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ABSTRACT 

In data warehouses, views or summaries can be materialized 

to obtain better performance.  In this paper, the near greedy 

algorithm for views selection is proposed.  It is a 

generalization of the greedy algorithm for views selection and 

defines a class of solutions existing in the range between the 

optimal and the greedy solutions. At each of its iterations, the 

algorithm selects multiple views in a greedy manner instead 

of just one.  The iterations continue until the number of 

desired views is reached.  The algorithm’s complexity is 

presented and the performance guarantee for the greedy 

algorithm is expanded to obtain a general equation that 

specifies the minimum performance expected from each near 

greedy solution. 
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1. INTRODUCTION 
With the increasing attention to Big Data research, there 

has been renewed interest in the fields of data analytics, data 

warehousing, cloud data storage and distributed storage.  

These have been awarded intense investigation through the 

lenses of new applications and new infrastructure 

technologies [1, 2, 3].   

A data warehouse is “a subject-oriented, integrated, 

nonvolatile and time-variant collection of data in support of 

management’s decisions” [4].  Data Warehousing research is 

a prime element within the cycle of knowledge discovery 

along with its various designs and its different costs from 

storage space to maintenance considerations and response 

times.  

Major parameters for the performance of any very large 

database naturally include query response times.  In order to 

improve these, summary tables and views can be pre-

calculated and made available during on line operation for 

faster response preparation and presentation [5 - 10].   

A data cube lattice is a graph showing all views of a 

database as vertices and the dependency relations between 

them as links [5, 11].  Since queries can be based on any 

combination of the dimensions or attributes, therefore the 

available views correspond to all possible combinations of 

dimensions and with their dependencies they produce a graph 

of 2d vertices representing the views and with links 

representing the dependencies between these views.  This 

graph or data cube lattice is known mathematically as a binary 

hypercube of d dimensions.  It should be noted that a full 

lattice is only a special case.  For any database or data 

warehouse, a range of lattices exists depending on the 

relationships between the different dimensions and the 

existing hierarchies within each dimension.  Resultant final 

data lattices can be quite complex and may be the 

mathematical product of multiple sub graphs each 

representing a dimension or attribute.  The raw data in the 

cube is the “original” view represented by the top vertex.  Any 

queries can be answered directly from the relevant view. 

It is possible to build or materialize any or all of the 

views in a lattice.  The option of materializing “all” can lead 

to excessive unneeded storage requirements and excessive 

precious off line maintenance and update times.  There needs 

to be a selection or a subset of the available views options that 

can be materialized without excessive storage or maintenance 

times and that provide acceptable query response times.  

These queries can directly correspond to a materialized view 

and therefore answered in O(1) time.  Otherwise, the response 

will have to be calculated from the view that would provide 

the answer with the least possible number of calculations.      

A view p is dependent on another view q if p can be 

calculated from q.  All views are dependent on the raw data 

view.     

Figure 1 shows an example of such a lattice.  It 

represents a simple data warehouse containing the sales values 

at a travel agent by the attributes passenger, airline and route: 

p, a and r respectively.  The size of a view is shown as the 

number next to each view and is the number of “rows” in that 

particular view. The eight possible views are shown and their 

dependencies are present in the available links, e.g. the view 

(pr) has a size of 60 M rows and can directly answer queries 

by passenger and route.  The view (p) directly answers queries 

by passenger.  The response for such a query by passenger can 

be obtained from several views: (p), (pa), (pr) and (par). 
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Figure 1:  A datacube lattice with three dimensions  

Data warehouse views selection algorithms therefore 

need to select a subset of views to materialize that fulfill 

constraints such as maximum storage space and best possible 

response times.  They need to achieve these targets with as 

low a time complexity as possible.  Finding an optimal 

solution means finding an optimal set of k views that succeed 

in realizing all the goals.  For a graph of N views, this 

necessitates examining N.(N-1).(N-2). … . (N-k+1) possible 

view arrangements or sets of views, i.e. of the order O(Nk).   

In [5], the differences between the many researches in 

the literature with regards to the selection of a set of views to 

materialize are enumerated as: 

1. The way the set of candidate views is determined; 

2. The framework used to capture relationships 

between candidate views; 

3. The use of mathematical cost models vs. calls to the 

system’s query optimizer; 

4. View selection in the relational or multidimensional 

context; 

5. Multiple or simple query optimization; 

6. Theoretical or technical solutions. 

The Greedy Algorithm for views selection [5] is an 

algorithm that achieves a compromise between the complexity 

of the search for a reasonable set of views to materialize and 

the amount of reduction in query response times obtained 

from the solution.  The Greedy algorithm for selecting k 

views to materialize is based on a greedy approach that selects 

the view achieving the highest “benefit” at each of k 

iterations.  In [5] the Greedy algorithm is shown to guarantee 

a solution that provides at least 63% of the performance of an 

optimal solution with a complexity O(kN) .  Further variations 

for the Greedy algorithm and other algorithms [6 - 10] either 

incorporated further cost details or were attempts at further 

reductions in calculations without serious loss of performance.   

The near greedy algorithm for views selection presented 

in this paper is a generalization of the greedy algorithm for 

views selection.  It defines a class of solutions existing in the 

range between the optimal and the greedy solutions. At each 

of its iterations, the algorithm selects a greedy set of views 

instead of just one.  The iterations continue until the number 

of desired views is reached or the imposed constraints are 

reached. 

Section 2 explains the Greedy algorithm along with its 

cost model and its main definitions and calculations.  Section 

3 presents the proposed Near-Greedy algorithm as a 

generalized case that covers all the space between the optimal 

solution and the greedy algorithm.  Section 4 is the 

mathematical derivation of a performance guarantee for the 

Near Greedy algorithm’s performance relative to that of the 

optimal solution.  This guarantee equation encompasses also 

both the Greedy algorithm solution and the optimal solution.   

This section also presents the algorithm’s complexity.  

Section 5 is the conclusion. 

2. THE GREEDY ALGORITHM 
A main algorithm for the views selection is the greedy 

algorithm [2].  In this section a review of the greedy algorithm 

is presented since the proposed near greedy algorithm and the 

remainder of the paper are based on that algorithm.   

The cost model used is a linear cost model in which “the time 

to answer a query is taken to be equal to the space occupied 

by the view from which the query is answered” [2].  The 

“almost” linear relationship between size and running time of 

the query is expressed by the formula: 

T = m * S + c 

where T is the running time of the query on a view of size S 

and c is a fixed cost representing the overhead of running this 

query on a view of negligible size.  The size of the view is 

therefore also a representation of the query time.  It is 

expressed as the number of rows in the data warehouse.   The 

benefit of a view is a measure of how much reduction in 

processing can be obtained from materializing a certain view.  

For the purposes of this work, if a view p is dependent on a 

view q, then this relation is expressed as p ← q. 

 

The benefit of a view v relative to S, denoted by B(v; S), is 

obtained as follows: 

 

1. For each view w ← v, i.e. w is a descendant of v in the 

dependency graph, the benefit quantity Bw can be 

specified by: 

a) Let u be the view of least cost in S such that    

w ← u. Note that since the top view is in S, 

there must be at least one such view in S. 

b) If C(v) < C(u), then Bw = C(v) - C(u), otherwise, 
Bw = 0. 

2. Define  

           
   

 

 
The Greedy Algorithm is then stated as: 

S = {top view}; 

for i=1 to k do begin 

select that view v not in S such that B(v,S) is maximized; 

S = S union {v}; 

end; 

 

The resulting set S is the greedy selection.  The total benefit, 

A, obtained from this selection of k views out of all possible 

N views, compared to the benefit B of the optimal solution is 

given by: 

total 

r (50 M) a (50 M) 

(50M) 

p (60 )M) 

ar (80M) pr (60M) pa (70 M) 

par  (100M) 
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                                                                    (1) 

At large values of k, this ratio tends to 0.63.  Hence, “for no 

lattice whatsoever does the greedy algorithm give a benefit 

that is less than 63% of the optimal benefit.” 

3. THE NEAR GREEDY ALGORITHM 
In this paper, the near greedy algorithm is proposed.  It is a 

generalization of the greedy algorithm with respect to the 

number of views selected per iteration.  Instead of choosing a 

single view that is greedy, t views are selected simultaneously 

per iteration.  These are chosen to offer the maximum benefit 

at that particular iteration.  An equation is then derived that 

provides a performance guarantee for the algorithm’s choice 

compared to that of an optimal solution.   

 

A determination of the benefit of a set of views V = {v1, v2,… , 

vt} therefore needs to be defined.  The benefit of a single view 

explained in Section 2 is expanded to include the definition 

and determination of the benefit from a set of any number of 

views within the dependency graph or lattice.   

 

The benefit of the t views of V =  {v1, v2, … , vt} relative to S, 

which is denoted by B(V; S), can be determined as follows: 

 

1. For each view w ← V, i.e. w is a descendant of one or 

more views of V, the benefit quantity Bw can be specified 

by: 

a) Let u be the view of least cost in S such that w ← u.  

There must be at least one such view in S since the top 

view is in S,. 

b) If w is a descendant of more than one view from V, 

then the vi to consider is the one having the least cost 

of this subset of V, V’={v’1, v’2, … }, i.e. Cmin(v’i) 

c) If Cmin(v’i) < C(u), then Bw = Cmin(v’i) - C(u). 

Otherwise, Bw = 0. 

 

2. Define  

 

           
   

 

 

The Near Greedy algorithm can now be written as: 

S = {top view}; 

for i=1 to (k/t) do  

begin 

Select t views for Vi from the remaining Ri views 

not in S such that B(Vi,S) is maximized; 

S = S union {Vi}; 

end; 

 

The resulting S is the near greedy selection.  Note that at any 

iteration i, Ri = (N-1-(i-1)t). 

4. PERFORMANCE GUARANTEES 

AND COMPLEXITY 
V1, V2, ….. , Vk/t are the sets of views selected in order by the 

near-greedy algorithm.  These are k/t sets, each containing “t” 

views.  A set Vi contains the views {vi1, vi2, … , vit}. 

 

Ai is the benefit of Vi, i.e. the benefit obtained from 

materializing all the elements of Vi with respect to the set 

consisting of the top view in addition to the sets of views V1, 

V2, … , Vi-1. 

 

The views w1, w2, … , wk constitute the optimal set of k views.  

They constitute the set that gives the maximum total benefit.  

They will be grouped into (k/t) sets W1, W2, ... , W(k/t).  Each 

set of these is therefore of t views and they provide the 

maximum total benefit that can be obtained from k views and 

therefore also from (k/t) sets of views.  Each Wi therefore 

consists of the t views {wi1, wi2, … , wit} and for any wij, 1 <= 

i <= k/t, and 1 <= j <= t.  

 

The benefit aij is the benefit contributed by a view vij and the 

benefit bij is the benefit contributed by a view wij. 

 

Let 

        

 

   

   

   

 

        

 

   

   

   

 

 

Similar to [2], we put an upper bound on the b’s in terms of 

the a’s. 

Define x(wcd, vmn) to be the sum over all views u in the lattice 

of the amount of the benefit bcd (from a view wcd) that is 

attributed to vmn.   

For clarity, this analysis is applied to the case of t = 2 first 

before generalizing to any possible value of t.  Note then that 

the following inequalities hold: 

 

i. For the case of V1 = {v11, v12}, therefore 

For all p, q, r, s; for all ((p <>r) OR (q <> s)),    

                                     (2) 

 

ii. Upon considering V2 = {v21, v22}, therefore 

For all p, q, r, s; for all ((p <>r OR q <> s)),  

                                            

    , 12  21+ 22                                                (3) 

 

iii. Upon considering V3 = {v31, v32}, therefore 

For all p, q, r, s; for all (p <>r OR q <> s), 

 

                                            

    , 22+    , 11+    , 12+    , 21+    , 22  
31+ 32                                                (4) 

Generalizing, it can then be stated that: 

                                            

    , 22 …     +   11+    +   12+    , 11+ 
   , 12+    , 21+    , 22 …     +   11+    +
   12   1+  2  

Therefore, 
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                                                 (5) 

 

Summing over all the possible values of r, s, p and q, the 

following can be obtained: 

Summing equation 1,       

          

       

            

       

 

But the LHS is B, therefore 

   
 

 
                                              (6) 

Summing equation 2, the following equation is similarly 

obtained 

   
 

 
                                                (7) 

 

Summing equation 3, the following equation is obtained 

   
 

 
                               (8) 

 

A general equation for this case of t =2 can now be written as 

   
 

 
    

 
 
   

 
 
                        (9) 

 

As in [5], and for a fixed A, then for the tightest bound on B 

to occur, the RHSs for the family of equations (5) to (8) are 

equal.  From any two consecutive equations in this group and 

given their equality, the following relation is obtained:  

 
 

 
                    

 

 
             

         
 
 
 
                   

 
 
  

 

Since 

             
   
   , 

Therefore 

    
 

 
 

 
  
    

 
 

 
  

 

 
  

     
 
 

 
  
                             (10) 

and 
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Therefore 

 

 
     

 

 
 

   

 
 

 
 
  

    
 
 
   

 
 
  

   

 

 
 

 
 

   

 
 
  

 
 

 
 
 
 
     

 
 
  

   

 

  
 

 
 

  

 
 
  

 
 

 
 
 
 
     

 
 
  

   

 

 
 

 
 
 

 
 
   

 
 
  

 
 

 

 

  

 
 
  

 
 

 

 

  

 
 
  

 
 

 

 

  

   

 
 
  

 
 

 

 
 
  

  

 
 
  

 
 

 

 
 
  

  

 
 

 
 

 

 
 
 
 
    

 
 
  

 
 

 

 
 

   

 
 
  

 
 

 

 

 
 
 
 
 

 

 

Therefore, 

 

 
    

 

 
  

 

 

 

 

 

                       (12) 

 

For the general case of t, equations 10 to 12 become: 

    
 

 
 

 
  
    

 
 

 
  

 

 
  

     
 
 

 
  
   …     

 
 

 
  
 

 
 
                 (13) 
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  …      

 
 

 
  
 

 
 
            (14) 

Equation 11, defining the requested ratio A/B, becomes 

 

 
     

 

 
   

 

 

 

 

 

                                (15) 

This latter equation represents the ratio of the benefit of the 

Near Greedy algorithm to that of an optimal solution.  At t=1, 

this is the case of the greedy algorithm and equation (1) is 

immediately obtained by this substitution.  At t=k, this 

represents an optimal solution and the ratio A/B from the 

equation is immediately equal to 1.  It is to be noted that the 

performance or the ratio A/B depends solely on the ratio (k/t); 

it is not dependent upon the total number of possible views, N.  
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The complexity, however, of the near greedy algorithm 

proposed in this work, is O((k/t).Nt); e.g. for t=2, the 

complexity is O((k/2).N2)  since the number of iterations is 

((k/2).N.(N-1)).For any t, the number of iterations is 

((k/t).N.(N-1).(N-2). … . (N-t+1)).  For the optimal solution, 

t=k and the complexity is O(Nk) and for the case of the greedy 

algorithm (t=1), it is O(kN). 

Table 1 shows a comparison between the near greedy 

algorithm for several (k/t) ratios, the greedy algorithm, and the 

optimal solution with respect to their performance guarantee 

ratios, (A/B)min, and their complexities. In this table, k is taken 

to be 12.  The possible values of t are therefore 1, 2, 3, 4, 6 

and 12. 

 

Table 1.  A comparison between the greedy, the optimal 

and several near greedy solutions 

t k/t (A/B)min 

    

 
 
   

 
 

 

 
 

 

Complexity 

=O((k/t) Nt) 

 

1 12 (greedy) 0.6480 O(12N) 

2 6 0.6666 O(6N2) 

3 4 0.6836 O(4N3) 

4 3 0.7037 O(3N4) 

6 2 0.7500 O(2N6) 

12 1(optimal) 1.0000 O(N12) 

 

5. Conclusion 
In this work, the near greedy algorithm for the selection of 

data warehouse views was presented.  It is a generalization of 

the greedy algorithm for views selection.  The near greedy 

algorithm selects a number of views, t, at each of its iterations 

that are the optimal selection at that specific iteration.  It thus 

encompasses the whole range of solutions from the optimal 

solution at one end, (t=k), to the greedy solution, (t=1), at the 

other.  The complexity of the algorithm is found to be   

O((k/t). Nt).  An estimate of the benefit or gain to the query 

response times resulting from materializing a set of views is 

used to assess the performance of the algorithm’s solution.  

From this estimate, a performance guarantee equation is 

derived that specifies the minimum achievable ratio between 

the gain or benefit obtained from the new algorithm and the 

benefit of the optimal solution.   This ratio has a minimum 

value of 0.63 (greedy) and a maximum value of 1 (optimal).  

Future work will address the performance and implementation 

of the algorithm in multiple processor or parallel 

environments in addition to the details of warehouse 

maintenance and update constraints.  
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