

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

1

A Membrane Turing Machine

Mahmoud Abdelaziz

Faculty of Computers and
information, Cairo University

Amr Badr
Faculty of Computers and

information, Cairo University

Ibrahim Farag
Faculty of Computers and

information, Cairo University

ABSTRACT

Membrane Computing (MC) (or P System theory) is a recent

area of Natural Computing, the field of computer science that

deals with computational techniques is inspired by the

structure and functioning of living cells. P systems are

massively parallel and distributed model of computation.

Membrane Computing investigates models of computation

inspired by the structure and functions of biological cells.

There are some simulations models that have been developed

but do not usually allow parallelism. Turing Machine (TM)

and membrane computing are computation models; one of the

main differences between them is the behavior of each other,

since TM is algorithmic behavior while on the other hand

Transition P Systems are Interactive computing behavior. This

research investigates a Turing machine model of a special

class of P system under a condition which is the rules are

applied in a predefined order (which is applying rules

priority). From this point of view, the P Systems could assume

the same behavior of Turing machine in its sequential

behavior. A single membrane can be considered as a machine

(membrane devices) in the membrane structure of transition P

Systems; hence the whole system of membrane structure

consists of several machines that interact with each other. The

interaction can be in the form of data passing. The aim of this

research is designing a TM to simulate the behavior of a

Transition P System. Also the research will show how Turing

Machine can be partitioned into sub machines as well as the

design of membrane machines can be partitioned into sub

machines or sub modules.

Keywords

Membrane computing, P System, Turing machine, Persistent

Turing Machines.

1. INTRODUCTION
Design of Modern computers has been growing but current

design has a natural limitation. Nowadays, there is a need to

find out a new alternative computational paradigm. New

materials and technologies [1, 2] such as organic electronics,

hybrid electronic biological machines, etc., and the ever

increasing complexity and miniaturization of actual systems

[3] require rethink the way computers can be built, A good

example for such a new paradigm is Membrane computing.

Membrane computing is a new branch of natural computing

which is initiated by Paun at the end of 1998([4], [5]). This

field works on computational models based on nature's

behavior to process the information. Most of researchers

worked on the idea of simulating the procedures that take

place in nature and their application as machines, it can lead

to find and create new computation models that may lead to a

new computer generation. Transition P systems are

computational equivalent to Turing machines; however, it’s

distributed and massively parallel. Until now, researches for

implementing membrane systems have not yet reached the

massively parallel of this computational model.

1.1 P Systems Theory
Natural computing is a research field that investigates both the

computation designed by human being and computation
taking place in nature [6]. Computational models inspired by

natural systems such as neural computation, cellular automata

and membrane computing. Membrane computing is a research

field which deals with computational models inspired from

bimolecular processes. Transition P Systems are a parallel and

distributed computational model based on the biological

membranes and try to simulate the cell behaviors and its

functions according to the membrane structure. Each

membrane determines a region that encloses a multiset of

objects and evolution rules. There are some published deals

with parallel implementation of membrane systems ([7], [8],

[9]) and Hardware implementations ([10], [11]), and software

simulations ([12], [13]). These systems perform its

computations through transformation between two

consecutive configurations (same as Turing machines model).

Transforming occurs by applying evolution rules in each

membrane. If the system reaches to a configuration in which

there is no rules in any membrane can be applied, the system

reaches a halting configuration, and hence the computation is

successful end. The Power of this model is that the evolution

process is massively parallel in application rules phases and in

communication phase. The most attractive feature of

membranes computational model is the possibility to

represent in a formal way, the transition data and

communication occurring into complex distributed computer

systems.

Membrane computation works like other programs such as

classical algorithms, each of them consists of group of

sequence steps in which each step depends on the previous

one. Membrane computing model (like Turing Machine

model) starts from a specific configuration (a structure of

membranes), then it turns into another configuration by

executing some rules of the system (reactions accepted in

membranes). The rules are applied according to a special

semantic; so the execution of such devices modifies the

content of their components until it reaches one of the

following states, membrane halts stat, membrane dissolving

state and membrane division state. This system can be

represented in many ways such as Venn diagram or tree graph

representation as shown in Fig.1 and Fig.2.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

2

1

4
25

6

3

7

8

environment

Elemetary

membrane
skinrigeons

Fig.1. Venn Membrane Structure

1

6

4

5

3 2

7

8

Fig.2. a Membrane Tree Structure for Fig.1

1.2 Turing Machine
Turing machine is a state transition machine M = (S, ∑, δ),

with finite sets of states S and tape symbols ∑, and a state

transition relation δ: S x ∑→ S x {∑, L, R}.

TMs transform finite input strings x Є ∑* to outputs y = M(x)

by a finite sequence of steps, staring in a unique starting state

and ending when halting state is reached. At each step, M

reads a tape symbol i, performs a state transition (s,i) →(s',o),

writes a symbol o, and/or moves the reading head one

position right or left [14]. Several classic extensions to the

TM model have been proposed, such as Persistent Turing

machines [15] which model can send and receive data during

processing so it become an interactive computation model

(see Fig.3).

Turing machines (TMs) and Persistent Turing Machines

(PTMs) are abstract computing devices useful for representing

different forms of computational behavior: TMs model

depends on algorithmic behavior while PTMs model depends

on sequential interactive behavior (SIMs) [16]. A PTM is a

nondeterministic 3-tape Turing machine (N3TM) with a read-

only input tape, a read/write work tape (work tape contents is

maintained from one computation step to the next), and a

write-only output tape. Upon receiving an input token from its

environment on its input tape, a PTM computes for a while

and then outputs the result to the environment on its output

tape, and this process is repeated forever. a PTM performs

persistent computations in the sense that the work tape

contents is maintained from one computation step to the next,

where each PTM computation step represents an N3TM

computation.

Fig.3. A Persistent Turing Machine

Suppose that the design of TM Machine is huge and more

complicated it can be partitioned into sub-machines, each of

them perform a specific task, for example if there is an

equation like (x = a + b – c * d / e) where a, b, c, d, e are real

numbers. This machine can be partitioned as the following:

(see Fig.4)

Read no

Get

function

Do

function

Go to left sheft

erase

Fig.4 Structure of the exampled machine

 A submachine for reading number

 A sub machine for determining the function will be

applied on the two numbers

 A Submachine for performing the function and

produce the result

 A Submachine for erasing blanks, shifting data and

going left to the beginning of data tape

2. The PROPOSED MEMBRANE TM
The rest of this paper is organized as follows: Section 2.1

Introduction of the proposed Membrane TM. Section 2.2 Data

Stream

of Inputs
Input Tape

Work Tape

Output Tape Stream of

Outputs

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

3

representation. Section 2.3 Relation among Membrane

Structure. Section 2.4 Description of the machine execution.

Finally Section 3 Conclusions.

2.1 Introduction of the proposed

Membrane TM
Membranes are a network tree of membranes, each membrane

is a Turing machine which communicates with each other

through communication device (channels under the tree

membranes structure) so these Turing machines must receive

and send data (multisets) from and to its environment, which

is PTM. Membrane computation model has two main phases,

they are affects each other, those two phases are

communication phase and application or computation phase.
Communication Phase: When some rules in the application

phase are applied, this will lead to membrane dissolve or

division that affects the structure of the communication tree,

thus affecting the communication phase.

Application Phase: Some rules in this phase sends data to a

connected membrane so these rules shouldn’t be executed if

its connections doesn’t exist with this membrane, hence we

can say that communication phase affect the application

phase.

As noted from the above, there are two types of data that

come to the membrane through its environment

(communication channels which connects the membrane with

other membranes):

- Communication or network data: Information about the

connection channels which connected to the membrane

with other membranes in the system (communication

network data), this information constitute the membrane

communication tree which control some rules to be

executed or not according to the communication state, it

changes the state of the rule to be useful or unuseful,

this gives the system more power since it will decrease

the selection time of those rules to be executed or not.

- Incoming data object: which are concatenated with the

existing data in the membrane (membrane work tape),

this data (multiset data) are consumed by some rules

(useful rules) and produce outputs to the environment

on the output tape.

 So the proposed model worked under assumption which is

each membrane has two types of input (input data object /

communication network data), this assumption is applied to

each membrane (machine) in the system. This assumption let

all membrane work independent and this gives a power to the

system because the system can have unlimited number of

membranes. In this way the membrane has its input data so its

application phase can perform its process over those data

directly. We can simulate this computation by using any

model of computation; the most important model in

computation models is the Turing machine model which used

in designing the computer. The membrane in this model is

dealing with its environment as it is the supplier of its data

and as a consumer to its output data regardless from where

this input data comes or how the output data is transported to

other membranes. The transportation process is related to the

communication phase which is not included in this research

since it concerns with the application phase only, in the

application phase we concern only on what media the data

(output and input) save on.

2.2 Data representation
Each symbol of data is represented and encoded as 8 bits

according to an encoding table. The proposed machine

consists of three tapes, one tape for its input data, one tape for

its output data and one work tape. Data will be represented as

the following.

2.2.1 Input tape
Input data which come from the membrane environment is

saved on that tape either these data is communication data or

object data, so the data representation is divided into two

parts, the first one is the communication data part followed by

the second part which is the object data part as it is shown in

Fig. (5). This representation enables the machine to

differentiate in dealing among these different data types when

updating the work tape as will be explained later in this

section.

Fig.5 Machine input tape

2.2.2 Output tape
Output data produced from the execution of the membrane

rules are saved on this tape, this output data can be sent to

many membranes, so its representation is divided also into

two parts, the first part specifies the target membrane and the

second part represent the output data itself as it is shown in

Fig. (6).

Fig.6 Machine output tape

2.2.2 Work tape
This tape is divided into three parts as shown in Fig. (7), the

first part represent the object data that will be input data for

the rules that will be executed, in this part the symbols of data

are represented in sequence. The second part represents

information about the rules in the membrane that will be

executed, these information are the rule no, rule itself and its

state, sorted according to its execution priority, the third parts

contains the total no of the rules that are valid to be executed

at a specific moment in the membrane, the machine halts

when the total number of rules to be executed at a specific

moment equal to zero, this will solve the halting problem of

the Turing machine. Also sorting the rules according to its

priority in execution enables the machine to apply the rules

according to a predefine order not in a maximal parallel

manner as in p system so the machine work in a sequential

manner.

Rule state Rule no Rule it self

No of applicable rules

a a --- b ---

Fig.7 Machine work tape tape

End of

Data

--- Data it

self

Data

type

Begin of

Data

--- data Target J Data Target I

Rules zone

No of applicable rules zone

Data zone

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

4

2.3 Relation among Membrane Structure
The membrane structure is the inter connection and

hierarchical organization among membranes (machine

membrane). Any relation between two membranes is basically

used when objects (input/output) are being transferred

between the two membranes (membrane machine). The

membrane machine can send and receive object (input/output)

only from the membrane it is contained inside or from the

membranes it contains as shown by the following example.

Example: membrane 4 of Fig. (1) Can send and receive

objects from the membrane it is inside in which in this figure

it is membrane No. 1 and from membranes 5, 6, and 7 that

they are inside membrane 4. Membrane 4 can’t directly

communicate with membranes 8, 2 and 3. The connections are

bidirectional in communication between any two membranes
that have a relation as shown in Fig. (8) Where arrows

indicate to the stream of input / output of objects between

membranes.

Membrane machine
(1)

Membrane machine
(2)

Membrane machine
(4)

Membrane machine
(3)

Membrane machine
(5)

Membrane machine
(6)

Membrane machine
(7)

Membrane machine
(8)

Fig.8 All Relation among Membrane Structure for Fig 1

2.4 Description of the machine execution.
Each machine applies its rules on the work tape, the selection

of the rule that will be executed as the following:-
An evolution rule in membrane (i) can be applied in an

evolution step if it fulfils

1- Useful: if all targets membranes are adjacent to

membrane (i) (there exist a connection channels

between membrane (i) and their targets membranes),So

the machine puts (00) in the rule state to specify that this

rule is out of execution since there are no

communication channels between the membrane and its

target membrane by the output data of this rule, this

enables filtering the not applicable rules due to the lack

of communication channels, this prevents the error of

sending data to non existing targets.

For Example: In Fig. (9) Rule No. 4 in membrane No. 1

can't be applied since there is no connection pass

between membrane 1 and membranes 4 or 6.

1 W1 = a5b6

 r1= a2b (a in3) (b in2)

 r2 = ab2 (b2 here) (a2 in3)

 r3 = b4 (b2 in2) (b2 out)

 r4 = b4 (a2 here) (a2 in4 a in6)

2 3
4

5

6

Fig.9 Membrane structure and rules

1- Applicable: if the membrane (i) have the data

objects that the rule need to execute so the machine

in the state rule (01) else if there is no data object

that the rule need to execute the machine put (10) in

the state rule.

2- Active: the rule has the turn to execute according to

its priority so the machine put in the state rule (11).

According to this issue the machine works as described

in the following Fig. (10).

halt

Update

work tape

Read

Inputs

Update

Output

Data

Apply

Rule

Fig.10 the propose Membrane Machine structure

In case of coming input data on the input tape. The machine

reads it and updates the data on the work tape then deleting it

from the input tape to make it ready for the new input data if

exists. The machine before updating the data on the work tape

- If the data is communication data, the machine updates the

states of its rules according to the existing or no existing

channels among that membrane and other membranes, it

changes the rule state from (10) to (00) if there is no

communication channel with the membrane which will

receive the output data of that rule, and it will change the

rule state from (00) to (10) if there is a communication

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

5

channel with the membrane which will receive the output

data of that rule and at the same time the machine updates

the total number of the possible rules that can be executed.

- If the data is object data, the machine changes all waiting

rules states from (10 the rule state of non existing object

data) to be (01 the rule state of existing object data) since

it assumes that object data is related to those waiting rules

and at the same time the machine updates the total number

of the possible rules that can be executed.

After ending the updating process on the work tape, the

computation process on the work tape starts as the following:-

- The machine reads all the rules till it find a rule that has a

state (01) then it changes it to (11) (the state of checking

the applying the rule) and then the machine check

possibility of applying this rule by searching on the work

tape for its object data

- If the machine finds the object data of the rule then the

rule will be executed and it deletes the used object data

from the work tape and writes the output data according to

its destinations (work tape or output tape or both of

them).

- The machine loops the last step till it doesn’t find any

object data for the current applied rule then it changes its

state from (11) to (10) and decrease the total number of

the possible rules that can be executed by 1, after that the

machine searches for next applied rule to be executed and

loops again till it doesn’t any rule to be executed, this

check occurs by checking the total number of the possible

rules that can be executed to be equal zero, in this case the

machine halts, and thus the machine halts problem is

being solved, the machine will continue in its halt state till

new incoming input data then the whole previous process

starts again.

- A general C code for the proposed machine introduced as

follow.

// the following code is for each membrane

move_the_head_of_the_w_tape_to_the_first_R(w_tape,M

_no)

While(;;)

{

 total_no_of_app_Rs=get_app_Rs(w_tape,M_no)

if total_no_of_app_Rs > 0 then

 R_no = get_the_R(w_tape,M_no)

 x=check_comm_state_of_Ms(w_tape,M_no,R_no)

 if x = "00" then // no comm

 else

 y=check_data(w_tape,M_no,R_no)

 if y = false then //no data

 change_R_status(w_tape,M_no,R_no,"10")

 move_the_head_of_the_w_tape_to_the_next_R(w_t

ape,M_no)

 else

 execute_the_R(R_no,o_R_no,o_data)

 write_the

o_data(o_tape,o_R_no,o_data)

 end if

 i_data=

check_data_in_i_tape(i_tape,M_no)

 comm_data=

check_comm_data_in_i_tape(i_tape,M_no)

 if i_data <> null then

 update_data_on_w_tape(w_tape,M_no,i_data)

 total_no_of_updated_Rs=

update_all_related_Rs(w_tape,M_no,"01")

 update_no_of_app_Rs(w_tape,M_no,no_of_app_Rs

,total_no_of_updated_Rs)

 end if

 if comm_data <> null then

 update_comm_data_on_w_tape(w_tape,M_no,i_dat

a)

 total_no_of_updated_Rs=

update_all_related_Rs_comm(w_tape,M_no)

 update_no_of_app_Rs(w_tape,M_no,no_of_app_Rs

,total_no_of_updated_Rs)

 end if

 end if

 else

 wait(10000) // wait ten second

 i_data=

check_data_in_i_tape(i_tape,M_no)

 comm_data=

check_comm_data_in_i_tape(i_tape,M_no)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 4, September 2013 – www.ijais.org

6

if i_data <> null then

 update_data_on_w_tape(w_tape,M_no,i_data)

 total_no_of_updated_Rs=

update_all_related_Rs(w_tape,M_no,"01")

 update_no_of_app_Rs(w_tape,M_no,no_of_app_Rs

,total_no_of_updated_Rs)

 end if

 if comm_data <> null then

 update_comm_data_on_w_tape(w_tape,M_no,i_dat

a)

 total_no_of_updated_Rs=

update_all_related_Rs_comm(w_tape,M_no)

 update_no_of_app_Rs(w_tape,M_no,no_of_app_Rs

,total_no_of_updated_Rs)

 end if

 end if

}

3. Conclusion
The physical limitations of current silicon hardware are one of

the triggers for the development of alternative computation

models. In particular, the scientific community is in increase

with high interest in computation models inspired by nature.

Developers of P system models require a computation model

which is able to achieve the parallelism of the P System

models. This research investigates a Turing machine model

which simulates the P system model under a constrain which

is the rules are applied in predefined order (priority). The

proposed model of this research enables achieving the

parallelism of the P system model in interactive sequential

manner so we can simulate it in a computer application, more

over the proposed module can be built as hardware machine.

4. REFERENCES
[1] N. Mathur, Beyond the Silicon Roadmap, Nature, 419,

6907, October 10, 2002, 573-575.

[2] S. De Franceschi, L. Kouwenhoven. Electronics and the

Single Atom. Nature, 417, June 13 2002, 701-702.

[3] International Technology Roadmap for Semiconductors,

Semiconductor Industry Association,

http://public.itrs.net/Files/2001ITRS, 2001.

[4] G. Păun. “Computing with membranes” In Turku

University Computer Science Research Report No. 208,

1998.

[5] Gheorghe Paun, A quick introduction to membrane

computing, The Journal of Logic and Algebraic

Programming, 79, 2010, 291-294

[6] Rozenberg G., B¨ack T., Kok J. N., eds. (2011) Handbook

of Natural Computing, volume II. Springer.

[7] G.Ciobanu, G.Wenyuan, “A P System running on a cluster

of computers”, Proceedings of Membrane Computing.

International Workshop, Tarragona (Spain). Lecture

Notes in Computer Science, vol 2933 (2003) 123-150.

[8] A. Syropoulos, E.G. Mamatas, P.C. Allilomes,

K.T.Sotiriades, “A distributed simulation of P systems”.

Preproceedings of the Workshop on Membrane

Computing (A. Alhazov, C.Martin-Vide and Gh.Păun,

eds); Tarragona, vol July 17-22 (2003), 455-460.

[9] J.Tejedor, L.Fernández, F.Arroyo, G.Bravo, An

architecture for attacking the bottleneck communication

in P systems. In: M. Sugisaka, H. Tanaka (eds.),

Proceedings of the 12th Int. Symposium on Artificial

Life and Robotics, Jan 25-27, 2007, Beppu, Oita, Japan,

500-505.

[10] Fernandez, L., Martinez, V. J., Arroyo, F., and

Mingo,L.F.(2005). A hardware circuit for selecting

active rules in transition p systems. Seventh International

Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, Proceedings, 1:415-418.

[11] Martinez, V., Arroyo, F., Gutierrez, A., and Fernandez,

L. (2007). Hardware implementation of a bounded

algorithm for application of rules in a transition p-

system. SYNASC 2006: Eighth International Symposium

on Symbolic and Numeric Algorithms for Scientific

Computing, Proceedings, 1:343-349

[12] Suzuki, Y. and Tanaka, H. (2000). On a lisp

implementation of a class of p systems. In Romanian

Journal of Information Science and Technology, volume

3, pages 173-186.

[13] Arroyo, F., Luengo, C., Baranda, A. V., and de Mingo, L.

(2003). A software simulation of transition p systems in

Haskell. Membrane Computing, 2597:19-32.

[14] John Hopcroft, Jeffrey Ullman, Introduction to Automata

Theory, Languages, and Computation,Addison-Wesley

1979.

[15] Dina Goldin, Peter Wegner, Persistent Turing Machines,

Brown University Technical Report, 1998.

[16] Peter Wegner, Dina Goldin, Coinductive Models of

Finite Computing Agents, Proc. Coalgebra Workshop

(CMCS ‘99), Electronic Notes in Theoretical Computer

Science, Vol. 19, March 1999.

