

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, September 2013 – www.ijais.org

16

File App Data Protection via NFS

Latesh Kumar K J
Research Scholar

AEU University
Kaulalampur, Malaysia

Shwetha C S
Department of CSE

SIT, Karnataka
India

Reshma M
Department of CSE

SIT, Karnataka
India

ABSTRACT

This paper introduces a new method for implementing File

RAID for text and programmable files on FAT, NTFS and

Ext3 file system. This approach is currently involving two

techniques FileSnapImitate (FSI) and FileSnapStripe (FSS)

hash and indexing Parity calculation (HIPC) is anticipated to

trim down the standard classic raid techniques over general

file systems like, FAT, NTFS and Ext2. This paper

introduces and proposes FILERAID, software which can

achieve significantly higher WRITE performance and can also

recover data of files.

Keywords

RAID, FSM, FSS

1. INTRODUCTION
In this approach the foremost advantage of using an

Application Level File RAID (ALFR) is that it increases the

performance and reliability of the system. The ALFR

application is a credible example that could be used on a

desktop or server with or without a storage connected to it. In

general a RAID activity will happen if it is enabled on the

volume, partition or a disk drive, if not RAID will not be

active and assures a data guarantee on the environment.

The ALFR is the new method where in doesn’t requires a

volume/partition/diskdrive should be under RAID filesystem

to guarantee the data being posted on that

disk/volume/partition by user, this just a tool needs to be

started before the process is started, and then user can go on,

without any worries of being data lost, the smart tool will take

care of handling data being posted by user/s on the

environment.

2. IMPLEMENTATION OF FILE SNAP

STRIPE
The figure shows the implementation of application level file

raid – File Snap Stripe. This approach is quietly unique

compared to native RAID functionality, the smart file raid

controller is the intermediate between the Source File(s)

created by user and the StripeStore(S) on the internal disks of

server/workstation. When files are started by user over on

internal disk the smart file raid is triggered on for a small

scale activity of highly available application. Any

Workstation will communicate via a protocol called NFS to

storage appliance whereas the Windows workstations will

communicate using CIFS (if any). The content being supplied

by user/s to the file handle is now controlled by the

Application File Raid system (Smart Raid Controller) and

they are being processed by this and also pushed to its vault

volume which is firmly sitting on one of the Network File

system shares.

The performance is much highlighting and increases a lot

when the disk stripping is done. The performance increases a

lot by the content stripping? This is actually done by the

interleaving of the bytes or the group of bytes. The

interleaving of this sort is done across the multiple files. By

this procedure only one disk is reading or writing the data.

The reading and writing of the data are done in a simultaneous

process.

Fig 1: Application Level File Raid – File Snap Stripe via

NFS

Striping is the concept of hooping the data without parity or

mirroring. Here striping of data is done across two files. When

user activates RAID0 service, RAID0 configuration file seeks

two file where striped data will be be stored namely “a.$$$”

and “b.$$$”. When user chooses the option of building

RAID0, striping of source file across a.$$$ and b.$$$ get

started. Striping of data can be done based on ‘line by line’ or

‘space by space’ across two files. A reference file is

maintained called “ref.txt” which contains the information

regarding the striped data of source file and the file name

where it stored.

Whenever source file gets corrupted, one of the file along

with the reference file is used to recover data and it will be

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, September 2013 – www.ijais.org

17

done. In general RAID0 is successfully done it results in

destination file which is a block level content accessed by any

network file access protocol (NFS, CIFS) which helps in

extracting the striped data successfully.

3. IMPLEMENTATION OF FILE SNAP

IMITATE
The figure [2] shows the File Snap Imitate method for our

research case on File RAID application for data protection

across a business requirement. In this approach whenever a

client connects to server and starts of file delegation (Create)

automatically the file snap imitate gets activated and then it

will start byte by byte file copying to scattered remote file

system with a file name along with index, and this file is

scattered and copied onto multiple hosts with the metadata of

the file no different client via network file system protocol, so

that any time when the source file gets corrupted, user or

client can raise a request to recover his file data, when it is

done so the data will be recovered by looking up to all the

hosts connected across the clients to the node along with

indexing the metadata.

Fig 2: Application Level File Raid – File Snap Imitate via

NFS

Mirroring is the concept of duplicating the file. When a user

activates RAID1 service, an exact copy of the source file is

created. The destination file name and its path are accepted by

user as per his convenience. Once the copy of source file is

over it asks the user whether to save the destination file or not.

This option is provided to user since he may not need the back

up of each file. So only when the user chooses the option of

“save”, the contents of source file gets saved in the destination

file.

4. WHY AND HOW NFS FOR DATA

PROTECTION
NFS operates as a typical client server application. The server

receives remote-procedure-call (RPC) requests from its

various clients. An RPC operates much like a local procedure

call: The client makes a procedure call, then waits for the

result while the procedure executes. For a remote procedure

call, the parameters must be marshaled together into a

message. Marshaling includes replacing pointers by the data

to which they point and converting binary data to the

canonical network byte order. The message is then sent to the

server, where it is unmarshalled (separated out into its original

pieces) and processed as a local file system operation.

The result must be similarly marshaled and sent back to the

client. The client splits up the result and returns that result to

the calling process as though the result were being returned

from a local procedure call. The NFS protocol uses the Sun's

RPC and external data representation (XDR) protocols.

Although the kernel implementation is done by hand to get

maximum performance, the user-level daemons described

later in this section use Sun's public-domain RPC and XDR

libraries.

The NFS protocol can run over any available stream- or

datagram-oriented protocol. Common choices are the TCP

stream protocol and the UDP datagram protocol. Each NFS

RPC message Need to be broken into multiple packets to be

sent across the network. A big performance problem for NFS

running under UDP on an Ethernet is that the message may be

broken into up to six packets; if any of these packets are lost;

the entire message is lost and must be resent. When running

under TCP on an Ethernet, the message may also be broken

into up to six packets; however, individual lost packets, rather

than the entire message, can be retransmitted.

NFS clients A and B are communicating to primary data

center, the primary data center/ facility is well connected to

identical distant/remote data centre/facility that can serve the

NFS client request all the time during fail over cases. The

heart beat connection between these to data centre/facility is a

dedicated IP cover by a firewall, this network is also

encapsulated by fail over ether setup by adding one of the

special nodes (Network Switch) to a dedicated port, which

involves Active cluster and each data centre/facility is covered

up by RAID service at the Disk. The Multi-path disk level

connectivity and strong heart beat connection between the

special nodes (Switch) make it a highly available setup for

any cluster activity. NFS clients are making request over a

TCP channel to their local data centre, each of these requests

are handled by the NFS server at PDC and request is served,

any repository is snapped at the aggregate levels of the disk

pools placed at the primary data centre.

The transactions committed at primary data centre are copied

as a form of timely snapshots for every 3 seconds across the

disk pools to the distant/remote data centre/facility

continuously, each copy of transaction is authenticated and

acknowledged to guarantee the mode of communication

between the heart beat signal connectivity between the data

centers. The NFS clients can also be plugged directly to the

distant/remote data centre with parallel support connectivity

to perform direct communication during the local disk

failures, this can happen vice versa between the data centers.

A physical snapshot mapping is also made possible to keep

the data identical at every point of time to hold the highly

available status to the clients of outside world. All NFS clients

are configured with auto mount feature enabled so that they

can do very quick access to local server and also allow

mounting and unmounting by loading less procedure calls,

and file handles across the server and themselves.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, September 2013 – www.ijais.org

18

The NLM and NSM are the two protocols responsible for

stateful and provides a notification mechanism following

client or server failure, it also notifies during recovery across

server restart requires NFS Server. Whenever a server goes

down and comes back it notifies all the clients connected to

the server about the healthy status, locks and claims in due

with the clients when server went down. The NFS standards

allows one lock file per volume, which contains caller name –

identification of client host and lock file name, range, client

address, protocol version and procedure.

NFS Server enforces grace period to allow lock reclaims by

NFS Clients after server reboot (about 60 seconds) standard

timeout by all storage vendors like (NetApp, EMC, HP, IBM),

during the grace period NFS Server registers for IP address

PnP notifications from the operating system, When an IP

address online notification is received, an LPC is performed to

query Failover Cluster for the netname (and hence the NFS

Virtual Server) that it should be scoped to All unknown

endpoints are put in a deferred list while waiting for the

Failover Cluster resource group, NFS Resource DLL and the

NFS Virtual Server to come online.

5. RESULTS AND DISCUSSIONS
The tests are conducted on both UNIX and Windows file

system and environments to figure out whether induced

methods are able to reach the expected standard results. Since

crucial issue in the design of very large disk arrays is the

protection of data against catastrophic disk failures. Although

today single disks are highly reliable, when a disk array

consists of 100 or 1000 disks, the probability that at least one

disk will fail within a day or a week is high. Hence the tests

are conducted on a flat file system design and environment.

Table 1. Performance Report

RAID Type 1 GB 2GB 5GB

File Snap

Imitate
18.17 Sec 23.05s Sec 41.01 Sec

File Snap

Stripe
27.15 Sec 31.45 Sec 57.11 Sec

44

44.5

45

45.5

46

46.5

47

1 GB 2GB 5GB

File Snap Imitate

File Snap Stripe

3-D Column 3

6. CONCLUSION
The need for the deployment of data protection technology is

most essential in today’s IT infrastructure maintenance,

business specific data protection needs to be pushed based on

the customer requirement is most essential.. However, when

the implied costs are considered, data protections technology

often either boycott the business need altogether or provide

very poor performing solutions. In this paper, it is shown that

this data protection technology method allows us to flexibly

establish and secure the data of simple business to highly

skilled customer business data centres.

It is also shown that the proposed solution allows flexibility in

the control of the data protection in two different ways

between all created networks and indeed the global network.

To further this research work, considerations can be given to

the implication of extending this to all kinds of block level

and file level data onto storage. The researcher must also

consider the benefits and implications of applying this data

protection method in and with various other different file

systems and storage of a data center.

7. REFERENCES
[1] http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=3

64531&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxp

ls%2Fabs_all.jsp%3Farnumber%3D364531

[2] http://www.linuxjournal.com/article/2391

[3] http://www.smbitjournal.com/2012/11/choosing-a-raid-

level-by-drive-count/

[4] http://www.cypress.com/?docID=37074

[5] http://gridsec.usc.edu/hwang/papers/JSA'00.pdf

[6] http://www.hpl.hp.com/hpjournal/95jun/jun95a11a.pdf

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=364531&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D364531
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=364531&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D364531
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=364531&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D364531
http://www.cypress.com/?docID=37074
http://gridsec.usc.edu/hwang/papers/JSA'00.pdf
http://www.hpl.hp.com/hpjournal/95jun/jun95a11a.pdf

