

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

42

Lattice-based Metaphor for Visualizing Disassembled
Executable Code

Peter Mulwa
School of Computing & Informatics

University of Nairobi
Nairobi, Kenya

Tonny Omwansa, Ph.D
School of Computing & Informatics

University of Nairobi
Nairobi, Kenya

ABSTRACT
Lattice-based structures provide a means of encoding

information. This inherent property of information

representation is utilized to design a metaphor for visualizing

and analyzing a program, based on the structured nature of

disassembled executable code.

Beginning from a generic platform’s Instruction Set

Architecture (ISA) and abstracting the manner in which

instructions are combined to form a program, a generic

representation of the flow of a program is created. This

representation is then mapped onto a lattice-based structure for

visualization. Once the visualization is rendered, the lattice

structure is used to analyze a program’s disassembled code in

order to extract potentially useful information for decision

making.

General Terms
Binary Code, Visualization, Instruction Set Architecture

Keywords
Lattice, Metaphor

1. INTRODUCTION
In varied scenarios, executable files need to be reverse

engineered in order to understand their functionality.

Disassembling an executable provides a human-readable format

that resembles the underlying machine code due to the one-to-

one mapping of machine and assembly code. Dependent on the

size of the executable, the quantity of the information generated

can be large. This makes the analysis of information potentially

difficult. Besides textually viewing the content, visualization

can be utilized to enhance the process of understanding and

analyzing the content.

Lattices provide a potentially useful structure that can be

adapted to develop a visual metaphor that can be used to

visualize & analyze a program’s disassembled executable code

in order to generate usable information to aid in decision

making.

This paper presents a development of a lattice-based metaphor

for this purpose. It begins by abstracting a generic platform’s

Instruction Set Architecture (ISA). Rules are then formulated on

how to represent the different combination of instructions in

order to enable adaptation to a lattice structure. A notation for

displaying information is developed. Various basic code

constructs dealing with branching and looping are then

illustrated by a process of abstracting their structural design and

then visualizing them using the metaphor on the basis that these

constructs are combined in various ways to constitute a

program.

2. REVIEW OF RELATED LITERATURE
Software Visualization provides an alternative means of

viewing programs beyond textual representations. In

visualizations metaphors represent different aspects of code.

However, since code is abstract, these metaphors can take

various forms such as geometric shapes [1][2] or real world

objects [1]. In addition to shape, other visual attributes include

size, height/depth, colour, texture/bumpmaps [3], transparency,

elevation, and position. These represent various code attributes

such as sequence, control structure, nesting level, declarations

and implementations, classes and inheritances, etc.

[3][4][5][6][7].

Various representations have been proposed, such as pixel maps

and cylinder bars [4], matrices and rows-columns [5], treemaps

and edge bundling [2], treemaps [8][9], hulls [7], radial [8],

kiviat [9], and cartographic [10]. The representations could be

used concurrently [11][12] providing different views of the

same or different information.

Visualizations are utilized to generate usable information. As

information to be analyzed increases, new ways to analyze

information is required. 3D visualization is being utilized to

enhance existing metaphors, for example, pixel maps [4], kiviat

[9], hulls [7], and edge bundling [6]. 2D view scalability is

hindered as content increases [5], and even with zoom [11] or

multiple views [8][12] features, they are prone to cognitive

overload and lack of intuitiveness [13]. Extending visual

analysis to 3D enables increasing the spatial space available for

interacting with information with the benefit of adding a new

spatial dimension [1], enhance memory activity [4], and ease

analysis of information [14].

Visualization’s goal is to increase the level of understanding of

the information being processed, possibly by maintaining a

consistent mental model [14] for recurrent use [10]. Richard

Hamming’s statement, ‘insight, not number is what computing

should evolve to’, is a guiding principle. Abstraction of

complex aspects to everyday equivalents [15], incorporating

animations [9][15], lowering clutter by component aggregation

[13], direct manipulation [14] help to increase understanding.

Aspects such as navigation and location identification can be

enhanced by limited animation [6] and panning features [14].

Use of Graphical Processing Units (GPU), from a rendering

perspective [14], could be utilized to enhance performance, for

example, with texturing, which is natively performed by a GPU.

Due to the varied potential uses of visualization and the abstract

nature of the information, a methodology may be required to

determine the ideal visualization for a given scenario. Two

parameters namely, the data set (may require prototyping) and

task analysis (with parameters such as overview, zoom, filter,

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

43

details-on-demand, relation, history, and extraction) can be used

in the visualization design [6][14][16].

However, visualization is unique to the problem domain; if a

methodology doesn’t fit, the alternative could be either to

modify the design, add functionality, or use different concurrent

visualizations [14].

Visualization is applicable to the entire software lifecycle,

including the support of legacy systems [1], in security analysis

[16], usable for both the source & binary code, malware

acquired in binary form [17][18], and source code from the

perspective of metrics, classes & packages, whole software

structuring, and whole software porting respectively

[4][5][8][12]. With refactoring [11] effort estimation and

rewrite impact can be determined; or with maintenance [12]

identification of high code turnover areas for purposes of either

rewriting, defect identification, regression tests, or fan in and

fan out metrics can be determined. The visualizations can even

be integrated with other tools via input and output files

[10][12].

Abstraction plays a role in reducing information and cognitive

overload. Two concepts that support this exist [1][4]. Elision

property of ‘abstract distant objects, detail closer objects’, and

Bruce Shneiderman’s visualization mantra, which specifies the

detail sequence of ‘overview first, zoom & filter details on

demand’. Complementing components for information

extraction are visual and textual representations. Visualization

is usable for higher levels and textual for lower levels [16]. The

complex interaction between software entities are prone to

make visualization cluttered with the potential effect of

increasing the cognitive load [2][16] and ignoring information

[10].

Enhancing abstraction is possible by not displaying all

information at once. Pertinent information can be displayed

dependent on the current context or upon demand by encoding

it in the metaphor [8]. Furthermore, mental models can be

utilized to aid in program comprehension. Conceptual and

structural models and the concepts of anchors, can provide a

reference point during analysis [10].

Two properties of metaphors are expressiveness and

effectiveness [1]. Expressiveness refers to the capability to

represent the required information, which enhances the display

of concise information. Effectiveness refers to the visibility &

idealness of the required information encapsulated and

presented in the metaphor, which enhances cognitive

processing. Both properties provide tools for the design and

evaluation of metaphors [4].

The literature shows that various visualization undertakings

have been done with software and its attributes for purposes of

improving the understanding of programs from both the binary

and source code levels. Binary code, however, would provide a

more accurate form for analysis in reverse engineering, as it is

what is actually executed on a computing device. The literature

brings out the concern of information overloading during the

analysis of large quantities of information. Various solutions are

proposed and guidelines presented to address the concerns of

software visualization.

3. METHODOLOGY

3.1 Instruction Set Architecture (ISA)
Given any executable file, its executable contents can be

converted into an equivalent assembly program listing via a

disassembler for the target platform. The ISA for a given

platform describes the platform’s assembly language

programming interface. These instructions are utilized to

generate programs by combining them together, possibly either

at the assembler level, or using a higher level language.

At the ISA level of abstraction, the instructions can broadly be

classified as either being sequential or control type instructions.

Sequential type instructions are executed and the immediate

following instruction then executed. Control type instructions,

on the other hand, have the potential to alter control flow. The

figure below illustrates this concept. Hence, executable code

can be considered as comprising of different permutations of

sequential & branching instructions using the available ISA.

Figure 1: Conceptualized illustration of sample sequential &

control type ISA instructions

3.2 ISA Visualization – Lattice Metaphor

Evolution
In order to provide an optimized visualization of a program

comprising of sequential & control type instructions, the

sequential portions can be aggregated as illustrated in the figure

below describing the generation of a lattice-metaphor for an

example program flow of 10 instructions.

Figure 2: Legend

Figure 3: Sequential & Control Instructions

Figure 4: Instruction 7 is identified as runtime dependent

(indicated by change from blue to grey notation)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

44

Figure 5: Aggregation of sequential instructions

Figure 6: Elimination of flow arrows; branch information

encoded within metaphor and control-type instructions

differentiated by size

Figure 7: Illustration of encoded branch information for

node 8 (white node) branching to lower address at node ‘1-

3’ (red node)

Figure 8: Illustration of encoded branch information for

node 4 (white node) branching to higher address at node ‘5-

6’ (green node)

3.3 Folding Instruction Sequences into

Sections
As the quantity of nodes representing instructions increases, the

linear growth in the X-axis is limited by the available screen

space. In order to accommodate the growth, the Z-axis is

utilized. However, this requires the specification of a

dimension.

A dimension refers to the number of nodes that will be

displayed in the X-axis. For example, if the dimension is set to

10, then the 11th node will wrap around and be displayed at the

next incremented Z-axis index. In order to maintain clarity of

the wrapping, since the size of a node is the same along both the

X-axis and Z-axis, a spacing equivalent to the size of the node

is used to separate the different Z-axis indices. Consequently,

the number of nodes along the Z-axis will be half the specified

dimension.

Figure 9: Folding node sequences

3.4 Building Sections
Once the maximum number of nodes along the Z-axis is

reached (based on a specified dimension), the resultant

collection of nodes is referred to as a ‘Section’, which is

represented by a differently notated node. The next node after a

‘Section’ is formed becomes the 1st node of the next ‘Section’.

Figure 10: Section Formation

As the number of sections increase, their layout is ordered along

the axes in the following order: X-Z-Y. The dimension used

when representing sections is defined by the number of

sections, with the value being the cube-root of the number of

sections.

3.5 Navigation of Nodes & Sections
The current location is identified by a white highlighted focus.

When a node is selected any encoded information that is

displayed is based on the node. Due to the multi-dimensional

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

45

nature of the lattice-structure, navigation in the various domains

is possible and sequential movement from one node to the

previous or next is not mandatory.

Movement forward, along the X-axis, from the last node in a

given section results in the next section being displayed and its

1st node highlighted, while movement backward from the 1st

node in a given section results in the previous section being

displayed and its last node highlighted. Movement along the Z-

axis results in a move equivalent to the dimension, giving the

effect of either an upward or downward movement. Any

movement when analyzing the individual nodes, results is its

equivalent section being highlighted in order to provide a

node’s reference in relation to the entire program.

Movement in the section resembles the above description of the

nodes, with the difference that when a different section is

selected, the 1st node of that section is the one highlighted. This

is because a ‘Section’ represents more than 1 ‘Node’.

Figure 11: Initial selected node is 5

Figure 12: Location after navigation from node 5 to 9

4. DATA ANALYSIS AND RESULTS

4.1 Introduction
The process of visualization and analysis begins from the

acquisition of an executable file with its associated

disassembler for the given platform. This enables the

visualization tool to be platform-independent. Once the

executable file has been disassembled in an assembly listing,

the content of the file is parsed and then imported into the

visualization application prior to visualization.

4.2 Test Data
A test program was implemented to test the visualization and

analysis capabilities of the lattice-based metaphor. In order to

easily identify these constructs at the assembly level, compiler

optimizations were disabled. The C/C++ programming

language is used to write the program. The Intel x86 ISA is

utilized at the assembly language level. The disassembler

utilized is the dumpbin.exe file included with the Microsoft

Visual Studio Integrated Development Environment.

Source Code Listing of test program

int Add(int n1, int n2);
int main() {
 int nSum, nCount , nCondition, nValue;
 nCount = 10;
 nCondition = 1;

 for (int i = 1; i < 11; i++)
 nSum += i;
 Add(nSum, 2);
 do {
 nCount--;
 } while (nCount);
 if (nCondition) {
 nValue++;
 } else {
 while (1) {
 }
 }
 return 0x1234;
}
int Add(int n1, int n2) {
 return n1 + n2;
}

4.3 Visualization
Once the disassembled code was loaded into the application, the

following visualization was generated.

Figure 13: Overall Program Visualization (Dimension set to

4 gives 3 sections; 1st node and section highlighted)

4.4 Analysis
This section discusses the following visualization analyses:

 Navigation – next location highlighting

 Potential source locator

4.4.1 Navigation – Next Location Highlight
The structure enables non-linear navigation of the visualization

and identification of overall as well as branching location (to

either a higher offset indicated by a green highlight, or to a

lower offset indicated by a red highlight) based on the current

location (indicated by a white highlight.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

46

Figure 14: Next location highlight; bypassing ‘for’ loop

Figure 15: Last instruction in ‘for’ loop transferring control

back to beginning of loop

4.4.2 Potential Source Locator
Navigation through a program’s flow is usually in a forward

direction, i.e. from the current location to potential next

locations (yellow highlight) either sequentially or by control

branching. However, the capability of being able to identify

potential areas that could have resulted in a branch to the

current location is beneficial.

The feature is implemented by searching for instructions that

contain the selected node as the destination address. The offset

of the identified instructions are then identified as potential

source locators.

Figure 16: ‘while’ loop entry reachable from 2 different

locations

Figure 17: 1st potential source location from bypassing ‘if’

statement or running through

Figure 18: 2nd potential source location from ‘while’

statement (via the jump back to the start of the loop)

5. CONCLUSION
As visual processing capability increases with enhancements in

GPUs, visual analysis of information is potentially possible.

This paper explored a lattice-based metaphor for visualizing &

analyzing disassembled executable code. The feasibility of a

lattice structure for both visualization & analysis was illustrated

as one possible alternative in software visualization. Code

constructs visualization was shown to be feasible. In addition,

various analyses of disassembled code as well as statistical

information generation were illustrated. The research also

created a potential framework for the design of new metaphors

via abstracting the underlying concepts, generating the basic

building blocks, developing a notation, and finally designing an

interaction mechanism.

The potential of code obfuscation and compiler optimizations

exist when dealing with software, which could make the

disassembly and analysis difficult. The research assumed the

absence of both. This provides an area for further research

work.

Various areas of enhancements exist. Currently, the metaphor

relies on only 2 node models – for sequential and control type

instructions. However, for control instructions various models

could be used to indicate the type of control instruction as well

as the direction of branching. GPU features such as lighting

could also be used to enhance the metaphor. The potential of

being able to drag nodes in and out of the metaphor would

provide another level of visually manipulating and interacting

with programs.

6. ACKNOWLEDGEMENTS
We would like to thank Dr. Wausi, Dr. Nganga, and Dr. Orwa

for their input during the development process.

7. REFERENCES
[1] Grancanin, Denis, et al (2005), Software Visualization,

Innovations in Systems and Software Engineering,

September 2005, Volume 1, Issue 2, Pages 221-230

[2] Caserta, Pierre, et al (2011), 3D Hierarchical Edge Bundles

to Visualize Relations in a Software City Metaphor,

VisSoft 2011 IEEE International Workshop on Visualizing

Software for Understanding and Analysis, September 2011

[3] Holten, Danny, et al (2005), Visual Realism for the

Visualization of Software Metrics, IEEE Workshop on

Visualizing Software for Understanding and Analysis,

2005

[4] Marcus, Andrian, et al (2003), 3D Representations for

Software Visualizations, SoftViz 2003 ACM Symposium

on Software Visualization, 2003

[5] Zeckzer, Dirk (2010), Visualizing Software Entities Using

a Matrix Layout, SoftViz 2010 ACM Symposium on

Software Visualization, 2010

[6] Beck, Fabian, et al (2011), Visually Exploring Multi-

Dimensional Code Couplings, VisSoft 2011 IEEE

International Workshop on Visualizing Software for

Understanding and Analysis, September 2011

[7] Lambert, A, et al (2012), Visualizing Patterns in Node-

Link Diagrams, 2012 International Conference on

Information Visualization, July 2012

[8] Reniers, Dennie, et al (2011), Visual Exploration of

Program Structure, Dependencies, and Metrics with Solid

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

47

SX, VizSoft 2011 IEEE International Workshop on

Visualizing Software for Understanding and Analysis,

September 2011

[9] Kerren, Andreas, et al (2009), Novel Visual

Representation for Software Metrics using 3D and

Animation, Software Engineering Workshop, 2009

[10] Kuhn, Adrian, et al (2010), Embedding Spatial Software

Visualization in the IDE: An Exploratory Study, SoftViz

2010 International Symposium on Software Visualization,

2010

[11] Broeksema, Bertjan, et al (2011), PortAssist: Visual

Analysis for Porting Large Code Bases, VizSoft 2011

IEEE International Workshop on Visualizing Software for

Understanding and Analysis, September 2011

[12] Maletic, Jonathan I., et al (2011), MosaiCode: Visualizing

Large Scale Software (A Tool Demonstration), VizSoft

2011 IEEE International Workshop on Visualizing

Software for Understanding and Analysis, September 2011

[13] Holy, Lukas, et al (2012), Lowering Visual Clutter in

Large Component Diagram, 2012 International Conference

on Information Visualization, July 2012

[14] Wiss, Ulrika, et al (1998), Evaluating Three-Dimensional

Information Visualization Designs: A Case Study of Three

Designs, IEEE Conference on Information Visualization,

July 1998

[15] Medani, Dan, et al (2010), Graph Works – Pilot Graph

Theory Visualization Tool, SoftViz 2010 ACM

Symposium on Software Visualization, 2010

[16] Goodall, John (2009), Visualization is Better! A

Comparative Evaluation, VizSec 2009, International

Workshop on Visualization for Cyber Security, October

2009

[17] Quist, Danny, et al (2009), Visualizing Compiled

Executables for Malware Analysis, VizSec 2009,

International Workshop on Visualization for Cyber

Security, October 2009, Pages 27-32

[18] Trinius, Philipp, et al (2009), Visual Analysis of Malware

Behaviour Using Treemaps and Threaded Graphs, VizSec

2009, International Workshop on Visualization for Cyber

Security, October 2009, Pages 33-38

