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ABSTRACT 

This paper introduces a music learning system that uses new 

low complexity algorithms and aims to solve the four most 

common problems faced by self-learning beginner pianists:  

reading music sheets, playing fast tempo music pieces, 

verifying the key of a music piece, and finally evaluating their 

own performances.  In order to achieve these aims, the system 

proposes a monophonic automatic music transcription system 

capable of detecting notes in the range from G2 to G6. It uses 

an autocorrelation algorithm along with a binary search based 

algorithm in order to map the detected frequencies of the 

individual notes of a musical piece to the nearest musical 

frequencies.  To enable playing fast music, the system uses a 

MIDI player equipped with a virtual piano as well as section 

looping and speed manipulation functionalities to enable the 

user to start learning a musical piece slowly and build up 

speed.  Furthermore, it applies the Krumhansl-Schmuckler 

key-finding algorithm along with the correlation algorithm to 

identify the key of a musical piece.  A musical performance 

evaluation algorithm is also introduced which compares the 

original performance with that of the learner’s producing a 

quantitative similarity measure between the two.  The 

experimental evaluation shows that the system is capable of 

detecting notes in the range from G2 to G6 with an accuracy 

of 88.7% in addition to identifying the key of a musical piece 

with an accuracy of 97.1%. 

Keywords 

Music learning, automatic music transcription, key finding, 

monophonic music. 

1. INTRODUCTION 
Computer-based music teaching has been an ongoing field of 

research since the late 70’s. There have been many attempts to 

automate completely the process of teaching to play Piano 

through techniques such as automatic music transcription, 

which is the process of inferring automatically the pitch, 

timing, and the duration of each played sound, given only the 

acoustic recording of a performance [1].  

These techniques could not provide a comprehensive solution 

to overcome difficulties beginner self-learning pianists face 

while learning to play new musical pieces. The most 

important problem is reading music sheet music. Sheet music 

is a symbolic method of representing music to both 

performers and listeners, in the form of western music 

notation [2].  

In addition, one has to know the name of a classical music 

piece in order to find its sheet music, which is not an easy task 

for beginners. Furthermore, common and interesting 

musically pieces are of a fast tempo. This prevents usually 

beginners from learning to play these pieces until they acquire 

skills and reach an advanced level.  

Another difficulty self-learning beginner pianists face, when 

there is no sheet music available, is that they need to verify 

that the key of the musical piece is correct. A musical piece is 

“… an ordered collection of pitches in the whole- and half-

step patterns” [3]. The key of a musical piece is found through 

analysis based on music theory; and it is the first degree of the 

scale of the musical piece.  The key can be either a minor key 

or a major key. 

After completely learning a musical piece, the self-learning 

beginner pianist needs someone experienced to listen to his or 

her performance and evaluate it. It is also necessary that the 

evaluation should be number-based, so that that self-learner 

would be able to see how much they have improved over 

time. 

In this paper, a monophonic, i.e. only one note can be playing 

at any given time; piano music teaching system is proposed to 

help beginner pianists self-learn piano playing. The system 

helps eliminating the difficulties discussed above through 

offering a monophonic automatic music transcription module 

that uses the autocorrelation algorithm along with a proposed 

algorithm based on binary search to map the detected 

frequencies of the individual notes of a musical piece to the 

nearest musical frequencies. A fault detection and correction 

algorithm is also proposed in order to further enhance the 

accuracy of the autocorrelation algorithm while detecting note 

frequencies. The monophonic automatic music transcription 

module outputs its results to a MIDI file that is played on a 

virtual piano. The system also enables the learner to 

manipulate the speed of music without changing the pitch, and 

to loop arbitrary parts of the transcribed piece of music in 

order to tackle the difficult parts. Furthermore, the system is 

able to calculate the key of the musical piece using the 

Krumhansl-Schmuckler key-finding algorithm, which in turn 

uses the correlation algorithm. Finally, a new algorithm is 

proposed to evaluate the learner’s performance of a musical 
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piece, compared to the original recording, in the form of a 

similarity percentage between the performance and the 

original recording.  

2. LITERATURE REVIEW 
The Literature review focuses mainly on previous attempts in 

the fields of computer-based music education and automatic 

music transcription. The field of computer-based music 

education is a vast field which focuses on enabling musicians 

to self-learn to play music, while the field of automatic music 

transcription focuses on converting a musical recording to a 

written format which can be easily read by musicians who 

desire to self-learn to play music using computer-based music 

teaching systems. 

2.1 Computer-Based Music Education 
According to Brandao et al. [4], there have been numerous 

attempts to use computers in music education. As a result, 

several systems have emerged that mainly try to accomplish 

one or a combination of the following tasks:  Teaching music 

fundamentals, teaching musical performance skills, teaching 

music analysis skills and teaching music composition skills. 

These music education computer-based systems use 

techniques ranging from Computer-Assisted Instruction (CAI) 

to Intelligent Tutoring. CAI systems have a limited power 

since they do not have an internal representation of the user 

and therefore have minimal knowledge about the users. 

Consequently, they offer the same teaching experience to all 

their users since they cannot differentiate between the 

different users of the system. Intelligent Tutoring Systems 

(ITSs), on the other hand, maintain three types of knowledge 

[5]:  

• Expert knowledge of the domain being taught, i.e. 

the system should thoroughly understand the subject being 

taught so that it can come up with solutions to potential 

problems. 

• Student diagnostic knowledge, i.e. the system must 

understand the student’s approach to learning in order to be 

able to correct any misconceptions. 

• Curricular knowledge, i.e. the system must be able 

to reduce the difference between the student’s knowledge and 

the expert’s knowledge in order to facilitate the learning 

process. 

2.2 Automatic Music Transcription 
According to Scheirer [6], Automatic Music Transcription of 

audio data is the process of taking a series of samples from a 

sampled digital WAV file and transforming this low-level 

representation of data into a high-level representation such as 

standard notation, which can later be saved in the MIDI 

format. The music encoded in the digital data can be 

described in the form of three parameters: frequency, 

amplitude and the shape of the wave that represents the music 

[7].  Frequency correlates with the pitch of the sound, 

amplitude correlates with the loudness of the sound, while the 

shape of the wave correlates with the timbre of the instrument 

being played [8]. 

Costantini et al. [9] attempted to develop a polyphonic music 

transcription system for percussive pitched instruments. The 

main functions of the system were to capture note pitches and 

note onsets, which are the instants of note attacks. The 

Constant-Q transform was the signal processing technique 

that was used to detect note pitches by building a time-

frequency representation of the signal. In order to detect note 

onsets, the short-time Fourier transform was operated on a 

frame-by-frame basis of the signal and an algorithm based on 

Support Vector Machine was used to identify the note pitch. 

The system had an accuracy of 97.3%.  However, it needed to 

be trained by playing the whole note range of the used 

instrument. It also had to be trained on a number of songs by 

providing the songs and the corresponding music scores 

before the system could be used for the first time. 

Benetos and Dixon [10] used a shift-invariant latent variable 

model for multiple fundamental frequency estimation and 

note tracking. The system had a good support of tuning 

changes and frequency modulations, such as vibrato, through 

incorporating shift-invariance and the constant-Q transform as 

a form of time-frequency representation, into the model. The 

system was trained on three variants: multiple-F0 estimation 

of orchestral instruments only, multiple-F0 estimation of 

orchestral instruments plus piano and multiple-F0 estimation 

of piano notes only. The system’s accuracy was 57.9%, which 

means that almost half of the played notes would be 

misidentified. 

An automatic piano tutoring system was proposed by Benetos 

et al. [11] which took as an input a recording of a student’s 

performance, along with a reference score. The system 

synthesized a recording from the reference score and then 

transcribed both recordings using the non-negative matrix 

factorization algorithm. This method successfully eliminated 

transcription errors since they would appear equally in both 

recordings, and would therefore cancel out together. The 

system also used hidden Markov models for note tracking. 

The system compared both transcriptions and pointed out 

correctly played notes as well as mistakes on a piano roll 

presentation. The accuracy of the system was 93%.  However, 

the musical score had to be provided as a reference, which 

defeats the purpose of automatic music transcription. 

Guo and Tang [12] proposed a polyphonic automatic music 

transcription system that was able to detect computer-

synthesized piano notes in the range of C3 to B8. The system 

functioned through converting the multiple-F0 estimation 

problem into a mathematical problem that was solved using 

mathematical treatment techniques including harmonic 

selection, matrix analysis and probability analysis methods. 

The algorithm reduced dimensions by initially applying 

principal component analysis (PCA) and then selecting 

candidates first by a human auditory model, and second by the 

harmonic structure of notes. The system had an accuracy of 

80%.  The computations, however, were complex and the 

system needed to be trained by playing the note range from 

C3 to B8 on a piano. The system also had to be trained on a 

number of songs by providing the songs and the 

corresponding music scores before it could be used for the 

first time. 

3. PROPOSED SOLUTION 

3.1 System Overview 
The proposed system consists of four main components:  

i) an automatic music transcription module which uses 

the autocorrelation algorithm along with two proposed 

algorithms for fault-detection and correction and frequency 

rounding to the nearest musical frequencies; 

ii) a MIDI player module equipped with a virtual on-

screen piano;  

iii) a key-finder module based on the Krumhasnsl-

Schmuckler key finding algorithm and the correlation 

algorithm, and 
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iv) a musical performance evaluation module which 

uses a proposed algorithm that compares two input signals 

and outputs a similarity measure for the two signals in the 

form of a percentage. Figure 1 shows the four main 

components of the system, along with the algorithms used to 

implement each one of them. 

The system aims to solve the problem of not being able to 

figure out music by ear and having difficulties reading sheet 

music through offering a monophonic automatic music 

transcription module which receives a single-channel WAV 

file containing the music the user wants to learn, and converts 

it to a MIDI file which is played on the virtual on-screen 

piano. 

 

Figure 1: Main components of the system 

 

The MIDI player module has two purposes. The first purpose 

is that it plays the MIDI file produced by the monophonic 

automatic music transcription module in order to help 

beginners to learn music playing even without having the 

ability to read sheet music. The piano highlights the key 

corresponding to the currently played note in a specific color 

(brown). It also displays the name of the note at the top so that 

the beginner can learn the notes corresponding to the different 

keys as they learn to play musical pieces.  Figure 2 is a 

screenshot of the user interface of the virtual on-screen piano. 

The second purpose of the MIDI player module is to solve the 

problem of not being able to play fast music. This is done 

through offering two main functionalities: a speed trainer and 

a looper. The speed trainer enables the user to manipulate the 

speed of the song in the form of a percentage from the original 

speed. The looper functionality enables the user to choose any 

arbitrary part of the song and loop it any number of times. It 

also enables the user to loop at a variable speed. 

 

Figure 2: Screenshot of the Virtual on-screen piano 

 

The key-finder module aims to address the problem of not 

being able to figure the key of a piece of music. It calculates 

the key of the musical piece and displays it on the top-right 

hand corner of the virtual piano. The user can then compare 

the key produced by the program to the key he figured out 

through analysing the chord progression of the musical piece. 

It is worth noting that the module calculates the most 

dominant key in case the song is based on multiple keys. 

The last module, which is the musical performance evaluation 

module, aims to solve the problem of having to have a 

professional listen to the beginner’s performance of a piece of 

music in order to evaluate it through enabling the user to feed 

into the system a single-channel WAV file containing the 

performance of the musical piece. The module then 

transcribes the performance version and compares its notes to 

the notes of the original version transcribed earlier. Finally the 

module outputs the evaluation in the form of a score in the 

range of 0 to 100, resembling the similarity between both 

versions of the musical piece. 

3.2 Automatic Music Transcription 

3.2.1 Architecture 

 

Figure 3: Automatic Music Transcription module’s 

architecture 

 

The architecture of the automatic music transcription module, 

Figure 3, consists of five main elements. The first is signal 

segmentation, which divides the signal into a series of 20ms 

segments to be fed into the autocorrelation algorithm so that 

the fundamental frequency of each segment can be calculated. 

The next element is frequency rounding, which is carried out 

using a proposed algorithm based on binary search. The 

algorithm takes the detected frequency of each of the 20ms 

segments, and rounds it to the closest frequency, which 

belongs to a musical note. 

The next element of the automatic music transcription module 

is the transcription fault detection and correction algorithm. 

Transcription faults, which are dealt with, are caused by the 

faulty estimation of the fundamental frequencies of each of 

the 20ms segments. The algorithm receives a list of rounded 

frequencies, which is the output of the frequency-rounding 

algorithm, and attempts to detect and correct as much as 

possible faults produced by the autocorrelation algorithm so 

that the transcription process would be more accurate. 

The final step of the automatic music transcription process is 

converting the list of frequencies, which are the output of the 

proposed fault detection and correction algorithm, into MIDI 

notes by associating the key number of each note with its note 

on-set and off-set events and finally writing these MIDI notes 

to a MIDI file to be played on the virtual on-screen piano and 

to be saved to disk for later use. 

3.2.2 Signal Segmentation 
The first step of the automatic music transcription process is 

signal segmentation. In this step, the signal is divided into 

20ms segments, which is equivalent to 882 samples of a 

WAV file sampled at 44,100Hz. This sampling rate 

corresponds to CD quality audio files and is therefore the 

• Autocorrelation algorithm 

• Proposed algorithm for transcription fault detection and 
correction 

• Proposed algorithm for frquency rounding 
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Transcription 
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ideal sampling rate. The segments were chosen to be of a 

length of 20ms in particular as a result of extensive testing 

with different windows sizes. Larger window sizes make the 

system unable to detect short musical notes, while smaller 

windows sizes produce multiple identical frequencies, which 

are then grouped together by the transcription fault detection 

and correction algorithm, and thus requires more processing 

which hinders the system’s performance. 

3.2.3 Autocorrelation 
 From a signal processing point of view, the 

autocorrelation function is a correlation of a signal with a 

lagged version of itself. This enables the discovery of any 

hidden periodicity in noisy data [13]. The autocorrelation 

algorithm was chosen in particular due to its simplicity and 

accuracy compared to other frequency-domain pitch detection 

algorithms such as the FFT. The algorithm has a complexity 

of O(n2) and is calculated using the following equation [14]: 

                    

 

   

 

where τ is the lag and m is the number of samples on which 

the autocorrelation function will be applied. The 

autocorrelation function is repeated for each of the possible 

values of τ. It is worth noting that the window length should 

be at least twice the period of the longest note that should be 

detected. In case of a 20ms window, the piano note G2 is the 

lowest note that can be detected since it has a period of almost 

10ms. The highest note that can be detected is G6 since the 

testing showed that autocorrelation algorithm is not accurate 

in case of frequencies higher than 1500Hz. 

As can be seen from the equation, the autocorrelation function 

works through multiplying a signal with a lagged version of 

itself, and saving the product. The process is repeated for a 

range of lag values and then a graph of the autocorrelation 

function is plotted. Figure 4 shows a plot of 160 samples of a 

signal which will be processed by applying the autocorrelation 

algorithm. The resulting graph is that of figure 5. The period 

of the signal always corresponds to the second highest peak. 

A peak means that original and the lagged versions of the 

signal are similar. The higher the peak, the closer the match. 

Accordingly, there is always a peak at lag zero. This is 

because the two versions of the signal will be an exact match. 

The second highest peak results from applying a lag so that 

the two versions of the signal will be an exact match. This lag, 

which is almost equal to 38 in case of Figure 5, corresponds to 

the period of the signal. 

 

Figure 4: 160 Samples of a periodic signal. Horizontal axis 

represents sample number 

 

 

Figure 5: 160 Samples of a periodic signal. Horizontal axis 

represents lag value 

 

In order to calculate the period of the signal, the following 

equation is applied: 

           

where    is the period,    is the lag corresponding to the 

second highest peak in the graph produced by the 

autocorrelation algorithm, and    is the inverse of the 

sampling rate of the signal. Finally, the pitch of the 20ms 

segment of the signal is the inverse of the period. 

3.2.4 Frequency Rounding 
Testing of the autocorrelation algorithm showed that it has an 

error rate of ±0.5% for identified pitches.  This means that the 

produced note pitches cannot be converted directly into MIDI 

notes which are directly mapped to logarithmic musical 

frequencies. A simple solution to this problem could be a 

brute force algorithm of complexity O(n) which would 

compare each detected pitch to each and every musical 

frequency in a pre-specified range.  This, however, is an 

inefficient solution that would consume excessive time to 

process a musical piece consisting of a large number of notes. 

In order to solve this problem, an algorithm based on binary 

search is proposed to round each detected note pitch to the 

nearest musical frequency. The algorithm utilizes the power 

of binary search to divide the search space by half at every 

iteration and therefore has a complexity O(Log(n)). The 

algorithm starts by generating a list of musical frequencies in 

the range of the notes that can be detected by the 

autocorrelation algorithm. The algorithm then proceeds by 

rounding the frequency of each detected note pitch through 

setting the head pointer of the binary search algorithm to the 

index of the first musical frequency and the tail pointer to the 

index of the last musical frequency. The algorithm then keeps 

looping while the frequency is not yet rounded and the index 

of the head is not equal to the index of the tail. 

At each iteration, the index is first calculated as the midpoint 

between the head and the tail and then the target frequency to 

be rounded is compared to the frequency at the index of the 

mid pointer. If both of them are equal, then the detected note 

pitch is already a musical frequency, and the algorithm moves 

on to round the next detected note pitch. Otherwise there is 

one of two cases: either the frequency at the index “mid” is 

smaller than the target frequency, or the frequency which has 

the index “mid” is larger than the target frequency. In the first 

case, one further step is taken to increase the efficiency of the 

algorithm;, and that is checking whether the target frequency 

is larger than the frequency at index mid, or is smaller than 

the frequency at index mid plus one.  The target frequency is 

then rounded to either the frequency at mid or that at mid plus 

one according to which frequency is closer to the target 

frequency.  The algorithm then moves on to rounding the 

detected pitch of the next note. This saves a number of 

iterations, and therefore makes the algorithm more efficient. 

Otherwise, the index of head is set to the index of mid plus 

one and the next iteration is started. 

In case the frequency at index “mid” is smaller than the target 

frequency, then a check is made to determine if the target 
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frequency is smaller than the frequency at index mid, but is 

larger than the frequency at index mid minus one. In this case, 

the target frequency is rounded to either the frequency at mid 

or mid minus one according to which frequency is closer to 

the target frequency, and then the algorithm moves on to 

rounding the detected pitch of the next note. Otherwise, the 

index of tail is set to the index of mid-minus one and the next 

iteration is started. 

The algorithm ends when all frequencies have been rounded. 

If, at any moment, head is equal to tail and the frequency at 

either of their indices is not equal to the target frequency, then 

the detected note pitch is out of the range of the note pitches 

that can be detected by the autocorrelation algorithm. This 

usually happens due to an octave error, which is a fault made 

by the autocorrelation algorithm in which a note is 

misidentified as being one or more octaves higher or lower 

than the correct note. 

3.2.5 Fault Detection and Correction 
In the autocorrelation algorithm step, some faults may occur 

while detecting the pitch of a given segment of a signal. The 

most common fault is the octave error, which means that the 

pitch of a note is misidentified as being one or more octaves 

higher or lower. Another common fault is misidentifying a 

note due to noise in the signal.  This noise mainly results from 

recording music using non-professional hardware such as 

microphones and audio interfaces.  A third problem which is 

very common, but is not due to a fault made by the 

autocorrelation algorithm, is that a note being played for more 

than 20ms will be identified as a number of notes each of a 

duration of 20ms. This produces an undesirable effect because 

each note will have a separate onset, and therefore the long 

note will sound discontinuous. 

In order to attempt to solve these three problems, a new 

algorithm of complexity O(n) is proposed. The algorithm 

starts by creating two arrays of an equal length corresponding 

to the number of detected notes in the musical piece. The first 

array stores note frequencies, while the second stores the 

duration of each note in the form of time units, and therefore 

is initialized to all ones. Two variables, j and k, act as pointers 

to the first and last notes, respectively. The algorithm 

proceeds while j is not equal to k by checking if the current 

note length has exceeded the maximum allowed note length. 

In this case, no successive notes of identical frequencies can 

be merged with the current note. This ensures that a number 

of notes played separately won’t end up being transcribed as a 

single sustained note. The algorithm then collects similar 

successive notes by comparing the current note to the next 

note. If they are identical, then they are combined into a single 

note that lasts for the duration of both notes combined. This 

ensures that a note that lasts for more than 20ms won’t end up 

being transcribed as a series of 20ms notes with separate 

attacks. 

The next step of the algorithm attempts to correct 

misidentified notes by comparing the current note to the note 

after the next one. If they are identical, yet the next note is 

different, then most probably it is misidentified and is 

therefore discarded and its duration is added to the duration of 

the first note. This operation is safe because at a note length of 

20ms, it is difficult that there would be a note that lasts for 

such a very short time. The final step of the algorithm has to 

do with discarding notes that last for less than the minimum 

allowed note duration. In case such a note is found, it is 

discarded and its duration is added to the duration of the 

previous. Once again, this is safe since it is very unlikely that 

such an extremely short note can be played by a human being. 

Finally, if none of these conditions holds true, then j is 

incremented so that the next note can be processed. 

3.2.6 MIDI Writing 
In order to write the detected note pitches, after being 

processed, to a MIDI file, then each of the detected pitches is 

converted to a MIDI note number using the following formula 

[8]: 

            
   

 
   

    
  

 

where “kn” is the MIDI note key number and “ ” is the 

fundamental frequency of the detected note. The MIDI key 

numbers are then written to a MIDI file, which will be played 

using the MIDI player. 

3.3 MIDI Player 
The purpose of the MIDI player module is to play the MIDI 

file that was produced by the automatic music transcription 

module. The MIDI player also enables the user to reduce the 

speed of the MIDI music to any fixed speed.  It also allows 

the user to loop arbitrary sections of the MIDI file for an 

infinite number of times, giving him the ability to start at a 

stepped down speed and gradually increase the speed in an 

arbitrary number of steps. 

3.4 Key Finding 
The Krumhansl-Schmuckler key finding algorithm [15] was 

used to identify the key of the transcribed musical piece. It is 

based on the notion of key profiles, where each key profile 

consists of a vector representing the stability of each of the 

twelve pitch classes relative to that key profile. The key 

profiles were synthesized by performing experiments 

involving professional musicians by letting them listen to 

several musical pieces and having them decide how strong 

each pitch class is present in that musical piece. The values of 

the pitch classes are then linked to the key profile of the 

musical piece [15]. 

Figures 6 and 7 show Temperley’s [15] revised key profiles 

for C major and C minor respectively. In order to get the key 

profiles for other major or minor keys, the values are shifted 

by the appropriate number of steps. For example, in order to 

get the key profile for D major, the C major pitch class would 

be shifted by two steps so that the D pitch class would have 

the value 6.35, the Eb pitch class would have the value 2.23 

and the E pitch class would have the value 3.48. In case the G 

minor pitch class needs to be calculated, the C minor pitch 

class is shifted by seven steps so that the G pitch class would 

have the value 6.33, while the Ab pitch class would have the 

value 2.68 and the A pitch class would have the value 3.52. 
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Figure 6: Revised C major key profile 

 

Figure 7: Revised C minor key profile 

 

The Krumhansl-Schmuckler[15] key finding algorithm starts 

by generating the 24 major and minor key profiles form the C 

major and C minor key profiles. It then calculates the pitch 

class vector of the musical piece by counting the duration of 

each of the pitch classes of the musical piece. The algorithm 

finally correlates the pitch class vector of the musical piece 

with the other 24 major and minor pitch classes and chooses 

the key profile that has the highest correlation value to be the 

key of the musical piece, which is finally displayed in the 

label on the top-right corner of the graphical user interface. 

3.5 Musical Performance Evaluation 
The musical performance evaluation module enables the user 

to feed a recorded performance of the transcribed musical 

piece into the system, and to have the system evaluate that 

performance by outputting a score which is the similarity in 

percentage between the original version and the performance 

version of the transcribed musical piece. The performance 

version is also transcribed using the automatic transcription 

module for two reasons: the first is to identify its notes, and 

the other is to have common transcription errors suppressed as 

they will appear equally in both versions of the MIDI file. 

The architecture of the musical performance evaluation 

module consists of a single proposed algorithm, of a 

complexity O(n). The algorithm starts by receiving two arrays 

of notes as input: the first one corresponds to the original 

version of the transcribed musical piece, while the second one 

corresponds to the transcribed performance version of the 

same musical piece. The two arrays are then labelled 

“reference” and “test” respectively if they are of equal length 

or if the first array has fewer elements than the second array. 

Otherwise, if the first array has more elements than the second 

array, then they are named “test” and “reference” respectively. 

The algorithm proceeds by first eliminating rests in both 

arrays and then counting the number of occurrences of each of 

the twelve musical notes in each array. An error measure is 

then produced as the sum of the absolute differences between 

the counts of notes corresponding to each of the twelve pitch 

classes in each of the two arrays. The algorithm then 

calculates the first similarity measure as the total number of 

notes in the test array minus the total number of errors and the 

difference is divided by the total number of notes in the 

original array. The quotient is then transformed to a 

percentage which is saved for later use. The equation below 

shows how the first similarity measure is calculated, where 

‘P’ is the total number of identified notes in the performance 

version, ‘E’ is the total number of false positives and false 

negatives, and ‘N’ is the total number of identified notes in 

the original version. 

S1 = 
   

 
     

The algorithm then calculates the second similarity measure 

by considering each note in the reference array and checking 

if there is an identical note in the test array at the same index. 

In this case, both notes are removed and the next note is 

processed.  In case the current note in the reference arrays 

does not correspond to the note in the test array at the same 

index, but is identical to the note in the test array at the next 

index, then a false positive is detected. This means that an 

extra note has been played, and therefore two notes are 

removed from the test array, one note is removed from the 

reference array and a new error counter is incremented by one.  

In case the note in the reference array doesn’t correspond to 

the note in the test array at the next index, but the note in the 

reference array at the next index is identical to the note in the 

test array at the next index, then a false negative is detected. 

This means that a note hasn’t been played and therefore two 

notes are removed from the reference array, one note is 

removed from the test array and the error counter is 

incremented by one. In case none of these conditions holds 

true, then the note at reference can’t be found in test and 

therefore the error counter is incremented by one and a note is 

removed from the start of both arrays. The process continues 

like this until any or both arrays are empty. If either of .the 

arrays ends up being not empty, then it has extra notes and 

therefore its count is added to the error counter. 

The algorithm calculates the second similarity measure as the 

total number of notes in the test array minus the total number 

of errors and the difference is divided by the total number of 

notes in the original array. The quotient is then transformed to 

a percentage which is used to produce the score. This score is 

equal to zero percent if any of the two similarity measure is 

equal to zero percent, and is equal to the second similarity 

measure alone in case it is smaller than 30%. This ensures that 

a musical piece and its reverse won’t be a perfect match. The 

number 30% was chosen in specific as a result of trial and 

error which showed that smaller numbers can make the 

algorithm less accurate in case the same notes are played in 

both versions but in different orders. It also showed that larger 

numbers can make the algorithm less accurate in case many 

errors appear between correctly played notes. 

Finally, if none of the similarity measures are equal to zero 

and the second similarity measure is greater than 30, then the 
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score is calculated as the average of both similarity measures. 

This should increase the evaluation accuracy since faults 

made by one of the techniques used to calculate the similarity 

measure, will be corrected by the other. After the score is 

calculated, it is displayed in the label at the top right corner of 

the graphical user interface. 

4. EXPERIMENTATION, RESULTS 

AND ANALYSIS 

4.1 Automatic Music Transcription 
The monophonic automatic music transcription module, 

which uses the autocorrelation algorithm along with the 

proposed frequency rounding and fault detection and 

correction algorithms, was tested on a dual core machine 

using six monophonic musical pieces. The six pieces were of 

different tempos and complexities, and were played on three 

different instruments: piano, guitar and saxophone in order to 

make sure that the transcription module is capable of 

transcribing sounds of different timbres. The guitar was used 

in specific to test the transcription module’s ability to 

transcribe playing techniques such as vibrato and slides. Some 

of the musical pieces were recorded using a microphone, 

while others were recorded using direct line-in recording. This 

was done to make sure that the system is capable of 

transcribing music which has some noise due to being 

captured using a microphone. 

In order to produce an accuracy measure, the following 

formula [11] was used: 

          
 

       
 

 

where ‘N’ is the number of correctly identified notes, ‘FP’ is 

the number of false positives, which are notes that were 

identified by the system but were not played in the musical 

piece, and ‘FN’ is the number of false negatives, which are 

notes that were played in the musical piece but were not 

identified by the system. The accuracy was calculated as the 

average of the transcription accuracies of six monophonic 

musical pieces. 

 

The accuracy of the monophonic automatic music 

transcription module was 88.7% when tested using the six 

aforementioned monophonic musical pieces. The module was 

capable of identifying notes played on any instrument in the 

range from G2 to G6. The average time the module takes to 

transcribe a five minutes monophonic musical piece was 18 

seconds, which means that the module is capable of working 

in real time. Figure 8 shows the name and the accuracy of 

each of the six musical pieces. It can be seen that simple 

musical pieces, such as “Happy Birthday” have higher 

accuracies than more complex ones such as “Careless 

Whisper”. It can also be seen that guitar music that was 

recorded clean, such as “Enta Omry” had a higher accuracy 

than faster guitar music that was recorded using distortion and 

multiple guitar effects, such as “Love Story” and the guitar 

solo. 

 

Figure 8: Transcription accuracy of the 6 musical pieces 

The frequency rounding algorithm always produces correct 

results and has a complexity of O(log(n)) since it is based on 

binary search. The modification that was made to the 

algorithm, which enables it to peek at one position to the left 

or to the right of the middle at any iteration saves a 

considerable number of iterations that were wasted. This 

algorithm saves almost half of the time taken by the ad-hoc 

sequential search algorithm that would have been used 

otherwise. 

The transcription fault detection and correction algorithm 

enhanced the accuracy of the monophonic automatic music 

transcription module by 9.2% on average. The algorithm 

mainly improves the transcription accuracy by combining 

similar notes and discarding very short notes that are not 

preceded or followed by identical notes. This gets rid of extra 

note onsets and also discards notes that don’t belong to the 

original musical piece. 

4.2 Key Finding 
The Krumhansl-Schmuckler key finding algorithm and the 

correlation algorithm, together, were able to correctly identify 

the key of the six musical pieces since they were based on 

single keys. According to Temperley [15], the algorithm had 

an accuracy of 97.1% when tested on 48 preludes of Bach’s 

Well-Tempered Clavier which is based on all 24 musical 

keys. This means that the keys of 44 out of 48 preludes were 

identified correctly, and therefore the algorithm is accurate 

enough to be used for the purpose of identifying the key of a 

musical piece so that a beginner pianist would be able to use 

this identified key as a reference while learning to analyze 

musical pieces. 

4.3 Musical Performance Evaluation 
The musical performance evaluation module was capable of 

producing accurate scores when comparing original and 

performance versions of each of the six musical pieces that 

were put to test. Although it is impossible to interpret what the 
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zero score means since signals can be completely different in 

infinitely many ways, the use of two similarity measures to 

calculate the final score enabled the production of a zero score 

in case the second similarity measure is less than 30% or in 

case any of the similarity measures is equal to 0%. This 

ensures that the original and the reverse versions of a musical 

piece won’t score a 100%. This means that the algorithm can 

correctly produce a similarity measure between two signals, 

which can be used by beginners to seriously and individually 

evaluate their performances. 

5. CONCLUSIONS 
Technological advances in the fields of digital signal 

processing and computer-based music has made it possible to 

automate the music learning process to a large extent. This 

paper presented a solution to the four common problems faced 

by beginners trying to learn music on their own. The proposed 

system attempted to solve the problem of not being able to 

figure out music by ear as well as not being able to read music 

notation easily by introducing a monophonic automatic music 

transcription module which uses the autocorrelation algorithm 

along with two new algorithms to transform a monophonic 

WAV file to a MIDI file, which is played on the virtual piano. 

The system proposed to solve the problem of not being able to 

play fast music by enabling the user to manipulate the speed 

of the musical piece, and also to loop any arbitrary part of the 

musical piece and to variably manipulate its speed.  The 

system was able to solve the problem of not being able to 

verify that a beginner-identified key of the transcribed musical 

piece is correct by introducing an automatic key-finder 

module using the Krumhansl-Schmuckler key-finding 

algorithm with the correlation algorithm. Finally, the system 

attempted to solve the problem of having to consult a musical 

teacher to evaluate a beginner’s performance of the 

transcribed musical piece by proposing a new algorithm 

which is capable of evaluating the beginner’s performance in 

the form of a score ranging from 0 to 100, resembling the 

similarity between the original and the performance versions 

of the transcribed musical piece. 
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