverage information which

widely used in java programs under the JUnit framework. A

new approach called JUPTA(JUnit test case Prioritization

Techniques operating in the Absence of coverage

information) which analyzes the static call graphs of JUnit test

cases and estimate the ability of each test case to achieve code

coverage and schedules the test cases in order based on those

estimates.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 6– No. 7, January 2014 – www.ijais.org

22

H.Do et al. [5] presented the effects of time constraints on test

case prioritization and find that constraints which alters the

technique performance. They conducted three set of

experiments which exhibits the time constraints. The

experiment results show that the time constraint factor shows

the significant role in determining the cost effectiveness and

cost benefit trade-offs among the techniques. Next experiment

replicates the first experiment, controlling for several threats

to validity including numbers of faults present, and third

experiment manipulates the number of faults present in

programs to examine the effects of faultiness levels on

prioritization and shows that faultiness level affects the
relative cost-effectiveness of prioritization techniques.

Park et al. [6] introduced a cost cognizant model for the test

case prioritization and fault severities revealed in the lack

previous test execution does not significantly change form one

release to another. Mohamed A Shameem et al. (2013)

presented a metric for assessing the rate of fault dependency

detection. This algorithm identifies the faults in earlier stages

and the effectiveness of the prioritized test cases are compared

with the non prioritized ones by Average Percentage Of Fault

Detected (APFD).

M. Yoon et al. [7] proposed a method to prioritize new test

cases by calculating risk exposure value for requirements and

analyzing risk items based on the calculation to evaluate

relevant test cases and thereby determining the test case

priority through the evaluated values. Moreover, we

demonstrate effectiveness of our technique through empirical

studies in terms of both Average Percentage Of Fault
Detected (APFD) and fault severity.

R. Abreu et al. [8] proposed a Spectrum-based multiple fault

localization method to find out the fault location very

clearly.R. Bryce et al. (2011) proposed a model which defines

prioritization criteria for GUI and web applications in event

driven software. The ultimate goal is to evolve the model and

used to develop a unified theory of how all EDS should be
tested.

R. Krishnamoorthi and S. A. Mary [9] presented a model

prioritizes the system test cases based on six factors: customer

priority, changes in requirement, implementation complexity,

usability, application flow and fault impact. This prioritization

technique is experimented in three phases with student

projects and two sets of industrial projects and the results

improved the rate of severe fault detection

S. Raju and G.V. Uma [10] introduced a cluster-based test

case prioritization technique. By clustering test cases, based

on their dynamic runtime behavior researchers can reduce the

required number of pair-wise comparisons significantly.

Researchers present a value-driven approach to system-level

test case prioritization called the prioritization of requirements

for test. In this approach, prioritization of test cases is based

on four factors rate of fault detection, requirements volatility,

and fault impact and implementation complexity.

The rest of this paper is organized as follows. In section three

discusses about the proposed work. Section four discusses

about the experimental results and analysis. Section five

discusses about the discussions. And finally, section six

consists of conclusion. References are given in last section.

3. PROPOSED WORK
This section, we briefly discuss about the prioritization

factors.

3.1 Prioritization Weight Factors

 Computation of proposed practical prioritization factors

such as (1) customer allotted priority , (2) developer observed

code execution complexity, (3) changes in requirements, (4)

fault impact (5) completeness and (6) traceability , is

essential for prioritizing the test cases because they are used in

the prioritization algorithm. Weights are assigned to each test

case in the software according to these factors. Then, test

cases are prioritized based on the weights assigned.

3.1.1 Customer-Allotted Priority (CP)

It is a measure of the implication of a requisite to the

customer. The values of each need are assigned by the

customers. The values vary from 1 to 20, where 20are used to

identify the highest customer priority. So, improving

customer’s fulfillment imposes the initial testing of the

highest priority needs of the customers. Greater effort should

be consumed in identifying faults and their impacts that take

place on the execution path of program as these faults results

in repeated failures. It has been proved that customer-Allotted

value and satisfaction can be improved by fixing on customer

needs for development.

3.1.2 Developer-observed Code Implementation

Complexity(IC)

 It is an individual measure of the complexity expected by

the development team in implementing the necessity. First

every necessity is evaluated. The developer assigns a value

from 1 to20 on the basis of its implementation complexity and

a higher complexity is implied by a larger value. Large

number of faults that could be occurs in a requirement that has

high implementation complexity.

3.1.3 Changes in Requirements (RC)

 It is a degree assigned by the developer in the range of 1 to

20 for indicating the number of times a requirement is

changed in the development cycle with respect to its origin

date. The volatility values for all the needs are expressed on a

20-point scale is the need is altered more than 20 times. The

number of changes for any requirement i divided to the

highest number of changes for any requirement among all the

project requirements yields the change in requirement Ri of

that requirement i. If the ith requirement is changed M times

and N is the maximum number of requirements then the

requirement change of i, Ri can be calculated in Eqn(1) as

Ri= (M /N)×10 (1)

The errors introduced in the requirement level are

approximated to 50% of all faults detected in the project. The

change in requirements is the major factor attributable to the

failure of the project.

http://scialert.net/asci/author.php?author=S.&last=Raju
http://scialert.net/asci/author.php?author=G.V.&last=Uma

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 6– No. 7, January 2014 – www.ijais.org

23

3.1.4 Fault Impact of Requirements (FI)

It allows the development team to distinguish the requirement

that had customer reported failures. Developers can recognize

requirements that are expected to be error free by using the

prior data collected from older versions as a system evolves to

several versions. The number of in-house failures and field

failures determine the fault impact of requirements. It is

measured for those that have been in a released product. It is

proved field failures are caused more likely to be fault prone

modules than modules that are not fault prone.

3.1.5 Completeness (CT)

This part indicates what is needed as per the requirement for a

function to be executed, the rate of success, the limitations to

be followed for the function is to be executed and any

limitation which manipulate the expected solution for

example the boundary constraints. The consumer assigns

value from 1 to 20.When the condition is selected for reuse

after scrutinizing the completeness of each requirement into

consideration, customer satisfaction like stronghold of the

software response to the user request can be enhanced.

3.1.6 Traceability (TR)

Relation between requirement and assessment can be

calibrated by means of Traceability. Defining whether a

requirement is properly tested is cumbersome for evaluators.

If the test cases are not concerned to individual requirement,

the common problem reported is scarcity of traceability,

hence poor traceability leads to failure and going beyond the

desired limit of the project. It is executed by undergoing

précised way rather than a conventional process. Most of the

minor cases for software failures are identified due to lack of

traceability. Requirement traceability may be defined as

ability to monitor life of requirement in either ways i.e. from

the inception through construction and specification and for

its subsequent execution and usage through steps of

continuous advancement and recurrence in any of the stages.

The evaluator allots value in the range from 1 to 20, after

assessing individual requirement for the concerned

traceability and the standard of software can be improved by

opting the traceability of the requirement into consideration is

chosen for subsequent usage.

3.2 Proposed Prioritization Algorithm:

 Values for all the 6 factors are assigned for each test case

during test design analysis phase and evolve continually

during software development process. We can compute

weighted prioritization value (WPV) for each test case i

shown in Eqn(2)

WPV=
 i*PF weighti) (2)

Where,WPV is weight prioritization for each test case

calculated from 10 factors.

PF valuei is a value assigned to each test case.

PF weightiis a weight assigned for each factor.

 The computation of WPV for a requirement is used in

computing the Weighted Priority (WP) for its associated test

cases. Let there be n total requirements for a product and test

case j maps to i requirements. Weighted Priority (WP) is

calculated in Eqn(3) as

 WPj=
 x/

 y) (3)

By calculating these values we can prioritize the test cases

based on WPV and WP for each and every test case in the test

suite. Fig. 1 shows, which explains the overview for the

proposed prioritization approach which comprises of

prioritization factor values for each test case normalized to 20

values and we can prioritize those test cases based on

weighted priority value then produces the prioritized test

suite.

Fig. 1 Overview of the implementation of proposed technique

 Now we introduce the proposed technique in an

algorithmic form here under: This algorithm calculates WPV

(weighted priority value) and WP (Weighted Priority) for

every test cases which takes into the account of un-prioritized

test input. Then any sorting algorithm like quick sort or heap

sort can be implemented to sort the WP values in descending

order.

3.2.1. Algorithm

Input: Test Case Set (denoted as TS)

Output: Prioritized Test Suite (denoted as PS)

General Process:
Begin

For each test case t in TS

 Calculate WPV for t

End for

While TS is not empty do

 Calculate WP in TS

End While

Sort t in descending order based Weightage

Add t to PS

Return PS

End

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 6– No. 7, January 2014 – www.ijais.org

24

(a) (b)

 (c) (d)

Fig. 2 The samples of (a).Requirement for entering account number (The field must be in integer), (b). the sample screen for

withdrawal operation, (c). The fault occurs during the bank account creation for the same account number, (d). Final screen for

proposed prioritization technique

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 6– No. 7, January 2014 – www.ijais.org

25

4. EXPERIMENTAL RESULTS AND

ANALYSIS
The test case prioritization system is proposed in this paper

was implemented in the platform of java (JDK 1.6). Here we

can use bank application system for regression testing and the

results during the process are described as follows: We can

create test cases for banking application to check their

functionalities. Fig 1 shows that the initial screen obtained for

regression testing. The user must enter the details which

satisfy the certain constraints and data must be saved in the

database regarding the operations of the banking applications.

Test cases are generated for every wrong details entered by

the user, if the requirements for the specific operations are not

satisfied, adequate number of test cases is generated by our

proposed system. After entering the account details for a

particular user account is entered, account number must be

unique i.e., the field should be in integer and this can be

described in Fig.2a. During withdrawal operation, the

requirement for account number should be an integer for the

specific bank, and the test case is generated during this

operation which can be described in Fig.2b. In Fig.2c, the

field account number is already stored and it should be unique

so here is the major fault occurred and the test case is

generated and shown. The above figure describes the final

output after regression testing. After performing the possible

test conditions for each requirement in the banking

application, test cases are generated. Based on the proposed

approach we can prioritize the generated test cases using the

factor values. We can sort the test cases based on test case

weight age and the results are described in the Fig. 2d.

5. DISCUSSIONS
Here we can evaluate the effectiveness of the proposed

prioritization technique by means of APFD metric and also by

comparing the results with random ordered execution. The

test suite has been developed for banking application project

which consisting of 5 test cases and it covering a total of 5

faults. The regression test suite T contains 5 test cases with

default ordering {T1, T2, T3, T4, and T5} and the number of

faults occurs during the regression testing {F1, F2, F3, F4,

and F5}. The test case results are shown in the Table 1.

Table 1: fault detected by test suites in bank project

5.1 APFD Metric
The metric of Average Percentage of Fault Detected (APFD)

is widely used for evaluating test case prioritization

techniques. Let T be a test suite containing n test cases, F be a

set of m faults revealed by T, and TFi be the first test case

index in ordering T’of T that reveals fault i. The following

equation shows the APFD value for ordering T’

Researchers have used various prioritization techniques to

measure APFD values and found it produces statistically

significant results. The APFD is a measure that the average

number of faults identified in a given test suite. The APFD

values ranges from 0 to 100 and the area under the curve by

plotting percentage of fault detected against the percentage of

Fig. 3 APFD metric for test cases

test cases executed. In our paper, we can use the APFD metric

for the performance based evaluation and the proposed test

sequence is {T5, T2, T1,T3,T4}. Then the APFD metric after

prioritization is APFD(T,P) is 0.74 and the APFD metric

before prioritization is APFD(T,P) is 0.45 as per our above

formula. Fig. 3 Shows that the APFD metric comparison for

both prioritized and non-prioritized test suite.

Fig. 4 Fault identified by each test case.

From the above figure shows that the test case 5 which detects

more number of faults and it is shown in Fig.4. In the

prioritized test suite total number of faults can be identified is

more when compared with the random execution of test

sequene and it can be shown in the Fig.5.

0%

20%

40%

60%

80%

AP BP

A
P

FD
 (

%
)

Testcases/

Faults

T1 T2 T3 T4 T5

F1 x

F2 x x x

F3 x x x

F4 x x x

F5 x x x

No.of

faults

3 1 2 3 4

0
10
20
30
40
50

T1 T2 T3 T4 T5

Fa
u

lt
 d

et
ec

te
d

 (
%

)

Test cases

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 6– No. 7, January 2014 – www.ijais.org

26

Fig. 5 TSFD is higher for prioritized test case reveals more

defects.

Thus the prioritized test cases return better fault detection than

the non – prioritized test cases and our proposed method of

test case prioritization process will reduce the re-execution

time of the project by prioritizing the most important test

cases.

6. CONCLUSIONS
In this paper, we proposed a new prioritization technique for

prioritizing system level test cases to improve the rate of fault

detection for regression testing. Here we propose new

practical set of weight factors used in the test case

prioritization process. The new set of are tested for the

regression test cases. The proposed prioritization algorithm is

validated by using APFD metric. Experimental Results shows

that proposed technique leads to improve the rate of fault

detection in comparison with random ordered test cases and

reserves the large number of high priority test with least total

time during a prioritization process.

REFERENCES
[1] Badhera, Usha; Purohit G.N. Biswas, Debarupa.

2012.Test Case Prioritization Algorithm Based Upon

Modified Code Coverage In regression

Testing.International Journal Of Software Engineering

&Applications.Vol. 3 Issue 6, pp.29-34.

[2] BixinLi , Dong Qiu , Hareton Leung , Di Wang.2012.

Automatic test case selection for regression testing of

composite service based on extensible BPEL flow graph.

Journal of Systems and Software. Vol:85 n.6, pp.1300-

1324.

[3] B. Jiang, Z. Zhang, W.K Chan, T.H Tse, Adaptive

random test case prioritization, in: Proceedings of the

24th IEEE/ACM International Conference on Automated

Software Engineering (ASE 2009), IEEE Computer

Soceity press, Los Alamitos, CA, 2009, pp.233-244.

[4] Dr. ArvinderKaur and ShubhraGoyal. 2011. A Genetic

Algorithm for Fault based Regression Test Case

Prioritization. International Journal of Computer

Applications. Vol: 32(8).pp:30-37.

[5] Hong Mei, Dan Hao, LingmingZhang,Lu Zhang, Ji

Zhou, and Gregg Rothermel. 2012.A Static Approach to

Prioritizing JUnit Test Cases.IEEE Transactions On

Software Engineering, Vol. 38, No. 6.

[6] H. Do, S. Mirarab, L. Tahvildari, and G.

Rothermel.2010. The Effects of Time Constraints on

Test Case Prioritization:ASeries of Controlled

Experiments. IEEE Trans. Software Eng.Vol:36. no.

5.pp:593-617.

[7] H. Park, H. Ryu, J. Baik.2008. Historical value-based

approach for cost-cognizant test case prioritization to

improve the effectiveness of regression testing, in: Proc.

of the 2nd Int’l Conf. Secure System Integration and

Reliability Improvement. pp. 39–46.

[8] Mohamed A Shameem and N Kanagavalli.2013.

Dependency Detection for Regression Testing using Test

Case Prioritization Techniques. International Journal of

Computer ApplicationsVol 65(14): pp:20-25.

[9] M. Yoon, E. Lee, M. Song and B. Choi.2012. A Test

Case Prioritization through Correlation of Requirement

and Risk. Journal of Software Engineering and

Applications. Vol. 5 No. 10. pp. 823-835. doi:

10.4236/jsea.2012.510095.

[10] R. Abreu, P. Zoeteweij, A.J.C. van Gemund.2009.

Spectrum-based multiple faultlocalization, in:

Proceedings of the 24th IEEE/ACM International

Conference on Automated Software Engineering (ASE),

pp. 88–99.

[11] R. Bryce, S. Sampath, and A. Memon.2011. Developing

a Single Model and Test Prioritization Strategies for

Event-Driven Software. IEEE Trans. Software Eng. Vol.

37. no. 1. pp. 48-64.

[12] R. Krishnamoorthi and S. A. Mary.2009.Factor Oriented

Requirement Coverage Based System Test Case

Prioritization of New and Regression Test Cases.

Information and Software Technology. Vol. 51.No. 4.

pp. 799-808.

[13] S. Raju and G.V. Uma.2012. An Efficient method to

Achieve Effective Test Case Prioritization in Regression

Testing using Prioritization Factors. Asian Journal of

Information Technology. Vol:11.issue:5.pp:169-180.

 DOI: 10.3923/ajit.2012.169.180

0%

50%

100%

P
er

ce
n

ta
g
e

o
f

d
ef

ec
ts

d
et

ec
te

d

Percentage of test cases executed

Comparison of prioritized and random test

cases for Bank application project

random

prioritized

http://dl.acm.org/citation.cfm?id=2185006&CFID=322399904&CFTOKEN=90446056
http://dl.acm.org/citation.cfm?id=2185006&CFID=322399904&CFTOKEN=90446056
http://dl.acm.org/citation.cfm?id=2185006&CFID=322399904&CFTOKEN=90446056
http://dl.acm.org/citation.cfm?id=2185006&CFID=322399904&CFTOKEN=90446056
http://dl.acm.org/citation.cfm?id=2185006&CFID=322399904&CFTOKEN=90446056
http://scialert.net/asci/author.php?author=S.&last=Raju
http://scialert.net/asci/author.php?author=G.V.&last=Uma
http://dx.doi.org/10.3923/ajit.2012.169.180

