

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

7

An Improved CPU Scheduling Algorithm

Himanshi Arora
Department of Computer
Science and Engineering
Indira Gandhi Institute of

Technology
Delhi

Deepanshu Arora, Bagish
Goel

Department of Computer
Science and Engineering

Krishna Institute of Technology
Ghaziabad

Parita Jain
Asst. Professor

Krishna Institute of Technology
Ghaziabad

ABSTRACT

In multiprogramming systems i.e. in systems where several

processes reside in memory, organization of processes is very

important so that CPU always has one to execute. CPU

scheduling is the base of multiprogramming operating

systems. CPU executes one process at a time and switches

between processes to improve CPU utilization. CPU

scheduling strategies help in selecting the next process to be

executed by the CPU.

CPU scheduling is one of the most important activities

performed by operating system which helps in increasing the

throughput of the computer system therefore if the

performance of scheduling will improve then our computer

system will become more productive.

In this paper, CPU scheduling algorithm with improved

performance has been proposed. The technique which is used

for increasing the speed up factor is ‘Pipelining’. This

technique can be applied to any CPU scheduling algorithm to

improve its performance. The analysis shows that the

proposed algorithm is better than the existing scheduling

algorithms. The performance is improved by 40-50%.

General Terms

 CPU Scheduler, Scheduling algorithm, Process, etc.

Keywords

Pipelining, Average waiting time, Burst time, Priority

scheduling, Round -Robin scheduling, etc.

1. INTRODUCTION
Earlier we had systems in which only a single program was

executed at a time and in those systems, the CPU was often

idle i.e. CPU utilization was very low. Then came

multiprogramming systems where several jobs were kept in

memory. In multiprogramming environment, it becomes

necessary for the CPU to perform scheduling so that it can

select next process for execution whenever it is idle.

Therefore we can say that CPU scheduling is the most

important aspect of multiprogramming environment. CPU is

switched among processes to make the computer more

generative. In this paper, we will discuss various CPU

scheduling algorithms and further pipelining is introduced to

improve the performance of the scheduling algorithms. The

main aim of multiprogramming is to keep the CPU busy all

the time in order to maximize CPU utilization. In

multiprogramming, a process is executed until it must wait

due to some reason like I/O request etc. In multiprogramming

environment, CPU switches from one process to another but

in case of uniprogramming environment CPU just waits and is

idle. Switching is possible in multiprogramming environment

as several processes are kept in memory and whenever one

process has to wait; operating system takes the CPU away

from that process and gives the CPU to another process

according to the scheduling algorithm in use [12]. Pipelining

can be applied to the “fetch, decode and execute cycle” of the

processes to improve the performance.

2. ORGANIZATION OF THE PAPER
Section III describes various CPU scheduling algorithms with

their Gantt charts. Section IV describes the proposed

technique to improve the performance of the CPU scheduling

algorithms. Section V comprises analysis of the proposed

algorithm. Section VI proves the effectiveness of the proposed

technique. Section VII contains the conclusion. Section VIII

acknowledges the mentor for her constant guidance and

section IX provides the references.

3. SCHEDULING ALGORITHMS

3.1 First-Come, First-served Scheduling

This is the simplest scheduling algorithm. As the name

suggests, the process which will come first will be executed

first. But there are several problems associated with this like if

the first process is very long then other shorter processes have

to wait for longer time resulting in increase in the average

waiting time. This problem is also known as convoy effect.

Table 1.FCFS Scheduling

Process Burst time

P1 20

P2 3

P3 6

Table 2.Gantt chart for process Execution

P1 P2 P3

0 20 23 29

Average Waiting Time= (0+20+23)/3=14.33 ms

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

8

3.2 Shortest-Job-First Scheduling
In this scheduling algorithm, the process with the shortest

burst time is executed first. Processes are executed in

increasing order of their burst time. This decreases the

average waiting time.

Example: Repeating the previous example using shortest job

first scheduling:

Table 3. Gantt chart for process execution

Average waiting time = 0+3+9/3=4 ms

We can clearly notice the drastic change in the average

waiting time when compared to first-come first-served

scheduling.

3.3 Priority Scheduling
In this scheduling strategy, processes are executed according

to their priority. Priorities can be defined either internally or

externally. Internally defined priorities use some measurable

quantities like time limits, memory requirements etc. External

priorities depend upon external factors like department

sponsoring the work, amount of funds being paid for

computer use etc. In real time systems, priority of any process

can be set according to the deadline of that process because in

real time systems, main aim is to meet the deadline.

Table 4.Priority Scheduling

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Table 5.Gantt chart for process execution

P2 P5 P1 P3 P4

0 1 6 16 18 19

Average Waiting Time = (0+1+6+16+18)/5=8.2 ms

3.4 Round-Robin Scheduling

 This scheduling is similar to first-come first-served

scheduling but preemption is also added to switch between

processes. A small unit of time called a time quantum is

defined and each process executes for that time quantum

before switching to other process. This scheduling strategy is

designed specially for time sharing systems.

Example: Repeating the previous example using round robin

scheduling.

Time quantum=2 ms

Table 6.Gantt chart for process execution

P2 P5 P1 P3 P4 P5 P1 P5 P1 P1 P1

0

1

3

5

7

8

10

12

13

15

17

 19

Average Waiting Time = (0+1+5+2+3+5+1+5+7)/5=5.8 ms

4. PROPOSED TECHNIQUE
 Pipelining is a technique in which a process is divided into

sub operations and each sub operation is executed in a special

dedicated segment that operates concurrently with all other

segments. Concurrent data processing helps in achieving

faster execution [10].

CPU scheduling is one of the most important activities

performed by operating system which helps in increasing the

throughput of the computer system therefore if the

performance of scheduling will improve then our computer

system will become more productive. On combining

pipelining with CPU scheduling, performance of CPU

scheduling improves.

4.1 Proposed Approach
 Pipelining concept can also be used in CPU scheduling to

improve its performance. When CPU scheduler takes the

decision of selecting the next process from the main memory,

fetching and decoding of this next process takes some time

and this time latency can be avoided by using pipelining.

Let us understand this with an example where we have three

processes and we are using priority scheduling. Let us

consider that process P1 has the highest priority, then process

P2 and P3 has the least priority.

4.1.1Without Pipelining

Table 7.CPU scheduling without pipelining

 1 2 3 4 5 6 7 8 9

1 P1 P1 P1

2 P2 P2 P2

3 P3 P3 P3

4.1.2With Pipelining

Table 8.CPU scheduling with pipelining

 1 2 3 4 5

1 P1 P1 P1

2 P2 P2 P2

3 P3 P3 P3

Without pipelining, CPU scheduler would fetch P2 after

completion of P1 in the 3rd step but with pipelining, P2 is

fetched when P1 is decoded by the CPU. Similarly P3 is

fetched and P2 is decoded when P1 is executed. Without

pipelining, the whole process would take 9 clock cycles but

with pipelining only 5 clock cycles are required.

5. ANALYSIS
Now, let us consider a k segment pipeline with a clock cycle

time Tp used to execute n processes. The first process P1 will

P2 P3 P1

0 3 9 29

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6– No. 6, December 2013 – www.ijais.org

9

require (k*Tp) time to complete its operation and the

remaining (n-1) processes will egress at the rate of one

process per clock cycle which is very clearly evident in Fig.1.

Process P1 is completing its execution in the 3rd clock cycle,

process P2 in the 4th clock cycle and further process P3 in the

5th one. Therefore, to complete n processes, a k-segment

pipeline requires (k + (n-1)) clock cycles. A non-pipeline unit

will take (n*Tn) time to complete n tasks where Tn is the time

to complete each process.

Therefore, the speedup ratio of pipeline processing over an

equivalent non-pipeline processing can be defined as:

S= ((n)*(Tn)) /((k+n-1)* Tp) [10]

Performance Evaluation:

Let us calculate the improvement in the performance by

calculating the speed up ratio.

As Tn is the time to complete each process in non-pipeline

unit and (k*Tp) is the time taken by process P1 to complete its

operation. So, let us consider that Tn =(k*Tp).

Let us assume Tp=30 ns. Figure.1 shows that k=3. Therefore,

Tn= (3*30) ns and (n*Tn)= (3*3*30) ns.

 So, non-pipeline system will take 270ns to complete and

pipeline system will take ((3+3-1)*30) ns i.e. 150ns.

Therefore speed-up ratio is:

S= (270/150) =1.8

Performance Improvement = ((270-150)/270)*100 = 44.44%

(1)

6. EFFECTIVENESS OF THE

PROPOSED TECHNIQUE
The proposed technique has been compared with the latest

research done in the field of improving the performance of

CPU scheduling algorithm to prove its effectiveness and

efficiency.

The graph shown below in Figure.1 depicts the performance

comparison of improved Round Robin (RR) scheduling

algorithm with existing Round Robin (RR) scheduling

algorithm.

Figure 1: Performance comparison of improved RR

scheduling algorithm with existing RR scheduling

algorithm. [1]

Average waiting time for improved RR scheduling algorithm

= 19

Average waiting time for existing RR scheduling algorithm =

32.5

Performance Improvement = ((32.5-19)/32.5)*100=41.53%

The performance improvement provided by our proposed

technique is 44.44% (From (1)) which is greater than the

performance improvement provided by the latest research

done in this field.

7. CONCLUSION
It is concluded from the above analysis that the proposed

technique improves the performance of the existing CPU

scheduling algorithms by 40-50%. This technique can also be

useful in many real time applications as concurrent processing

always helps in faster execution

8. ACKNOWLEDGMENTS
We owe special debt of gratitude to Asst. Professor Parita

Jain, Department of Computer Science & Engineering, KIET

Engineering College, Ghaziabad, for her constant support and

guidance throughout the course of our work. Her sincerity,

thoroughness and perseverance have been a constant source of

inspiration for us. It is only her cognizant efforts that our

endeavors have seen light of the day.

9. REFERENCES
[1] Bashir Alam, “Fuzzy Round Robin CPU Scheduling

Algorithm”, Journal of Computer Science, pp. 1079-

1085, 2013.

[2] Devendra Thakor, Apurva Shah, “D_EDF: An efficient

Scheduling Algorithm for Real-Time Multiprocessor

System”, IEEE, pp. 1044-1049, 2011.

[3] Saeede Bibi, Farooque Azam, Yasir Chaudhry,

“Combinatory CPU Scheduling Algorithm”, 2010.

[4] Sindhu M, Rajkamal R, Vigneshwaran P, “An Optimum

Multilevel CPU Scheduling Algorithm”, International

Conference on Advances in Computer Engineering, pp.

90-94, 2010

[5] Radhakrishna Naik, R.R. Manthalkar, Mukta

Dhopeshwarkar, “Modified IUF Scheduling Algorithm

for Real Time Systems”, IEEE, pp. 712-716, 2010.

[6] Apurva Shah, Ketan Kotecha, “Adaptive Scheduling

Algorithm for Real Time Multiprocessor Systems”,

IEEE, pp. 35-39, 2009.

[7] E.O. Oyetunji, A.E. Oluleye, “Performance Assessment of

some CPU Scheduling Algorithms”, 2009.

[8] Ruben Gran, Enric Morancho, Àngel Olive, Jose M.

Llaberia, “An Enhancement for a Scheduling Logic

Pipelined over two Cycles”, IEEE, 2006.

[9]Shantanu Dutt, “Pipeline Basics”,

www.ece.uic.edu/~dutt/courses/ece366/lect14-pipe1.pdf

[10] M. Morris, Mano, “Pipeline and Vector Processing”,

Computer System Architecture, 3rd Edition, Dorling

Kindersley (India) Pvt. Ltd., p.301-330.

[11]Toan Nguyen, “Pipelining”,

www.cs.sjsu.edu/~lee/cs147/Pipelining%20Toan.ppt

[12] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne,

“CPU Scheduling”, Operating System Concepts, 6th

Edition, John Wiley &Sons, p.151-183.

http://www.ece.uic.edu/~dutt/courses/ece366/lect14-pipe1.pdf
http://www.cs.sjsu.edu/~lee/cs147/Pipelining%20Toan.ppt

