

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

22

A Novel System for Music Learning using Low

Complexity Algorithms

Amr Hesham

Faculty of Informatics and
Computer Science

The British University in Egypt

Sherouk City
Egypt

Ann Nosseir
Faculty of Informatics and

Computer Science
The British University in Egypt

& Institute of National Planning
Egypt

Omar H. Karam
Faculty of Informatics and

Computer Science
The British University in Egypt

& Ain Shams University
Egypt

ABSTRACT

This paper introduces a music learning system that uses new

low complexity algorithms and aims to solve the four most

common problems faced by self-learning beginner pianists:

reading music sheets, playing fast tempo music pieces,

verifying the key of a music piece, and finally evaluating their

own performances. In order to achieve these aims, the system

proposes a monophonic automatic music transcription system

capable of detecting notes in the range from G2 to G6. It uses

an autocorrelation algorithm along with a binary search based

algorithm in order to map the detected frequencies of the

individual notes of a musical piece to the nearest musical

frequencies. To enable playing fast music, the system uses a

MIDI player equipped with a virtual piano as well as section

looping and speed manipulation functionalities to enable the

user to start learning a musical piece slowly and build up

speed. Furthermore, it applies the Krumhansl-Schmuckler

key-finding algorithm along with the correlation algorithm to

identify the key of a musical piece. A musical performance

evaluation algorithm is also introduced which compares the

original performance with that of the learner’s producing a

quantitative similarity measure between the two. The

experimental evaluation shows that the system is capable of

detecting notes in the range from G2 to G6 with an accuracy

of 88.7% in addition to identifying the key of a musical piece

with an accuracy of 97.1%.

Keywords

Music learning, automatic music transcription, key finding,

monophonic music.

1. INTRODUCTION
Computer-based music teaching has been an ongoing field of

research since the late 70’s. There have been many attempts to

automate completely the process of teaching to play Piano

through techniques such as automatic music transcription,

which is the process of inferring automatically the pitch,

timing, and the duration of each played sound, given only the

acoustic recording of a performance [1].

These techniques could not provide a comprehensive solution

to overcome difficulties beginner self-learning pianists face

while learning to play new musical pieces. The most

important problem is reading music sheet music. Sheet music

is a symbolic method of representing music to both

performers and listeners, in the form of western music

notation [2].

In addition, one has to know the name of a classical music

piece in order to find its sheet music, which is not an easy task

for beginners. Furthermore, common and interesting

musically pieces are of a fast tempo. This prevents usually

beginners from learning to play these pieces until they acquire

skills and reach an advanced level.

Another difficulty self-learning beginner pianists face, when

there is no sheet music available, is that they need to verify

that the key of the musical piece is correct. A musical piece is

“… an ordered collection of pitches in the whole- and half-

step patterns” [3]. The key of a musical piece is found through

analysis based on music theory; and it is the first degree of the

scale of the musical piece. The key can be either a minor key

or a major key.

After completely learning a musical piece, the self-learning

beginner pianist needs someone experienced to listen to his or

her performance and evaluate it. It is also necessary that the

evaluation should be number-based, so that that self-learner

would be able to see how much they have improved over

time.

In this paper, a monophonic, i.e. only one note can be playing

at any given time; piano music teaching system is proposed to

help beginner pianists self-learn piano playing. The system

helps eliminating the difficulties discussed above through

offering a monophonic automatic music transcription module

that uses the autocorrelation algorithm along with a proposed

algorithm based on binary search to map the detected

frequencies of the individual notes of a musical piece to the

nearest musical frequencies. A fault detection and correction

algorithm is also proposed in order to further enhance the

accuracy of the autocorrelation algorithm while detecting note

frequencies. The monophonic automatic music transcription

module outputs its results to a MIDI file that is played on a

virtual piano. The system also enables the learner to

manipulate the speed of music without changing the pitch, and

to loop arbitrary parts of the transcribed piece of music in

order to tackle the difficult parts. Furthermore, the system is

able to calculate the key of the musical piece using the

Krumhansl-Schmuckler key-finding algorithm, which in turn

uses the correlation algorithm. Finally, a new algorithm is

proposed to evaluate the learner’s performance of a musical

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

23

piece, compared to the original recording, in the form of a

similarity percentage between the performance and the

original recording.

2. LITERATURE REVIEW
The Literature review focuses mainly on previous attempts in

the fields of computer-based music education and automatic

music transcription. The field of computer-based music

education is a vast field which focuses on enabling musicians

to self-learn to play music, while the field of automatic music

transcription focuses on converting a musical recording to a

written format which can be easily read by musicians who

desire to self-learn to play music using computer-based music

teaching systems.

2.1 Computer-Based Music Education
According to Brandao et al. [4], there have been numerous

attempts to use computers in music education. As a result,

several systems have emerged that mainly try to accomplish

one or a combination of the following tasks: Teaching music

fundamentals, teaching musical performance skills, teaching

music analysis skills and teaching music composition skills.

These music education computer-based systems use

techniques ranging from Computer-Assisted Instruction (CAI)

to Intelligent Tutoring. CAI systems have a limited power

since they do not have an internal representation of the user

and therefore have minimal knowledge about the users.

Consequently, they offer the same teaching experience to all

their users since they cannot differentiate between the

different users of the system. Intelligent Tutoring Systems

(ITSs), on the other hand, maintain three types of knowledge

[5]:

• Expert knowledge of the domain being taught, i.e.

the system should thoroughly understand the subject being

taught so that it can come up with solutions to potential

problems.

• Student diagnostic knowledge, i.e. the system must

understand the student’s approach to learning in order to be

able to correct any misconceptions.

• Curricular knowledge, i.e. the system must be able

to reduce the difference between the student’s knowledge and

the expert’s knowledge in order to facilitate the learning

process.

2.2 Automatic Music Transcription
According to Scheirer [6], Automatic Music Transcription of

audio data is the process of taking a series of samples from a

sampled digital WAV file and transforming this low-level

representation of data into a high-level representation such as

standard notation, which can later be saved in the MIDI

format. The music encoded in the digital data can be

described in the form of three parameters: frequency,

amplitude and the shape of the wave that represents the music

[7]. Frequency correlates with the pitch of the sound,

amplitude correlates with the loudness of the sound, while the

shape of the wave correlates with the timbre of the instrument

being played [8].

Costantini et al. [9] attempted to develop a polyphonic music

transcription system for percussive pitched instruments. The

main functions of the system were to capture note pitches and

note onsets, which are the instants of note attacks. The

Constant-Q transform was the signal processing technique

that was used to detect note pitches by building a time-

frequency representation of the signal. In order to detect note

onsets, the short-time Fourier transform was operated on a

frame-by-frame basis of the signal and an algorithm based on

Support Vector Machine was used to identify the note pitch.

The system had an accuracy of 97.3%. However, it needed to

be trained by playing the whole note range of the used

instrument. It also had to be trained on a number of songs by

providing the songs and the corresponding music scores

before the system could be used for the first time.

Benetos and Dixon [10] used a shift-invariant latent variable

model for multiple fundamental frequency estimation and

note tracking. The system had a good support of tuning

changes and frequency modulations, such as vibrato, through

incorporating shift-invariance and the constant-Q transform as

a form of time-frequency representation, into the model. The

system was trained on three variants: multiple-F0 estimation

of orchestral instruments only, multiple-F0 estimation of

orchestral instruments plus piano and multiple-F0 estimation

of piano notes only. The system’s accuracy was 57.9%, which

means that almost half of the played notes would be

misidentified.

An automatic piano tutoring system was proposed by Benetos

et al. [11] which took as an input a recording of a student’s

performance, along with a reference score. The system

synthesized a recording from the reference score and then

transcribed both recordings using the non-negative matrix

factorization algorithm. This method successfully eliminated

transcription errors since they would appear equally in both

recordings, and would therefore cancel out together. The

system also used hidden Markov models for note tracking.

The system compared both transcriptions and pointed out

correctly played notes as well as mistakes on a piano roll

presentation. The accuracy of the system was 93%. However,

the musical score had to be provided as a reference, which

defeats the purpose of automatic music transcription.

Guo and Tang [12] proposed a polyphonic automatic music

transcription system that was able to detect computer-

synthesized piano notes in the range of C3 to B8. The system

functioned through converting the multiple-F0 estimation

problem into a mathematical problem that was solved using

mathematical treatment techniques including harmonic

selection, matrix analysis and probability analysis methods.

The algorithm reduced dimensions by initially applying

principal component analysis (PCA) and then selecting

candidates first by a human auditory model, and second by the

harmonic structure of notes. The system had an accuracy of

80%. The computations, however, were complex and the

system needed to be trained by playing the note range from

C3 to B8 on a piano. The system also had to be trained on a

number of songs by providing the songs and the

corresponding music scores before it could be used for the

first time.

3. PROPOSED SOLUTION

3.1 System Overview
The proposed system consists of four main components:

i) an automatic music transcription module which uses

the autocorrelation algorithm along with two proposed

algorithms for fault-detection and correction and frequency

rounding to the nearest musical frequencies;

ii) a MIDI player module equipped with a virtual on-

screen piano;

iii) a key-finder module based on the Krumhasnsl-

Schmuckler key finding algorithm and the correlation

algorithm, and

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

24

iv) a musical performance evaluation module which

uses a proposed algorithm that compares two input signals

and outputs a similarity measure for the two signals in the

form of a percentage. Figure 1 shows the four main

components of the system, along with the algorithms used to

implement each one of them.

The system aims to solve the problem of not being able to

figure out music by ear and having difficulties reading sheet

music through offering a monophonic automatic music

transcription module which receives a single-channel WAV

file containing the music the user wants to learn, and converts

it to a MIDI file which is played on the virtual on-screen

piano.

Figure 1: Main components of the system

The MIDI player module has two purposes. The first purpose

is that it plays the MIDI file produced by the monophonic

automatic music transcription module in order to help

beginners to learn music playing even without having the

ability to read sheet music. The piano highlights the key

corresponding to the currently played note in a specific color

(brown). It also displays the name of the note at the top so that

the beginner can learn the notes corresponding to the different

keys as they learn to play musical pieces. Figure 2 is a

screenshot of the user interface of the virtual on-screen piano.

The second purpose of the MIDI player module is to solve the

problem of not being able to play fast music. This is done

through offering two main functionalities: a speed trainer and

a looper. The speed trainer enables the user to manipulate the

speed of the song in the form of a percentage from the original

speed. The looper functionality enables the user to choose any

arbitrary part of the song and loop it any number of times. It

also enables the user to loop at a variable speed.

Figure 2: Screenshot of the Virtual on-screen piano

The key-finder module aims to address the problem of not

being able to figure the key of a piece of music. It calculates

the key of the musical piece and displays it on the top-right

hand corner of the virtual piano. The user can then compare

the key produced by the program to the key he figured out

through analysing the chord progression of the musical piece.

It is worth noting that the module calculates the most

dominant key in case the song is based on multiple keys.

The last module, which is the musical performance evaluation

module, aims to solve the problem of having to have a

professional listen to the beginner’s performance of a piece of

music in order to evaluate it through enabling the user to feed

into the system a single-channel WAV file containing the

performance of the musical piece. The module then

transcribes the performance version and compares its notes to

the notes of the original version transcribed earlier. Finally the

module outputs the evaluation in the form of a score in the

range of 0 to 100, resembling the similarity between both

versions of the musical piece.

3.2 Automatic Music Transcription

3.2.1 Architecture

Figure 3: Automatic Music Transcription module’s

architecture

The architecture of the automatic music transcription module,

Figure 3, consists of five main elements. The first is signal

segmentation, which divides the signal into a series of 20ms

segments to be fed into the autocorrelation algorithm so that

the fundamental frequency of each segment can be calculated.

The next element is frequency rounding, which is carried out

using a proposed algorithm based on binary search. The

algorithm takes the detected frequency of each of the 20ms

segments, and rounds it to the closest frequency, which

belongs to a musical note.

The next element of the automatic music transcription module

is the transcription fault detection and correction algorithm.

Transcription faults, which are dealt with, are caused by the

faulty estimation of the fundamental frequencies of each of

the 20ms segments. The algorithm receives a list of rounded

frequencies, which is the output of the frequency-rounding

algorithm, and attempts to detect and correct as much as

possible faults produced by the autocorrelation algorithm so

that the transcription process would be more accurate.

The final step of the automatic music transcription process is

converting the list of frequencies, which are the output of the

proposed fault detection and correction algorithm, into MIDI

notes by associating the key number of each note with its note

on-set and off-set events and finally writing these MIDI notes

to a MIDI file to be played on the virtual on-screen piano and

to be saved to disk for later use.

3.2.2 Signal Segmentation
The first step of the automatic music transcription process is

signal segmentation. In this step, the signal is divided into

20ms segments, which is equivalent to 882 samples of a

WAV file sampled at 44,100Hz. This sampling rate

corresponds to CD quality audio files and is therefore the

• Autocorrelation algorithm

• Proposed algorithm for transcription fault detection and
correction

• Proposed algorithm for frquency rounding

Automatic Music
Transcription

MIDI Player

• Krumhansl-Schmuckler algorithm

• Correlation algorithm Key-Finder Module

• Proposed musical performance evaluation algorithm

Musical
Performance

Evaluation

Signal
Segmentation

Autocorrelati
on Algorithm

Frequency
Rounding
Algorithm

Fault
Detection and

Correction
Algorithm

MIDI File
Writing

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

25

ideal sampling rate. The segments were chosen to be of a

length of 20ms in particular as a result of extensive testing

with different windows sizes. Larger window sizes make the

system unable to detect short musical notes, while smaller

windows sizes produce multiple identical frequencies, which

are then grouped together by the transcription fault detection

and correction algorithm, and thus requires more processing

which hinders the system’s performance.

3.2.3 Autocorrelation
 From a signal processing point of view, the

autocorrelation function is a correlation of a signal with a

lagged version of itself. This enables the discovery of any

hidden periodicity in noisy data [13]. The autocorrelation

algorithm was chosen in particular due to its simplicity and

accuracy compared to other frequency-domain pitch detection

algorithms such as the FFT. The algorithm has a complexity

of O(n2) and is calculated using the following equation [14]:

where τ is the lag and m is the number of samples on which

the autocorrelation function will be applied. The

autocorrelation function is repeated for each of the possible

values of τ. It is worth noting that the window length should

be at least twice the period of the longest note that should be

detected. In case of a 20ms window, the piano note G2 is the

lowest note that can be detected since it has a period of almost

10ms. The highest note that can be detected is G6 since the

testing showed that autocorrelation algorithm is not accurate

in case of frequencies higher than 1500Hz.

As can be seen from the equation, the autocorrelation function

works through multiplying a signal with a lagged version of

itself, and saving the product. The process is repeated for a

range of lag values and then a graph of the autocorrelation

function is plotted. Figure 4 shows a plot of 160 samples of a

signal which will be processed by applying the autocorrelation

algorithm. The resulting graph is that of figure 5. The period

of the signal always corresponds to the second highest peak.

A peak means that original and the lagged versions of the

signal are similar. The higher the peak, the closer the match.

Accordingly, there is always a peak at lag zero. This is

because the two versions of the signal will be an exact match.

The second highest peak results from applying a lag so that

the two versions of the signal will be an exact match. This lag,

which is almost equal to 38 in case of Figure 5, corresponds to

the period of the signal.

Figure 4: 160 Samples of a periodic signal. Horizontal axis

represents sample number

Figure 5: 160 Samples of a periodic signal. Horizontal axis

represents lag value

In order to calculate the period of the signal, the following

equation is applied:

where is the period, is the lag corresponding to the

second highest peak in the graph produced by the

autocorrelation algorithm, and is the inverse of the

sampling rate of the signal. Finally, the pitch of the 20ms

segment of the signal is the inverse of the period.

3.2.4 Frequency Rounding
Testing of the autocorrelation algorithm showed that it has an

error rate of ±0.5% for identified pitches. This means that the

produced note pitches cannot be converted directly into MIDI

notes which are directly mapped to logarithmic musical

frequencies. A simple solution to this problem could be a

brute force algorithm of complexity O(n) which would

compare each detected pitch to each and every musical

frequency in a pre-specified range. This, however, is an

inefficient solution that would consume excessive time to

process a musical piece consisting of a large number of notes.

In order to solve this problem, an algorithm based on binary

search is proposed to round each detected note pitch to the

nearest musical frequency. The algorithm utilizes the power

of binary search to divide the search space by half at every

iteration and therefore has a complexity O(Log(n)). The

algorithm starts by generating a list of musical frequencies in

the range of the notes that can be detected by the

autocorrelation algorithm. The algorithm then proceeds by

rounding the frequency of each detected note pitch through

setting the head pointer of the binary search algorithm to the

index of the first musical frequency and the tail pointer to the

index of the last musical frequency. The algorithm then keeps

looping while the frequency is not yet rounded and the index

of the head is not equal to the index of the tail.

At each iteration, the index is first calculated as the midpoint

between the head and the tail and then the target frequency to

be rounded is compared to the frequency at the index of the

mid pointer. If both of them are equal, then the detected note

pitch is already a musical frequency, and the algorithm moves

on to round the next detected note pitch. Otherwise there is

one of two cases: either the frequency at the index “mid” is

smaller than the target frequency, or the frequency which has

the index “mid” is larger than the target frequency. In the first

case, one further step is taken to increase the efficiency of the

algorithm;, and that is checking whether the target frequency

is larger than the frequency at index mid, or is smaller than

the frequency at index mid plus one. The target frequency is

then rounded to either the frequency at mid or that at mid plus

one according to which frequency is closer to the target

frequency. The algorithm then moves on to rounding the

detected pitch of the next note. This saves a number of

iterations, and therefore makes the algorithm more efficient.

Otherwise, the index of head is set to the index of mid plus

one and the next iteration is started.

In case the frequency at index “mid” is smaller than the target

frequency, then a check is made to determine if the target

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

26

frequency is smaller than the frequency at index mid, but is

larger than the frequency at index mid minus one. In this case,

the target frequency is rounded to either the frequency at mid

or mid minus one according to which frequency is closer to

the target frequency, and then the algorithm moves on to

rounding the detected pitch of the next note. Otherwise, the

index of tail is set to the index of mid-minus one and the next

iteration is started.

The algorithm ends when all frequencies have been rounded.

If, at any moment, head is equal to tail and the frequency at

either of their indices is not equal to the target frequency, then

the detected note pitch is out of the range of the note pitches

that can be detected by the autocorrelation algorithm. This

usually happens due to an octave error, which is a fault made

by the autocorrelation algorithm in which a note is

misidentified as being one or more octaves higher or lower

than the correct note.

3.2.5 Fault Detection and Correction
In the autocorrelation algorithm step, some faults may occur

while detecting the pitch of a given segment of a signal. The

most common fault is the octave error, which means that the

pitch of a note is misidentified as being one or more octaves

higher or lower. Another common fault is misidentifying a

note due to noise in the signal. This noise mainly results from

recording music using non-professional hardware such as

microphones and audio interfaces. A third problem which is

very common, but is not due to a fault made by the

autocorrelation algorithm, is that a note being played for more

than 20ms will be identified as a number of notes each of a

duration of 20ms. This produces an undesirable effect because

each note will have a separate onset, and therefore the long

note will sound discontinuous.

In order to attempt to solve these three problems, a new

algorithm of complexity O(n) is proposed. The algorithm

starts by creating two arrays of an equal length corresponding

to the number of detected notes in the musical piece. The first

array stores note frequencies, while the second stores the

duration of each note in the form of time units, and therefore

is initialized to all ones. Two variables, j and k, act as pointers

to the first and last notes, respectively. The algorithm

proceeds while j is not equal to k by checking if the current

note length has exceeded the maximum allowed note length.

In this case, no successive notes of identical frequencies can

be merged with the current note. This ensures that a number

of notes played separately won’t end up being transcribed as a

single sustained note. The algorithm then collects similar

successive notes by comparing the current note to the next

note. If they are identical, then they are combined into a single

note that lasts for the duration of both notes combined. This

ensures that a note that lasts for more than 20ms won’t end up

being transcribed as a series of 20ms notes with separate

attacks.

The next step of the algorithm attempts to correct

misidentified notes by comparing the current note to the note

after the next one. If they are identical, yet the next note is

different, then most probably it is misidentified and is

therefore discarded and its duration is added to the duration of

the first note. This operation is safe because at a note length of

20ms, it is difficult that there would be a note that lasts for

such a very short time. The final step of the algorithm has to

do with discarding notes that last for less than the minimum

allowed note duration. In case such a note is found, it is

discarded and its duration is added to the duration of the

previous. Once again, this is safe since it is very unlikely that

such an extremely short note can be played by a human being.

Finally, if none of these conditions holds true, then j is

incremented so that the next note can be processed.

3.2.6 MIDI Writing
In order to write the detected note pitches, after being

processed, to a MIDI file, then each of the detected pitches is

converted to a MIDI note number using the following formula

[8]:

where “kn” is the MIDI note key number and “ ” is the

fundamental frequency of the detected note. The MIDI key

numbers are then written to a MIDI file, which will be played

using the MIDI player.

3.3 MIDI Player
The purpose of the MIDI player module is to play the MIDI

file that was produced by the automatic music transcription

module. The MIDI player also enables the user to reduce the

speed of the MIDI music to any fixed speed. It also allows

the user to loop arbitrary sections of the MIDI file for an

infinite number of times, giving him the ability to start at a

stepped down speed and gradually increase the speed in an

arbitrary number of steps.

3.4 Key Finding
The Krumhansl-Schmuckler key finding algorithm [15] was

used to identify the key of the transcribed musical piece. It is

based on the notion of key profiles, where each key profile

consists of a vector representing the stability of each of the

twelve pitch classes relative to that key profile. The key

profiles were synthesized by performing experiments

involving professional musicians by letting them listen to

several musical pieces and having them decide how strong

each pitch class is present in that musical piece. The values of

the pitch classes are then linked to the key profile of the

musical piece [15].

Figures 6 and 7 show Temperley’s [15] revised key profiles

for C major and C minor respectively. In order to get the key

profiles for other major or minor keys, the values are shifted

by the appropriate number of steps. For example, in order to

get the key profile for D major, the C major pitch class would

be shifted by two steps so that the D pitch class would have

the value 6.35, the Eb pitch class would have the value 2.23

and the E pitch class would have the value 3.48. In case the G

minor pitch class needs to be calculated, the C minor pitch

class is shifted by seven steps so that the G pitch class would

have the value 6.33, while the Ab pitch class would have the

value 2.68 and the A pitch class would have the value 3.52.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

27

Figure 6: Revised C major key profile

Figure 7: Revised C minor key profile

The Krumhansl-Schmuckler[15] key finding algorithm starts

by generating the 24 major and minor key profiles form the C

major and C minor key profiles. It then calculates the pitch

class vector of the musical piece by counting the duration of

each of the pitch classes of the musical piece. The algorithm

finally correlates the pitch class vector of the musical piece

with the other 24 major and minor pitch classes and chooses

the key profile that has the highest correlation value to be the

key of the musical piece, which is finally displayed in the

label on the top-right corner of the graphical user interface.

3.5 Musical Performance Evaluation
The musical performance evaluation module enables the user

to feed a recorded performance of the transcribed musical

piece into the system, and to have the system evaluate that

performance by outputting a score which is the similarity in

percentage between the original version and the performance

version of the transcribed musical piece. The performance

version is also transcribed using the automatic transcription

module for two reasons: the first is to identify its notes, and

the other is to have common transcription errors suppressed as

they will appear equally in both versions of the MIDI file.

The architecture of the musical performance evaluation

module consists of a single proposed algorithm, of a

complexity O(n). The algorithm starts by receiving two arrays

of notes as input: the first one corresponds to the original

version of the transcribed musical piece, while the second one

corresponds to the transcribed performance version of the

same musical piece. The two arrays are then labelled

“reference” and “test” respectively if they are of equal length

or if the first array has fewer elements than the second array.

Otherwise, if the first array has more elements than the second

array, then they are named “test” and “reference” respectively.

The algorithm proceeds by first eliminating rests in both

arrays and then counting the number of occurrences of each of

the twelve musical notes in each array. An error measure is

then produced as the sum of the absolute differences between

the counts of notes corresponding to each of the twelve pitch

classes in each of the two arrays. The algorithm then

calculates the first similarity measure as the total number of

notes in the test array minus the total number of errors and the

difference is divided by the total number of notes in the

original array. The quotient is then transformed to a

percentage which is saved for later use. The equation below

shows how the first similarity measure is calculated, where

‘P’ is the total number of identified notes in the performance

version, ‘E’ is the total number of false positives and false

negatives, and ‘N’ is the total number of identified notes in

the original version.

S1 =

The algorithm then calculates the second similarity measure

by considering each note in the reference array and checking

if there is an identical note in the test array at the same index.

In this case, both notes are removed and the next note is

processed. In case the current note in the reference arrays

does not correspond to the note in the test array at the same

index, but is identical to the note in the test array at the next

index, then a false positive is detected. This means that an

extra note has been played, and therefore two notes are

removed from the test array, one note is removed from the

reference array and a new error counter is incremented by one.

In case the note in the reference array doesn’t correspond to

the note in the test array at the next index, but the note in the

reference array at the next index is identical to the note in the

test array at the next index, then a false negative is detected.

This means that a note hasn’t been played and therefore two

notes are removed from the reference array, one note is

removed from the test array and the error counter is

incremented by one. In case none of these conditions holds

true, then the note at reference can’t be found in test and

therefore the error counter is incremented by one and a note is

removed from the start of both arrays. The process continues

like this until any or both arrays are empty. If either of .the

arrays ends up being not empty, then it has extra notes and

therefore its count is added to the error counter.

The algorithm calculates the second similarity measure as the

total number of notes in the test array minus the total number

of errors and the difference is divided by the total number of

notes in the original array. The quotient is then transformed to

a percentage which is used to produce the score. This score is

equal to zero percent if any of the two similarity measure is

equal to zero percent, and is equal to the second similarity

measure alone in case it is smaller than 30%. This ensures that

a musical piece and its reverse won’t be a perfect match. The

number 30% was chosen in specific as a result of trial and

error which showed that smaller numbers can make the

algorithm less accurate in case the same notes are played in

both versions but in different orders. It also showed that larger

numbers can make the algorithm less accurate in case many

errors appear between correctly played notes.

Finally, if none of the similarity measures are equal to zero

and the second similarity measure is greater than 30, then the

5

2

3.5

4.5

2

4

2

4.5

3.5

2
1.5

4

0

1

2

3

4

5

6

C C# D Eb E F F# G Ab A Bb B

5

2

3.5

4.5

2

4

2

4.5

3.5

2
1.5

4

0

1

2

3

4

5

6

C C# D Eb E F F# G Ab A Bb B

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

28

score is calculated as the average of both similarity measures.

This should increase the evaluation accuracy since faults

made by one of the techniques used to calculate the similarity

measure, will be corrected by the other. After the score is

calculated, it is displayed in the label at the top right corner of

the graphical user interface.

4. EXPERIMENTATION, RESULTS

AND ANALYSIS

4.1 Automatic Music Transcription
The monophonic automatic music transcription module,

which uses the autocorrelation algorithm along with the

proposed frequency rounding and fault detection and

correction algorithms, was tested on a dual core machine

using six monophonic musical pieces. The six pieces were of

different tempos and complexities, and were played on three

different instruments: piano, guitar and saxophone in order to

make sure that the transcription module is capable of

transcribing sounds of different timbres. The guitar was used

in specific to test the transcription module’s ability to

transcribe playing techniques such as vibrato and slides. Some

of the musical pieces were recorded using a microphone,

while others were recorded using direct line-in recording. This

was done to make sure that the system is capable of

transcribing music which has some noise due to being

captured using a microphone.

In order to produce an accuracy measure, the following

formula [11] was used:

where ‘N’ is the number of correctly identified notes, ‘FP’ is

the number of false positives, which are notes that were

identified by the system but were not played in the musical

piece, and ‘FN’ is the number of false negatives, which are

notes that were played in the musical piece but were not

identified by the system. The accuracy was calculated as the

average of the transcription accuracies of six monophonic

musical pieces.

The accuracy of the monophonic automatic music

transcription module was 88.7% when tested using the six

aforementioned monophonic musical pieces. The module was

capable of identifying notes played on any instrument in the

range from G2 to G6. The average time the module takes to

transcribe a five minutes monophonic musical piece was 18

seconds, which means that the module is capable of working

in real time. Figure 8 shows the name and the accuracy of

each of the six musical pieces. It can be seen that simple

musical pieces, such as “Happy Birthday” have higher

accuracies than more complex ones such as “Careless

Whisper”. It can also be seen that guitar music that was

recorded clean, such as “Enta Omry” had a higher accuracy

than faster guitar music that was recorded using distortion and

multiple guitar effects, such as “Love Story” and the guitar

solo.

Figure 8: Transcription accuracy of the 6 musical pieces

The frequency rounding algorithm always produces correct

results and has a complexity of O(log(n)) since it is based on

binary search. The modification that was made to the

algorithm, which enables it to peek at one position to the left

or to the right of the middle at any iteration saves a

considerable number of iterations that were wasted. This

algorithm saves almost half of the time taken by the ad-hoc

sequential search algorithm that would have been used

otherwise.

The transcription fault detection and correction algorithm

enhanced the accuracy of the monophonic automatic music

transcription module by 9.2% on average. The algorithm

mainly improves the transcription accuracy by combining

similar notes and discarding very short notes that are not

preceded or followed by identical notes. This gets rid of extra

note onsets and also discards notes that don’t belong to the

original musical piece.

4.2 Key Finding
The Krumhansl-Schmuckler key finding algorithm and the

correlation algorithm, together, were able to correctly identify

the key of the six musical pieces since they were based on

single keys. According to Temperley [15], the algorithm had

an accuracy of 97.1% when tested on 48 preludes of Bach’s

Well-Tempered Clavier which is based on all 24 musical

keys. This means that the keys of 44 out of 48 preludes were

identified correctly, and therefore the algorithm is accurate

enough to be used for the purpose of identifying the key of a

musical piece so that a beginner pianist would be able to use

this identified key as a reference while learning to analyze

musical pieces.

4.3 Musical Performance Evaluation
The musical performance evaluation module was capable of

producing accurate scores when comparing original and

performance versions of each of the six musical pieces that

were put to test. Although it is impossible to interpret what the

78
80
82
84
86
88
90
92
94
96

Transcription Accuracy in Percentage

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

29

zero score means since signals can be completely different in

infinitely many ways, the use of two similarity measures to

calculate the final score enabled the production of a zero score

in case the second similarity measure is less than 30% or in

case any of the similarity measures is equal to 0%. This

ensures that the original and the reverse versions of a musical

piece won’t score a 100%. This means that the algorithm can

correctly produce a similarity measure between two signals,

which can be used by beginners to seriously and individually

evaluate their performances.

5. CONCLUSIONS
Technological advances in the fields of digital signal

processing and computer-based music has made it possible to

automate the music learning process to a large extent. This

paper presented a solution to the four common problems faced

by beginners trying to learn music on their own. The proposed

system attempted to solve the problem of not being able to

figure out music by ear as well as not being able to read music

notation easily by introducing a monophonic automatic music

transcription module which uses the autocorrelation algorithm

along with two new algorithms to transform a monophonic

WAV file to a MIDI file, which is played on the virtual piano.

The system proposed to solve the problem of not being able to

play fast music by enabling the user to manipulate the speed

of the musical piece, and also to loop any arbitrary part of the

musical piece and to variably manipulate its speed. The

system was able to solve the problem of not being able to

verify that a beginner-identified key of the transcribed musical

piece is correct by introducing an automatic key-finder

module using the Krumhansl-Schmuckler key-finding

algorithm with the correlation algorithm. Finally, the system

attempted to solve the problem of having to consult a musical

teacher to evaluate a beginner’s performance of the

transcribed musical piece by proposing a new algorithm

which is capable of evaluating the beginner’s performance in

the form of a score ranging from 0 to 100, resembling the

similarity between the original and the performance versions

of the transcribed musical piece.

REFERENCES
[1] Klapuri , A. & Virtanen , T., (2009), “ Automatic music

transcription,” In Havelock, D., Kuwano, S., &

Vorländer, M. Handbook of signal processing in

acoustics, Springer New York, NY, Vol. IV, pp. 277-

303.

[2] Good, M. (2001), “Musicxml: An internet-friendly

format for sheet music”, XML Conference and Expo,

Montvale, NJ, February 2001, pp. 3-4.

[3] Scogin, N. (2010), Barron's AP music theory, Barron's

Educational Series. N.Y.

[4] Brandao, M., Wiggins, G., & Pain, H. (1999)

“Computers in music education,” In Geraint Wiggins,

AISB'99 Symposium on Musical Creativity, pp. 82-88.

[5] Burns, H. L., & Capps, C. G. (1988), Foundations of

intelligent tutoring systems: An introduction, In Polson,

M. C. & Richardson, J. J., Foundations of intelligent

tutoring systems, Hillsdale: Lawrence Erlbaum

Associates, pp. 1-19.

[6] Scheirer, E. D. (1995), “Extracting expressive

performance information from recorded music”, Master’s

thesis, Massachusetts Institute of Technology, Media

Laboratory

[7] Moore, F. R. (1990), Elements of computer music,

Prentice-Hall, Inc., NY

[8] Bello, J. P., Monti, G., & Sandler, M. (2000),

“Techniques for automatic music transcription”, In the

First International Symposium on Music Information

Retrieval ISMIR-00, Plymouth, Massachusetts, USA.

October 2000, pp. 23-25.

[9] Costantini, G., Todisco, M., Perfetti, R., Basili, R., &

Casali, D. (2010), “Memory Based Automatic Music

Transcription System for Percussive Pitched

Instruments”, In 1st International Multi-Conference on

Complexity, Informatics and Cybernetics (IMCIC),

Orlando, Florida, USA, April 2010

[10] Benetos, E., & Dixon, S. (2011), “Multiple-F0

Estimation and Note Tracking for using a convolutive

probabilistic model”. Music Information Retrieval

Evaluation eXchange, Miami, Florida, USA, October

2011.

[11] Benetos, E., Klapuri, A., & Dixon, S. (2012), “Score-

informed transcription for automatic piano tutoring”,

IEEE Signal Processing Conference (EUSIPCO),

Bucharest, August 2012, pp. 2153-2157

[12] Guo, Y., & Tang, J. (2012), “A Combined

Mathematical Treatment for a Special Automatic Music

Transcription System”, Abstract and Applied Analysis,

December, Vol. 2012, pp.13

[13] Hasegawa, B. H. (1987), “The physics of medical x-ray

imaging. Medical Physics Pub Corp; June, ed. 2.

[14] Middleton, G. (2003). Pitch Detection Algorithms.

Retrieved from the Connexions Web site:

http://cnx.org/content/m11714/1.2/

 [15] Temperley, D. (1999). “What's key for key? The

Krumhansl-Schmuckler key-finding algorithm

reconsidered”. Music Perception, Vol. 17, pp. 65-100.

