

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

30

The Near Greedy Algorithm for Views Selection in Data

Warehouses and Its Performance Guarantees

Omar H. Karam

Faculty of Informatics and Computer Science, The British University in Egypt
and

Faculty of Computer and Information Sciences, Ain Shams University
Cairo, Egypt

ABSTRACT

In data warehouses, views or summaries can be materialized

to obtain better performance. In this paper, the near greedy

algorithm for views selection is proposed. It is a

generalization of the greedy algorithm for views selection and

defines a class of solutions existing in the range between the

optimal and the greedy solutions. At each of its iterations, the

algorithm selects multiple views in a greedy manner instead

of just one. The iterations continue until the number of

desired views is reached. The algorithm’s complexity is

presented and the performance guarantee for the greedy

algorithm is expanded to obtain a general equation that

specifies the minimum performance expected from each near

greedy solution.

General Terms

Data Warehouse, views selection.

Keywords

Greedy algorithm, near greedy algorithm, performance

guarantee.

1. INTRODUCTION
With the increasing attention to Big Data research, there

has been renewed interest in the fields of data analytics, data

warehousing, cloud data storage and distributed storage.

These have been awarded intense investigation through the

lenses of new applications and new infrastructure

technologies [1, 2, 3].

A data warehouse is “a subject-oriented, integrated,

nonvolatile and time-variant collection of data in support of

management’s decisions” [4]. Data Warehousing research is

a prime element within the cycle of knowledge discovery

along with its various designs and its different costs from

storage space to maintenance considerations and response

times.

Major parameters for the performance of any very large

database naturally include query response times. In order to

improve these, summary tables and views can be pre-

calculated and made available during on line operation for

faster response preparation and presentation [5 - 10].

A data cube lattice is a graph showing all views of a

database as vertices and the dependency relations between

them as links [5, 11]. Since queries can be based on any

combination of the dimensions or attributes, therefore the

available views correspond to all possible combinations of

dimensions and with their dependencies they produce a graph

of 2d vertices representing the views and with links

representing the dependencies between these views. This

graph or data cube lattice is known mathematically as a binary

hypercube of d dimensions. It should be noted that a full

lattice is only a special case. For any database or data

warehouse, a range of lattices exists depending on the

relationships between the different dimensions and the

existing hierarchies within each dimension. Resultant final

data lattices can be quite complex and may be the

mathematical product of multiple sub graphs each

representing a dimension or attribute. The raw data in the

cube is the “original” view represented by the top vertex. Any

queries can be answered directly from the relevant view.

It is possible to build or materialize any or all of the

views in a lattice. The option of materializing “all” can lead

to excessive unneeded storage requirements and excessive

precious off line maintenance and update times. There needs

to be a selection or a subset of the available views options that

can be materialized without excessive storage or maintenance

times and that provide acceptable query response times.

These queries can directly correspond to a materialized view

and therefore answered in O(1) time. Otherwise, the response

will have to be calculated from the view that would provide

the answer with the least possible number of calculations.

A view p is dependent on another view q if p can be

calculated from q. All views are dependent on the raw data

view.

Figure 1 shows an example of such a lattice. It

represents a simple data warehouse containing the sales values

at a travel agent by the attributes passenger, airline and route:

p, a and r respectively. The size of a view is shown as the

number next to each view and is the number of “rows” in that

particular view. The eight possible views are shown and their

dependencies are present in the available links, e.g. the view

(pr) has a size of 60 M rows and can directly answer queries

by passenger and route. The view (p) directly answers queries

by passenger. The response for such a query by passenger can

be obtained from several views: (p), (pa), (pr) and (par).

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

31

Figure 1: A datacube lattice with three dimensions

Data warehouse views selection algorithms therefore

need to select a subset of views to materialize that fulfill

constraints such as maximum storage space and best possible

response times. They need to achieve these targets with as

low a time complexity as possible. Finding an optimal

solution means finding an optimal set of k views that succeed

in realizing all the goals. For a graph of N views, this

necessitates examining N.(N-1).(N-2). … . (N-k+1) possible

view arrangements or sets of views, i.e. of the order O(Nk).

In [5], the differences between the many researches in

the literature with regards to the selection of a set of views to

materialize are enumerated as:

1. The way the set of candidate views is determined;

2. The framework used to capture relationships

between candidate views;

3. The use of mathematical cost models vs. calls to the

system’s query optimizer;

4. View selection in the relational or multidimensional

context;

5. Multiple or simple query optimization;

6. Theoretical or technical solutions.

The Greedy Algorithm for views selection [5] is an

algorithm that achieves a compromise between the complexity

of the search for a reasonable set of views to materialize and

the amount of reduction in query response times obtained

from the solution. The Greedy algorithm for selecting k

views to materialize is based on a greedy approach that selects

the view achieving the highest “benefit” at each of k

iterations. In [5] the Greedy algorithm is shown to guarantee

a solution that provides at least 63% of the performance of an

optimal solution with a complexity O(kN) . Further variations

for the Greedy algorithm and other algorithms [6 - 10] either

incorporated further cost details or were attempts at further

reductions in calculations without serious loss of performance.

The near greedy algorithm for views selection presented

in this paper is a generalization of the greedy algorithm for

views selection. It defines a class of solutions existing in the

range between the optimal and the greedy solutions. At each

of its iterations, the algorithm selects a greedy set of views

instead of just one. The iterations continue until the number

of desired views is reached or the imposed constraints are

reached.

Section 2 explains the Greedy algorithm along with its

cost model and its main definitions and calculations. Section

3 presents the proposed Near-Greedy algorithm as a

generalized case that covers all the space between the optimal

solution and the greedy algorithm. Section 4 is the

mathematical derivation of a performance guarantee for the

Near Greedy algorithm’s performance relative to that of the

optimal solution. This guarantee equation encompasses also

both the Greedy algorithm solution and the optimal solution.

This section also presents the algorithm’s complexity.

Section 5 is the conclusion.

2. THE GREEDY ALGORITHM
A main algorithm for the views selection is the greedy

algorithm [2]. In this section a review of the greedy algorithm

is presented since the proposed near greedy algorithm and the

remainder of the paper are based on that algorithm.

The cost model used is a linear cost model in which “the time

to answer a query is taken to be equal to the space occupied

by the view from which the query is answered” [2]. The

“almost” linear relationship between size and running time of

the query is expressed by the formula:

T = m * S + c

where T is the running time of the query on a view of size S

and c is a fixed cost representing the overhead of running this

query on a view of negligible size. The size of the view is

therefore also a representation of the query time. It is

expressed as the number of rows in the data warehouse. The

benefit of a view is a measure of how much reduction in

processing can be obtained from materializing a certain view.

For the purposes of this work, if a view p is dependent on a

view q, then this relation is expressed as p ← q.

The benefit of a view v relative to S, denoted by B(v; S), is

obtained as follows:

1. For each view w ← v, i.e. w is a descendant of v in the

dependency graph, the benefit quantity Bw can be

specified by:

a) Let u be the view of least cost in S such that

w ← u. Note that since the top view is in S,

there must be at least one such view in S.

b) If C(v) < C(u), then Bw = C(v) - C(u), otherwise,
Bw = 0.

2. Define

The Greedy Algorithm is then stated as:

S = {top view};

for i=1 to k do begin

select that view v not in S such that B(v,S) is maximized;

S = S union {v};

end;

The resulting set S is the greedy selection. The total benefit,

A, obtained from this selection of k views out of all possible

N views, compared to the benefit B of the optimal solution is

given by:

total

r (50 M) a (50 M)

(50M)

p (60)M)

ar (80M) pr (60M) pa (70 M)

par (100M)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

32

 (1)

At large values of k, this ratio tends to 0.63. Hence, “for no

lattice whatsoever does the greedy algorithm give a benefit

that is less than 63% of the optimal benefit.”

3. THE NEAR GREEDY ALGORITHM
In this paper, the near greedy algorithm is proposed. It is a

generalization of the greedy algorithm with respect to the

number of views selected per iteration. Instead of choosing a

single view that is greedy, t views are selected simultaneously

per iteration. These are chosen to offer the maximum benefit

at that particular iteration. An equation is then derived that

provides a performance guarantee for the algorithm’s choice

compared to that of an optimal solution.

A determination of the benefit of a set of views V = {v1, v2,… ,

vt} therefore needs to be defined. The benefit of a single view

explained in Section 2 is expanded to include the definition

and determination of the benefit from a set of any number of

views within the dependency graph or lattice.

The benefit of the t views of V = {v1, v2, … , vt} relative to S,

which is denoted by B(V; S), can be determined as follows:

1. For each view w ← V, i.e. w is a descendant of one or

more views of V, the benefit quantity Bw can be specified

by:

a) Let u be the view of least cost in S such that w ← u.

There must be at least one such view in S since the top

view is in S,.

b) If w is a descendant of more than one view from V,

then the vi to consider is the one having the least cost

of this subset of V, V’={v’1, v’2, … }, i.e. Cmin(v’i)

c) If Cmin(v’i) < C(u), then Bw = Cmin(v’i) - C(u).

Otherwise, Bw = 0.

2. Define

The Near Greedy algorithm can now be written as:

S = {top view};

for i=1 to (k/t) do

begin

Select t views for Vi from the remaining Ri views

not in S such that B(Vi,S) is maximized;

S = S union {Vi};

end;

The resulting S is the near greedy selection. Note that at any

iteration i, Ri = (N-1-(i-1)t).

4. PERFORMANCE GUARANTEES

AND COMPLEXITY
V1, V2, ….. , Vk/t are the sets of views selected in order by the

near-greedy algorithm. These are k/t sets, each containing “t”

views. A set Vi contains the views {vi1, vi2, … , vit}.

Ai is the benefit of Vi, i.e. the benefit obtained from

materializing all the elements of Vi with respect to the set

consisting of the top view in addition to the sets of views V1,

V2, … , Vi-1.

The views w1, w2, … , wk constitute the optimal set of k views.

They constitute the set that gives the maximum total benefit.

They will be grouped into (k/t) sets W1, W2, ... , W(k/t). Each

set of these is therefore of t views and they provide the

maximum total benefit that can be obtained from k views and

therefore also from (k/t) sets of views. Each Wi therefore

consists of the t views {wi1, wi2, … , wit} and for any wij, 1 <=

i <= k/t, and 1 <= j <= t.

The benefit aij is the benefit contributed by a view vij and the

benefit bij is the benefit contributed by a view wij.

Let

Similar to [2], we put an upper bound on the b’s in terms of

the a’s.

Define x(wcd, vmn) to be the sum over all views u in the lattice

of the amount of the benefit bcd (from a view wcd) that is

attributed to vmn.

For clarity, this analysis is applied to the case of t = 2 first

before generalizing to any possible value of t. Note then that

the following inequalities hold:

i. For the case of V1 = {v11, v12}, therefore

For all p, q, r, s; for all ((p <>r) OR (q <> s)),

 (2)

ii. Upon considering V2 = {v21, v22}, therefore

For all p, q, r, s; for all ((p <>r OR q <> s)),

 , 12 21+ 22 (3)

iii. Upon considering V3 = {v31, v32}, therefore

For all p, q, r, s; for all (p <>r OR q <> s),

 , 22+ , 11+ , 12+ , 21+ , 22
31+ 32 (4)

Generalizing, it can then be stated that:

 , 22 … + 11+ + 12+ , 11+
 , 12+ , 21+ , 22 … + 11+ +
 12 1+ 2

Therefore,

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

33

 (5)

Summing over all the possible values of r, s, p and q, the

following can be obtained:

Summing equation 1,

But the LHS is B, therefore

 (6)

Summing equation 2, the following equation is similarly

obtained

 (7)

Summing equation 3, the following equation is obtained

 (8)

A general equation for this case of t =2 can now be written as

 (9)

As in [5], and for a fixed A, then for the tightest bound on B

to occur, the RHSs for the family of equations (5) to (8) are

equal. From any two consecutive equations in this group and

given their equality, the following relation is obtained:

Since

 ,

Therefore

 (10)

and

(

 (11)

Therefore

Therefore,

 (12)

For the general case of t, equations 10 to 12 become:

 …

 (13)

(

 …

 (14)

Equation 11, defining the requested ratio A/B, becomes

 (15)

This latter equation represents the ratio of the benefit of the

Near Greedy algorithm to that of an optimal solution. At t=1,

this is the case of the greedy algorithm and equation (1) is

immediately obtained by this substitution. At t=k, this

represents an optimal solution and the ratio A/B from the

equation is immediately equal to 1. It is to be noted that the

performance or the ratio A/B depends solely on the ratio (k/t);

it is not dependent upon the total number of possible views, N.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

34

The complexity, however, of the near greedy algorithm

proposed in this work, is O((k/t).Nt); e.g. for t=2, the

complexity is O((k/2).N2) since the number of iterations is

((k/2).N.(N-1)).For any t, the number of iterations is

((k/t).N.(N-1).(N-2). … . (N-t+1)). For the optimal solution,

t=k and the complexity is O(Nk) and for the case of the greedy

algorithm (t=1), it is O(kN).

Table 1 shows a comparison between the near greedy

algorithm for several (k/t) ratios, the greedy algorithm, and the

optimal solution with respect to their performance guarantee

ratios, (A/B)min, and their complexities. In this table, k is taken

to be 12. The possible values of t are therefore 1, 2, 3, 4, 6

and 12.

Table 1. A comparison between the greedy, the optimal

and several near greedy solutions

t k/t (A/B)min

Complexity

=O((k/t) Nt)

1 12 (greedy) 0.6480 O(12N)

2 6 0.6666 O(6N2)

3 4 0.6836 O(4N3)

4 3 0.7037 O(3N4)

6 2 0.7500 O(2N6)

12 1(optimal) 1.0000 O(N12)

5. Conclusion
In this work, the near greedy algorithm for the selection of

data warehouse views was presented. It is a generalization of

the greedy algorithm for views selection. The near greedy

algorithm selects a number of views, t, at each of its iterations

that are the optimal selection at that specific iteration. It thus

encompasses the whole range of solutions from the optimal

solution at one end, (t=k), to the greedy solution, (t=1), at the

other. The complexity of the algorithm is found to be

O((k/t). Nt). An estimate of the benefit or gain to the query

response times resulting from materializing a set of views is

used to assess the performance of the algorithm’s solution.

From this estimate, a performance guarantee equation is

derived that specifies the minimum achievable ratio between

the gain or benefit obtained from the new algorithm and the

benefit of the optimal solution. This ratio has a minimum

value of 0.63 (greedy) and a maximum value of 1 (optimal).

Future work will address the performance and implementation

of the algorithm in multiple processor or parallel

environments in addition to the details of warehouse

maintenance and update constraints.

6. REFERENCES
[1] Omar Boussaid, Jérôme Darmont, Fadila Bentayeb and

Sabine Loudcher, Warehousing complex data from the

web, International Journal of Web Engineering and

Technology, vol. 4, no. 4, pp. 408-433.

[2] Laurent d’Orazio, and Sandro Bimonte, Multidimensional

arrays for warehousing data on clouds. In Data

Management in Grid and Peer-to-Peer Systems, pp. 26-

37. Springer Berlin Heidelberg, 2010.

[3] Eya Ben Ahmed, Ahlem Nabli and Faïez Gargouri, A

survey of user-centric data warehouses: from

personalization to recommendation. arXiv preprint

arXiv:1107.1779 (2011).

[4] W. H. Inmon, Building the Data Warehouse. John Wiley

& Sons, 2005.

[5] Venky Harinarayan, Anand Rajaraman, and Jeffrey D.

Ullman. Implementing data cubes efficiently. In ACM

SIGMOD Record, vol. 25, no. 2, pp. 205-216. ACM,

1996.

[6] Himanshu Gupta, Selection of views to materialize in a

data warehouse. In Database Theory—ICDT'97, pp. 98-

112. Springer Berlin Heidelberg, 1997.

[7] Himanshu Gupta and Inderpal Singh Mumick. Selection of

views to materialize under a maintenance cost constraint.

In Database Theory—ICDT’99, pp. 453-470. Springer

Berlin Heidelberg, 1999.

[8] Kamel Aouiche and Jérôme Darmont, Data mining-based

materialized view and index selection in data

warehouses, Journal of Intelligent Information Systems

vol. 33, no. 1. pp. 65-93.

[9] T.V. Vijay Kumar, Mohammad Haider, and Santosh

Kumar, A view recommendation greedy algorithm for

materialized views selection. In Information Intelligence,

Systems, Technology and Management, pp. 61-70.

Springer Berlin Heidelberg, 2011.

[10] Kamel Aouiche, Pierre-Emmanuel Jouve and Jérôme

Darmont, Clustering-based materialized view selection in

data warehouses. In Advances in Databases and

Information Systems, pp. 81-95. Springer Berlin

Heidelberg, 2006.

[11] Jiawei Han, Micheline Kamber, and Jian Pei. Data

mining: concepts and techniques. Morgan Kaufmann,

2006.

