Analyzing a few Heuristic Algorithms Considering Machine Idle Time and Processing Time in Permutation Flow Shop Scheduling Problems

Baskar A Research Scholar SMBS, VIT University Vellore, India Anthony Xavior M
Professor
SMBS, VIT University
Vellore, India

ABSTRACT

Flow Shop Scheduling has been an interesting field of research for over six decades. They are easy to formulate, yet difficult to solve. In a shop, there are 'm' machines arranged in series to process a set of 'n' jobs having different processing times. Each job has to pass through each machine, in order. The problem is to find a sequence of jobs to be processed in all the machines, so that a given performance parameter is optimized. The total number of schedules is (n!)^m. If the order of machines is not to be changed, the problem is simplified, and the overall number of solutions is reduced to n!. This problem is referred to a permutation flow shop scheduling problem, or PFSP in short. Starting from two machines, 'n' jobs, various Heuristics have been proposed over the years. After the invention of meta heuristics and evolutionary algorithms, and increased computational capabilities available today, finding optimal/ near optimal solutions become comparatively easier. In this paper, a few heuristic algorithms have been analyzed for makespan criterion considering machine idle time and processing time, by comparing the results with the well known CDS algorithm. Benchmark problems proposed by Taillard and Ruben Ruiz are used for the performance analysis.

Keywords

Heuristic Algorithm, Flow Shop Scheduling, Makespan, Benckmark Problems.

1. INTRODUCTION

A typical permutation flow shop scheduling problem involves the determination of the order of processing the required jobs with different processing times over different machines. The parameter to be optimized may be anything; the most popular one being, minimizing the makespan. The sequence is not changed and kept the same for all the machines. For the makespan minimization, the problem is NP-complete, if the number of machines is greater than two [1].

In the simplified PFSP, a number of assumptions are usually made [2]:

- All the jobs are independent, and available for processing at time zero.
- All the machines are continuously available.
- Each machine can process at most one job at a time, and each job can be processed only on one machine at a time.
- No preemption is allowed.

- Setup times are sequence independent, and are included in the processing times or are otherwise ignored.
- An infinite in-process storage buffer is assumed. If a given job needs an unavailable machine, then it joins a queue of unlimited size waiting for that machine.

Most of the optimization criteria are based on the completion times of the jobs at the different machines, which are denoted by $C_{j,i}$, where C_j refers the time at which job j is completed at the last machine. The completion times $C_{j,i}$ can be easily calculated as follows:

For a given permutation π of n jobs, where $\pi_{(j)}$ denotes the job in the j-th position, the completion times are calculated with the following expression:

$$C \pi_{(j),i}=max[C \pi_{(j),i-1}, C \pi_{(j-1),i}] + p_{\pi(j),i}$$

This paper considers minimization of maximum completion time (makespan, C_{max}). Under this objective, the problem is denoted as F/prmu/C_{max}. Johnson's [3] paper mainly studied problems with two machines and provides the optimal solution. Slope Index algorithm was proposed by Palmer [4]. The CDS algorithm [5] proposed by Campbell et al. is based on the Johnson's algorithm and obtains the solution in (m-1) enumerations. The algorithm proposed by Dannenbring [6] reduces the 'm' machines, 'n' jobs problems in to a two machine, 'n' jobs problem and then uses the Johnson's rule to obtain the solution.

The NEH algorithm proposed by Nawaz et al. [7] is considered as the best among the simple heuristics, according to many studies conducted over the past decades, like by Turner and Booth [8], Taillard [9] and Ruiz and Maroto [10]. The number of enumerations in NEH algorithm is [n(n+1)/2]-1 and applies insertion technique. The solution is built from first two jobs selected from the initial sequence obtained by arranging all the jobs in ascending order of their total processing times. The NEH Algorithm for the minimization of the makespan can be stated as follows:

Step 1:

Ordering the jobs by non increasing sums of processing times on the machines;

Step 2:

Taking the first two jobs, and scheduling them in order to minimize the partial makespan, as if there were only these two jobs

Step 3:

For k=3 to n, Step 4 to be repeated

Step 4:

Inserting the kth job at the place, which minimizes the partial makespan among the possible ones.

Total number of sequences to be enumerated = [n(n+1)/2] - 1.

Many researchers have analyzed and modified the NEH algorithm to improve the makespan. The authors have also proposed a family of NEH heuristics to improve the makespan further.

In addition to the processing time, machine idle time is also another important element in deciding the quality Framinan et al. [11] considered 176 of the solution. approaches for every objective function. Additionally, for every objective function, the RANDOM choice of a sequence is considered. For the 177 different approaches to generate the initial sequences, and for every combination of n = 5, 6, 7, 8, 10, 15, 20, 25, 30, 50, 75, 100 jobs, and m = 5, 10, 15, 20, 25 machines, 100 problem instances were generated. Therefore, 6000 problem instances were considered. The processing times were drawn randomly as integers from a discrete uniform distribution between 1 and 99. It was concluded that for the makespan, the best five heuristic algorithms consists of the NEH-insertion approach using the following five initial sequences:

SUM PIJ / DECR (i.e. original NEH) Rank 1.

SS SRA/2SRN / DECR Rank 3.

SS SRS/RCN / DECR Rank 4.

SS SRA/RCN / DECR Rank 5.

RA C3 / INCR Rank 7.

It may be noted that in the top four cases, the decreasing order proves to be better.

SUM PIJ/ DECR: total processing times of the jobs, decreasing order (This indicator value is exactly the one used in the original NEH approach.)

SS SRA/2SRN/ DECR: sum of the absolute residuals with negative residuals weighted double, no carryover, decreasing order

SS SRS/RCN/ DECR: sum of the squared residuals with negative residual carryover, decreasing order

SS SRA/RCN/ DECR: sum of the absolute residuals with negative residual carryover, decreasing order

RA C3/INCR: sum of possible waiting time of jobs and idle time of machines, increasing order.

The sorting sequences are unlimited, and important were covered by Framinan et al. The authors have considered twenty three starting sequences, combining the total processing time, and the total Machine Idle Time. In all the cases, the insertion technique was used. However, unlike the original NEH, which selects the first two jobs as the initial

sequence, the first and the last jobs, the middle two jobs and the last two jobs were also considered for the analysis.

This paper analyzes a few heuristic algorithms built using various combinations of the machine idle time and the processing time. They are different from the above discussed algorithms.

2. HEURISTIC ALGORITHMS ANALYZED

Many classic heuristics consider only the processing time, and give the result using different approaches. As all are aware of, the heuristic algorithms are approximate methods, and the PFSP is NP complete, it cannot be explicitly stated that a particular heuristic can always report an optimal/ near optimal solution. In addition to the NEH heuristic, which is the best among the available simple heuristics, CDS also performs reasonably better. The complexity level and the quality of the simple heuristics have been studied in detail by Taillard [9], and are briefly given below:

Com	plexity		Qua	lity			
Problems	-	500	100	100	100	50	50
Jobs	n	9	10	20	20	40	50
Machines	m	10	10	10	20	10	10
Gupta	nlog(n) +	13.4	12.8	19.6	18.8	18.9	17.1
Johnson	nlog(n) +	10.9	11.8	16.7	16.8	17.3	16.3
RA	nm nlog(n) + nm	8.5	9.1	12.5	13.4	13.5	11.2
Palmer	nlog(n) +	8.3	9.0	13.3	12.5	10.9	10.7
CDS	nm nm ² + nlog(n)	4.5	5.2	9.7	8.6	9.9	9.3
NEH	n ² m	2.1	2.2	3.9	3.8	2.6	2.1

NEH appears to be the best polynomial heuristic in practice. The CDS algorithm which is in the second place also performs better. The heuristics, RA or Palmer may also be useful when short computation times are required.

For the algorithms considered, the overall performance is assessed using a set of benchmark problems totaling 120 in number proposed by Taillard [12], and 250 in number proposed by Ruben Ruiz (2009). The processing time varies from 1 to 99 units and generated using a random number generator for a given seed. Codes were generated, run in an i5 PC with 4 GB RAM, and the following nine cases were analyzed:

- 1. CDS original algorithm
- Total idle time in ascending order for all the machines, when a particular job is processed
- Total idle time in descending order for all the machines when a particular job is processed
- 4. Total processing time in ascending order for a particular job
- Total processing time in descending order for a particular job (NEH initial sequence)
- Total Machine idle time + Total processing time (IT+PT), in ascending order
- Total Machine idle time + Total processing time, in descending order

- 8. Ratio of machine idle time to total processing time (IT/PT), in ascending order
- Ratio of machine idle time to total processing time, in descending order

The jobs were scheduled based on the above and the corresponding makespans were computed. The method of computing a special category of total machine idle time and the usual total processing time is illustrated using an example given in Table 1.

Table 1, Example PFSP (5 machines, 5 jobs)

Jobs									
M/C' 'm Processing Times									
1	8	10	4	9	5				
2	5	4	6	3	7				
3	2	5	3	6	3				
4	8	4	2	5	8				
5	9	8	7	8	11				

Processing of Job 1: 0-8 units (M1) 8-13 units (M2) 13-15 units (M3) 15-23 units (M4) 23-32 units (M5).

Total machine Idle Time if job 1 is processed first: M1-0; M2-8; M3-13; M4-15; M5-23 and

Total Machine Idle Time: (0+8+13+15+23) = 59 units. Similarly,

Total Machine idle time when Job No. 2 is processed first: 66 units

Total Machine idle time when Job No. 3 is processed first: 42 units

Total Machine idle time when Job No. 4 is processed first: 62 units

Total Machine idle time when Job No. 5 is processed first: 55

Total processing time for finishing Job no. 1: (8+5+2+8+9) = 32 units and

Total processing time for finishing Job no. 2: 31 units

Total processing time for finishing Job no. 3: 22 units

Total processing time for finishing Job no. 4: 31 units

Total processing time for finishing Job no. 5: 34 units

The total machine idle time array for the problem is, [59 66 42 62 55] for the jobs from 1 to 5 respectively.

Similarly, the total processing time array is [32 31 22 31 34].

In the algorithm using the ratio of machine idle time to total processing time (IT/PT), in ascending order (serial number 8 above), the ratio array is [1.8438 2.1290 1.9091 2.0000 1.6176]. The ratio array is sorted in ascending order, and a sequence of (5 1 3 4 2) with a makespan of 66 units (Table 2) is obtained. In the similar way, other procedures can easily be converted in to algorithms for computing the sequence and the corresponding makespan. The problem instances proposed by Taillard and Ruben Ruiz are used for the complete analysis of all the nine heuristic algorithms.

Table 2, Makespan for the sequence 5-1-3-4-2

		Machines									
Job		Processing Times									
5	0-5	5-12	12-15	15-23	23-34						
1	5-13	13-18	18-20	23-31	34-43						
3	13-17	18-24	24-27	31-33	.43-50						
4	17-26	26-29	29-35	35-40	50-58						
2	26-36	36-40	40-45	45-49	58-66						

3. ANALYSIS OF THE PERFORMANCE USING THE TAILLARD BENCHMARK PROBLEMS

Initially, all the algorithms were tested for the makespan requirement. The complete results are shown for twenty Taillard problem instances in Tables 3 and 4. MS1 represents the makespan obtained using the first algorithm, the CDS algorithm and so on. It was found that, the CDS, and the algorithm based on the ratio of machine idle time to total processing time in ascending order, perform better in most of the cases for the makespan objective. Hence, other results are not listed. Only the results from these two algorithms are completely tabulated from Tables 5 to 8, and the summary for the problems are shown in Table 11. It may be noted that Taillard listed the lower bounds for the 120 number problem instances and the lower bounds for the Ruben Ruiz problems are calculated by the authors. However, since the makespan values obtained from the CDS algorithm are taken as the reference values, these lower bounds are not considered anywhere in this paper.

4. ANALYSIS OF THE PERFORMANCE USING THE TAILLARD BENCHMARK PROBLEMS

Ruben Ruiz (2009) bench mark problems are available on web page for the research group "Sistemas de Optimización Aplicada SOA" [13] or Applied Optimization Systems: http://soa.iti.es. Taillard benchmark is composed of 12 groups of 10 instances each, totaling 120 instances. The groups, presented in the form of (jobs x machines), are {20, 50, $100 \times \{5, 10, 20\}, 200 \times \{10, 20\} \text{ and } 500 \times 20.$ As this is incomplete as on today, in the sense that some combinations of 'n' and 'm' are missing, Ruben Ruiz problems are also used in addition. They were developed originally for no-idle flow shop scheduling problem, and are adapted for our permutation flow shop scheduling analysis. The benchmark has 250 instances, where 10 combinations of, $n = \{50, 100,$ 150, 200, 250, 300, 350, 400, 450, 500} jobs, and five combinations of, $m = \{10, 20, 30, 40, 50\}$ machines. There are five replicates per combination. The processing times are uniformly distributed in the range [1, 99], similar to the Taillard instances.

For this analysis, the results are tabulated in the Tables 9 and 10, and, the summary of the analysis is listed in Table 12, for all the 250 problem instances.

Table 3, Makespans for first set of 10 problems

Instance	MS1	MS2	MS3	MS4	MS5	MS6	MS7	MS8	MS9
ta001	1390	1377	1589	1472	1556	1377	1601	1384	1691
ta002	1424	1469	1661	1538	1594	1481	1690	1437	1699
ta003	1249	1463	1464	1499	1408	1473	1461	1191	1747
ta004	1418	1466	1781	1640	1723	1547	1773	1420	1854
ta005	1323	1395	1635	1437	1592	1387	1594	1338	1718
ta006	1312	1372	1655	1457	1604	1373	1625	1313	1668
ta007	1393	1516	1560	1504	1479	1547	1554	1360	1549
ta008	1341	1426	1647	1422	1531	1415	1593	1300	1837
ta009	1360	1352	1682	1585	1538	1396	1669	1426	1873
ta010	1164	1325	1604	1365	1387	1329	1551	1208	1690

Table 4, Makespans for last set of 10 problems

Instance	MS1	MS2	MS3	MS4	MS5	MS6	MS7	MS8	MS9
ta111	28246	29075	31898	30694	30363	28914	31836	28149	33365
ta112	29131	29928	31994	31435	31061	29898	31986	29326	34607
ta113	28618	29700	31862	30786	30205	29826	32004	28187	34177
ta114	29029	29119	32346	30546	31071	29263	32621	27884	33438
ta115	28234	29139	32128	30570	30376	28963	32027	27891	34389
ta116	28687	28885	32264	30072	30811	28735	32141	28257	33811
ta117	28322	28624	32191	30640	30698	28834	32251	28029	33796
ta118	28897	29223	32640	30804	30658	29065	32296	28632	33635
ta119	28294	28639	32226	30239	30442	28718	32228	27775	33784
ta120	28710	28966	31630	30070	30936	29053	31827	28122	33874

Table 5, Twenty Jobs PFSPs

Instance	CDS	IT/PT	Instance	CDS	IT/PT	Instance	CDS	IT/PT
ta001	1390	1384	ta011	1757	1758	ta021	2559	2777
ta002	1424	1437	ta012	1854	1875	ta022	2285	2335
ta003	1249	1191	ta013	1645	1699	ta023	2565	2678
ta004	1418	1420	ta014	1547	1584	ta024	2434	2496
ta005	1323	1338	ta015	1558	1629	ta025	2506	2652
ta006	1312	1313	ta016	1591	1500	ta026	2422	2630
ta007	1393	1360	ta017	1630	1637	ta027	2489	2519
ta008	1341	1300	ta018	1788	1846	ta028	2362	2421
ta009	1360	1426	ta019	1720	1826	ta029	2414	2704
ta010	1164	1208	ta020	1884	1882	ta030	2469	2590

Table 6, Fifty Jobs PFSPs

Instance	CDS	IT/PT	Instance	CDS	IT/PT	Instance	CDS	IT/PT
ta031	2816	2743	ta041	3421	3415	ta051	4328	4291
ta032	3032	2943	ta042	3246	3286	ta052	4216	4250
ta033	2703	2698	ta043	3280	3403	ta053	4189	4214
ta034	2884	2913	ta044	3393	3461	ta054	4280	4278
ta035	3038	2945	ta045	3375	3366	ta055	4122	4382
ta036	3031	3065	ta046	3400	3404	ta056	4267	4202
ta037	2969	2821	ta047	3520	3543	ta057	4134	4355
ta038	2835	2779	ta048	3387	3275	ta058	4262	4394
ta039	2784	2706	ta049	3251	3278	ta059	4212	4390
ta040	2942	2915	ta050	3429	3341	ta060	4270	4239

Table 7, Hundred Jobs PFSPs

Instance	CDS	IT/PT	Instance	CDS	IT/PT	Instance	CDS	IT/PT
ta061	5592	5716	ta071	6209	6028	ta081	6920	7158
ta062	5563	5328	ta072	5873	5877	ta082	6977	7173
ta063	5493	5299	ta073	6024	6014	ta083	7229	7105
ta064	5273	5074	ta074	6377	6416	ta084	7062	7117
ta065	5461	5438	ta075	6018	6000	ta085	7113	7304
ta066	5259	5241	ta076	5744	6091	ta086	7283	7019
ta067	5557	5275	ta077	6201	6280	ta087	7147	7554
ta068	5387	5221	ta078	6234	6042	ta088	7235	7646
ta069	5758	5571	ta079	6349	6139	ta089	7196	7282
ta070	5723	5363	ta080	6387	6365	ta090	7164	7279

Table 8, Two Hundred and Five Hundred Jobs PFSPs

ta091 11609 11476 ta101 12432 12835 ta111 28246 ta092 11357 11059 ta102 12542 12940 ta112 29131 ta093 11669 11287 ta103 12783 12813 ta113 28618 ta094 11379 11217 ta104 12631 12715 ta114 29029 ta095 11352 11062 ta105 12538 12562 ta115 28234 ta096 11318 10870 ta106 12498 12352 ta116 28687	IT/PT	CDS	T/PT Instance	IT/PT	CDS	Instance	IT/PT	CDS	Instance
ta093 11669 11287 ta103 12783 12813 ta113 28618 ta094 11379 11217 ta104 12631 12715 ta114 29029 ta095 11352 11062 ta105 12538 12562 ta115 28234 ta096 11318 10870 ta106 12498 12352 ta116 28687	28149	28246	2835 ta111	12835	12432	ta101	11476	11609	ta091
ta094 11379 11217 ta104 12631 12715 ta114 29029 ta095 11352 11062 ta105 12538 12562 ta115 28234 ta096 11318 10870 ta106 12498 12352 ta116 28687	29326	29131	ta112	12940	12542	ta102	11059	11357	ta092
ta095 11352 11062 ta105 12538 12562 ta115 28234 ta096 11318 10870 ta106 12498 12352 ta116 28687	28187	28618	ta113	12813	12783	ta103	11287	11669	ta093
ta096 11318 10870 ta106 12498 12352 ta116 28687	27884	29029	ta114	12715	12631	ta104	11217	11379	ta094
	27891	28234	ta115	12562	12538	ta105	11062	11352	ta095
	28257	28687	ta116	12352	12498	ta106	10870	11318	ta096
ta097 11608 11363 ta107 12711 12760 ta117 28322	28029	28322	12760 ta117	12760	12711	ta107	11363	11608	ta097
ta098 11501 11259 ta108 12610 12851 ta118 28897	28632	28897	ta118	12851	12610	ta108	11259	11501	ta098

ta099	11252	10923	ta109	12639	12624	ta119	28294	27775
ta100	11509	11102	ta110	12949	12751	ta120	28710	28122

Table 9, 1-150 number of Ruben Ruiz Problems

Instance	CDS	IT/PT	Instance	CDS	IT/PT	Instance	CDS	IT/PT
50 jobs	3409	3405	150 jobs	8862	8742	250 jobs	14621	14237
	3463	3445		8628	8363		14039	13583
	3412	3424		8646	8414		13802	13735
	3381	3357		8675	8641		14118	13764
	3672	3712		8576	8432		14246	13676
	4377	4428		9933	10009		15307	15439
	4295	4481		9851	10367		15101	15501
	4280	4440		9895	10192		15278	15349
	4252	4334		9634	9977		15353	15290
	4319	4320		9939	10067		15360	15498
	5249	5554		11203	11351		16752	16405
	5136	5424		10979	11126		16510	16905
	4930	5274		11070	11334		16433	16599
	5061	5126		11287	11420		16594	16821
	5109	5206		10998	11196		16594	16816
	5718	5998		11998	12333		17486	17641
	5709	5979		11845	11985		17684	18075
	5908	6096		11734	11881		17888	17834
	5845	5983		11788	12175		17825	17987
	5779	5934		12179	12291		17831	17802
	6494	6636		12939	13402		18936	18860
	6695	6884		12835	13149		18855	18826
	6466 6565	6659		12761	13272		18552	19051
		6707		12987	13112		18603	19092
	6646	6839		12937	13203		18737	19086
100 jobs	6047	5936	200 jobs	11252	11185	300 jobs	16496	16113
	6161	6035		11602	11378		16727	16330
	5923	6111		11502	11258		16964	16730
	5877	5870		11633	11508		16809	16281
	6233	6251		11296	10996		16771	16626
	7189	7308		12724	12560		18141	17708
	7189	7115		12727	12573		18010	18477
	7143	7229		12830	12667		18043	17877
	7017	7080		12704	12665		17724	17894
	7432	7632		12554	12999		18459	18144
	8112	8225		13584	13898		19581	19419
	8187	8008		13733	13793		19241	19339
	8395	8511		13738	13811		19624	19642
	8395 8511 8270 8555 8419 8572 8884 9203 8914 9135		13986	14017		19468	19909	
			13748	13657		19435	19660	
			14873	15167		20407	20707	
			14936	15567		20693	20988	
	8894	9183		14785	14935		20651	21365
	8999	9280		14638	15024		20480	21197
	8926	9073		14866	14913		20674	20646
	9876	10253		15780	16336		21968	22049
	9844	9974		15872	16239	1	21520	21981

9775	9753	15841	15841	21819	21965
9642	10189	15785	16023	21743	22048
9747	10079	15713	16190	21829	21487

Table 10, 151 - 250 number of Ruben Ruiz Problems

Instance	CDS	IT/PT	Instance	CDS	IT/PT	Instance	CDS	IT/PT
350 jobs	19991	19443	400 jobs	22550	22357	450 jobs	24109	23622
	19173	18661		21634	21156		23983	23306
	19314	18880		22080	21831		24084	23670
	19179	18972		21733	21331		24640	24134
	19245	19166		22280	21367		24658	23983
	20713	20425		23523	23233		26345	25859
	21006	20495		23756	24030		25752	25330
	20856	20720		23411	23426		26124	26179
	20861	20757		23590	23209		26068	25375
	20492	20324		23562	23543		26233	25906
	21930	21810		24993	25002		27729	27151
	22010	22016		24891	24816		27338	27302
	22084	23045		24806	24759		27577	27272
	22212	22096		24933	24583		27106	27216
	22123	22310		24988	25353		27659	27413
	23590	23600		26262	26570		28864	28823
	23183	23015		25960	25998		29096	28881
	23184	22950		26154	26322		28894	28752
	23080	23235		25945	26301		28939	28902
	23175	22934		26029	26141		29013	29122
	24217	24580		27566	28006		30415	30709
	24317	24882		27226	27764		30345	30440
	24514	24735		27410	27556		30086	29834
	24361	24629		27258	28047		30219	30336
	24373	24525		27301	27380		30317	30659
500 jobs	27231	27314	500 jobs	29144	28721	500 jobs	29999	30285
10 m/c	27636	27842	20 m/c	29039	28709	30 m/c	30382	30314
	27399	26845		28842	28143		30425	30213
	27118	26247		28638	28645		29884	29692
	26519	26145		29210	27977		30379	30010
500 jobs	31549	31730	500 jobs	32868	33043			
40 m/c	31820	31824	50 m/c	33078	32742			
	31325	31461		33080	33036			
	31499	31200		32836	33246			
	31795	31779		32943	33113			

Table 11, Summary for the Taillard Problems

					Jobs		
		M/Cs	20	50	100	200	500
CDS	9	5	6	2	1	-	-
IT/PT	21		4	8	9	-	-
CDS	18	10	8	6	4	0	-
IT/PT	22		2	4	6	10	-
CDS	32	20	10	6	8	7	1
IT/PT	18		0	4	2	3	9
		CDS	24	14	13	7	1
		IT/PT	6	16	17	13	9

Table 12, Summary for the Ruben Ruiz Problems

					Jobs							
		M/Cs	50	100	150	200	250	300	350	400	450	500
CDS	6	10	2	2	0	0	0	0	0	0	0	2
IT/PT	44		3	3	5	5	5	5	5	5	5	3
CDS	25	20	5	4	5	1	4	2	0	2	1	1
IT/PT	25		0	1	0	4	1	3	5	3	4	4
CDS	33	30	5	4	5	4	4	4	3	2	1	1
IT/PT	17		0	1	0	1	1	1	2	3	4	4
CDS	38	40	5	5	5	5	3	4	2	5	1	3
IT/PT	12		0	0	0	0	2	1	3	0	4	2
CDS	43	50	5	4	5	5	3	4	5	5	4	3
IT/PT	8		0	1	0	1	2	1	0	0	1	2
		CDS	22	19	20	15	14	14	10	14	7	10
		IT/PT	3	6	5	11	11	11	15	11	18	15

5. CONCLUSION

Table 3 to Table 8 show the results obtained for the nine heuristic algorithms when Taillard bench mark problems are used. To compute the sequence and the corresponding makespan, these algorithms use different combinations of total machine idle time while processing a job and total processing time of the corresponding job. The codes were run in an i5 PC with 4GB RAM.

From Table 3 and 4, it is clear that except the CDS and the (Idle Time/ Processing Time) based algorithm, all others fail to produce optimal/ near optimal results. Hence, the other values are ignored in other Tables.

It may be noted that for the 20x20 PFSPs, CDS completely outperforms the other one for all ten problem instances. Whereas, for the 10x200 problems set, the other algorithm gives better makespans than the CDS for all the ten instances. CDS performs better in the problem sets 10x20, 20x50, 20x100 and 20x200; and at the same time, problem sets 5x50, 5x100 and 20x500 are dominated by the other one. The performance is more or less same for other problem instances. In total, CDS produces better makespans in 59 instances, and the IT/PT heuristic algorithm, in 61 instances.

The case is different in case of Ruben Ruiz problems. Out of the 250 problems, CDS reports better makespans for 145 problems, whereas, IT/PT accounts for 106 only. Unlike the Taillard problems where, the lower bounds are listed along with the problems, they are not given for the Ruben Ruiz problems. The authors have computed the lower bounds. It can be seen that, ten machine problems are dominated by the IT/PT algorithm whereas; forty and fifty machine problems are dominated by the CDS algorithm.

If the summary in both the cases are analyzed, following conclusions could be drawn:

For Taillard Problems:

- IT/PT algorithm fares better in the case of n x {5, 10} group of problems. Also, it outperforms CDS in {50, 100, 200, 500} x m problems.
- The CDS algorithm reports better makespans in the other cases.

For Ruben Ruiz Problems:

- The performance of IT/PT is better for n x {10, 20} group of problems. Also, it reports better makespans for {350, 400, 450, 500} x m problems.
- CDS algorithm reports better results in all the other sets of problems.

In general, for all the permutation flow shop problems with less number of machines and more number of jobs, the IT/PT algorithm can be effectively used. It may be noted that, the CDS algorithm selects the makespan from (m-1) enumerations. However, the IT/PT algorithm computes the makespan in a single enumeration and hence the computing time is less when compared to the CDS algorithm. In spite of less number of enumerations, the performance is comparable with the CDS algorithm in quite a good number of problems.

Hence, for smaller problems involving manual computations, the better choice is the algorithm based on the IT/PT ratio. For computations involving computers, both can be used for the makespan and the better sequence can be selected from the results. Also, the result could be used as the candidate solution for refining the solution further, using any meta heuristic.

6. REFERENCES

- [1] Rinnooy Kan, A. H. G. 1976. Machine Scheduling Problems: Classification, Complexity, and Computations (The Hague: Martinus Nijhoff).
- [2] Baker, K. R. 1974. Introduction to Sequencing and Scheduling. John Wiley & Sons, New York.
- [3] Johnson, S. M. 1954. "Optimal two- and three-stage production schedules with setup times included", Naval Research Logistics Quarterly, vol. 1, pp. 61-68.
- [4] Palmer, D. S. 1965. "Sequencing jobs through a multistage process in the minimum total time - a quick method of obtaining a near optimum", Operational Research Quarterly, vol. 16, No.1, pp. 101-107.
- [5] Camperll, H. G., Campbell, Dudek, R. A., and Smith, M. L. 1970. "A heuristic algorithm for the n job, m machine sequencing problem", Management Science, vol. 16, No. 10, pp. B630–B637.
- [6] Dannenbring, D. G. 1977. "An evaluation of flow shop sequencing heuristics", Management Science, vol. 23, No. 11, pp. 1174–1182.

- [7] Nawaz, M, Enscore, Jr, E. E., and Ham, I. (1983). "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem", OMEGA, The International Journal of Management Science, vol. 11, No. 1, pp. 91– 95.
- [8] Turner, S. and Booth, D. 1977. "Comparison of heuristics for flow shop sequencing", OMEGA, The International Journal of Management Science, vol. 15, No. 1, pp. 75-78.
- [9] Taillard, E. 1990. "Some efficient heuristic methods for the flow shop sequencing problem", European Journal of Operational Research, vol. 47, pp. 67–74.
- [10] Ruiz, R. and Maroto, C. 2005. "A comprehensive review and evaluation of permutation flowshop heuristics", European Journal of Operational Research, vol. 165, pp. 479–494.
- [11] Framinan, J. M., Leisten, R., and Rajendran, C. 2003. "Different initial sequences for the heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation flowshop sequencing problem", International Journal of Production Research, vol. 41, No. 1, pp. 121–148.
- [12] Taillard, E. 1993. "Benchmarks for basic scheduling problems", European Journal of Operational Research, vol. 64, pp. 278–285.
- [13] Ruben Ruiz problems available at http://soa.iti.es