

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No.2, September 2013 – www.ijais.org

17

Implementation of Shamir’s Secret Sharing on Proactive

Network

Saria Islam
Senior Lecturer

Department of Computer Science and Engineering
IBAIS University, Dhaka, Bangladesh

A. S. M Mahmudul Hasan
Lecturer

Department of Computer Science and Engineering
Hamdard University Bangladesh, Narayangang

ABSTRACT

For most cryptosystems, by using a single-system master key

there is a need to protect many important encryption and

decryption keys used to achieve data security. There are three

major drawbacks under this single-master key arrangement.

First, if the master key is disclosed to the public by accident,

then the entire system has no secrecy at all. Second, if the

master key is lost, then all the keys under protection become

inaccessible. Third, if the owner of the master key becomes

disloyal, then all important information becomes completely

available to the opponents. The secret sharing scheme was

designed to overcome these problems.

Shamir’s (t, n)-threshold scheme is one of the most well-

known examples of secret sharing schemes which provides a

very simple and efficient way to share a secret among any t of

the n participants.

The primary goal of our research is to study the terminology

and protocols behind secret sharing schemes and implement

Shamir’s scheme using Java. In addition, we have also

introduced a new scheme for extending the Shamir’s scheme

on proactive network.

General Terms

Cryptography and Network security.

Keywords

Cryptography, Secret Sharing, Shamir's secret sharing

scheme, Proactive Secret Sharing, Implementation of

Shamir’s Secret Sharing.

1. INTRODUCTION
The question whom to trust is fundamental for anybody in any

situation, and becomes paramount when security is required.

There are many examples when even well established trusted

entities become malicious. The reasons can be different, but

the result at the end is always the same: they are not trusted

anymore. One known solution to overcome such a problem is

instead of placing your trust just in one (trusted) party to

distribute the trust among a group of entities, especially when

the stakes are high. This should be done so that certain

specified groups of them are able to perform an operation, but

smaller, possibly malicious, subsets cannot do any harm to the

system. There are several known cryptographic concepts that

address the question for distribution of trust. Some of them

are secret sharing schemes, verifiable secret sharing schemes,

and multiparty computation [1].

Although a well-known term within the cryptographic

community, secret sharing might be a bit misleading for an

outsider [2]. It does not mean two or more people sharing one

secret. It means two or more people are having shares of the

secret. One secret is split into n different shares. Only when

merging at least t, 0<t≤n, number of shares the initial secret

can be reconstructed. Ideally, it should be impossible to gain

any information about the secret with less than n shares. In

their work Practical Cryptography, Ferguson and Schneier

mention that the value of secret sharing techniques in reality is

very limited. The arguments are that it is complex to operate,

and that most companies do not have a group of responsible

people who distrust each other. However, there is another side

of it too. The main purpose of dual combination locks on bank

vaults is not to prevent the employers from taking cash, but to

stop their families from being taken hostage [3]. The

employer's inability to open the lock on her own removes the

inducement for criminals to force her. Secret sharing schemes

can be used in equivalent situations, or perhaps to safely

increase data availability, just to name two examples. Secret

sharing is not only an interesting information-theoretical

concept, but it also has several practical applications.

A well-known principle in the analog world is the term

reduced trust, meaning that in order to keep a secret, the less

knowledge or power each entity has, the better. This is the

basic philosophy, and we shall study how it is implemented in

the digital world as well.

Consider the following problems:

 In some situations, there is usually one secret key

that provides access to many important files. If such

a key is lost (e.g., the person who knows the key

becomes unavailable, or the computer which stores

the key is destroyed), then all the important files

become inaccessible. The question one may ask is

how to back up secret information, so that it does

not depend on one authority only.

 While performing the encryption procedure, a

certain key needs to be stored; as we want to ensure

that no single entity is entrusted with too much

knowledge or power, the question now, is how to

ensure that the key will not be exploited by the

authority holding it.

2. SECRET SHARING
Suppose you and your friend accidentally discovered a map

that you believe would lead you to an island full of treasure.

You and your friend are very excited and would like to go

home and get ready for the exciting journey to the great

fortune. Now who is going to keep the map? Suppose you and

your so-called friend do not really trust each other and are

afraid that, if the other one has the map, he/she might just go

alone and take everything. Now we need a scheme that could

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No.2, September 2013 – www.ijais.org

18

make sure that the map is shared in a way so that no one

would be left out in this trip. What would you suggest?

An easy way to solve this problem is to split the map into two

pieces and make sure that both pieces are needed in order to

find the island. Now we give one piece to each. You can

happily go home and be assured that your friend has to go

with you in order to find the island. This illustrates the basic

concept of secret sharing [4].

In cryptography, secret sharing refers to any method for

distributing a secret among a group of participants, each of

which allocates a share of the secret. The secret can only be

reconstructed when the shares are combined together;

individual shares are of no use on their own [5].

3. SHAMIR’S (t, n) - THRESHOLD

SCHEME
Shamir's secret sharing scheme is a threshold scheme based

on polynomial interpolation [6]. It allows a dealer D to

distribute a secret value s to n players, such that at least

players are required to reconstruct the secret. The protocol is

information theoretically secure, i.e., any fewer than t players

cannot gain any information about the secret by themselves

[7].

3.1 The Sharing Protocol
Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

Goal: To share the secret s among players P1, P2, ……, Pn

such that t players are required to reconstruct the secret.

1. Dealer D creates a random polynomial f(x) of

degree t-1 and constant term s.

This polynomial is constructed over a finite field,

such that the coefficient a0 is the secret s and all

other coefficients are random elements in the field;

the field is known to all participants.

2. Dealer D publicly chooses n random distinct

evaluation points: Xj , and secretly distributes

to each player Pj the share

(Remark: The evaluation point Xj could be any publicly

known value, therefore for our convenience, we assume

 , hence the shares are denoted as .

3.2 The Reconstruction Protocol
Goal: To reconstruct the secret from each subset of t shares

out of n shares. Without loss of generality we will mark this

subset:

1. Use Lagrange interpolation to find the unique

polynomial f(x) such that and

 for j=1,2,..t

2. Reconstruct the secret to be f(0).

Interpolation Property: Given t pairs of (i,f(i)), with i’s all

distinct, there is a unique polynomial f(X) of degree t-1,

passing through all the points. This polynomial can be

effectively computed from the pairs (i,f(i)).

Lagrange interpolation:

 where

Li(x) is the Lagrange polynomial:

 which has value 1 at Xi, and 0 at every

other Xj.

Note: in the following sections the terms shareholder and

server can be interchanged.

Graphic-representation of a degree-2 polynomial and its

shares is shown in figure..

Fig 1(a): Shamir’s Secret Sharing Scheme

Fig 1(b): Shamir’s Secret Sharing Scheme

4. PROACTIVE SECRET SHARING
We need a scheme that allows servers to generate a new set of

shares for the same secret from the old shares without

reconstructing the secret. Proactive security is a mechanism

for protecting against such long-term attacks. It combines the

approach calling for distribution of trust with the one of

periodic refreshment:

Proactive = Distributed + Refresh

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No.2, September 2013 – www.ijais.org

19

That is, first distribute the cryptographic capabilities among

several servers. Next, have the servers periodically engage in

a refreshment protocol. This protocol will allow servers to

automatically re-cover from possible, undetected break-ins,

and in particular will provide the servers with new shares of

the sensitive data while keeping the sensitive data unmodified.

Very importantly, information gathered by an attacker before

a refreshment period becomes useless to attack the system in

the future.

Such a scheme is called a proactive secret scheme (PSS). We

have argued that PSS is needed for server recovery. But, in

reality, break-ins to a server are very hard to detect, especially

when the attacker simply steals certain secret information

without modifying anything on the victim server. An attacker

can cover his tracks when he exits. To strengthen the security

of a replicated service, we can invoke our PSS periodically (at

regular intervals). (see Figure below)

Fig 2: Proactive Secret Sharing

Before the execution of the PSS, every server checks the

integrity of its code and state, trying to remove any attackers

that might exist in that server at that point in time. How would

our PSS improve security through periodic executions? Well,

with no PSS, using an (t, n) secret sharing scheme, a service

can tolerate up to t-1 compromised servers during the entire

lifetime of the service, because any more failures could lead

to the exposure of the secret. With a PSS, we know that the

PSS refreshes all the shares, so that old shares become

useless. Now an adversary has to gather enough shares (at

least t) between two executions of the PSS, which obviously

makes the attackers’ job more difficult. The secret remains

confidential if fewer than t servers could be compromised

from the start of one PSS to the end of the next PSS.

To show how a proactive scheme can be achieved, let's study

a simple example first. We first assume that an adversary can

only break into a server and have access to information stored

or collected by that server. The adversary cannot change the

code of the server. Suppose we have a simple (2, 2) sharing

scheme. To generate two shares for secret s, we randomly

select s1 and s2, so that s1 + s2 = s. We want the two servers

with shares s1 and s2 to change their shares to s1' and s2', so

that these two shares remain an (2, 2) sharing of the same

secret s and these two shares are independent from the old

shares (cannot be inferred from the old shares). The proactive

secret sharing can be performed in the following steps:

1. Server 1 generates two sub-shares s11 and s12 from

its share s1 using the same secret sharing scheme as

the one used to generate s1 and s2 from s; that is,

server 1 randomly selects two sub-shares s11 and

s12, so that s1 = s11 + s12,. Server 2 does the same

thing to s2: It randomly generates two sub-shares

s21 and s22, so that s2 = s21 + s22.

2. Server 1 sends s12 to server 2 through a certain

secure channel. Server 2 sends s21 to Server 1.

3. Server 1 has both s11 and s21 and can add them up

to get a new share s1' = s11 + s21. Server 2, on the

other hand, has both s12 and s22 and can generate a

new share s2' = s12 + s22. Now we show that s1'

and s2' constitute a (2, 2) sharing. The sum of these

two shares is the sum of all the four sub-shares,

which is the sum of s1 and s2, which is s.

These two shares are independent from the old ones because

these sub-shares are generated randomly. Also, no server

knows the secret during the entire process. Server 1 generates

s11 and s12 and learns s21 from server 2, but server 1 never

knows s22 and thus does not know s2' or s. Server 2, on the

other hand, never knows s11, and thus does not know s1' or s.

(see Figure 3)

The core properties of pro-active secret sharing:

 To renew existing shares without changing the

secret, so that previous exposures of shares will not

damage the secret (old shares will become useless).

 To recover lost or corrupted shares without

compromising the secrecy of the shares.

Fig 3: Methodology Used To Renew Share

This should be performed without, of course, any information-

leak or any secret change.

4.1 Proactive Model Requirements
1. An adversary can reveal at most t-1 shares in any

time period (where t-1<n/2. this guarantees the

existence of t honest shareholders at any given

time). This time period should be synchronized with

the share-renewal protocol.

2. Authenticated broadcast channel.

3. Authenticated and secret communication channels

between each two participants.

4. Synchronization: the servers (shareholders) can

access a common global clock so that the protocol

can be applied in a certain time period.

5. Shares can be erased: every honest server

(shareholder) can erase its shares in a manner that

no attacker can gain access to erased data.

We assume that the adversary is computationally bounded, so

that it cannot break the public key encryption and the

verifiable secret sharing mechanism.

4.2 Basic Share Renewal Protocol
The goal here is to renew the shares without the Dealer’s

involvement. (as the Dealer might not exist anymore). The

shareholders should agree on a new polynomial with the same

secret s without revealing the secret, the old polynomial or the

new polynomial. At the end of this protocol, each shareholder

will obtain a new share on the new t-1 polynomial. The

assumption in this protocol is that each shareholder

remembers his/her old share.

We assume an initial stage where a secret s is encoded into n

shares using Shamir’s secret sharing scheme. Each participant

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No.2, September 2013 – www.ijais.org

20

holds his/her share f(i) for some t-1 degree polynomial f(x).

After the initialization, at the beginning of each time period,

all honest servers/shareholders trigger an update phase in

which the servers perform a share renewal protocol.

The protocol at the beginning of a time period is as

follows:

1. Each i’th shareholder randomly picks t-1

numbers from the finite field. These numbers define

a polynomial Pi(X) of degree t-1 whose free

coefficient is zero .
2. Each i’th shareholder distributes the shares of Pi(X)

using VSS among the shareholders.

3. Each i’th shareholder receives the following shares:

 including his own made share Pi(i))

and computes his/her new share by adding his old

share- f(i) to the sum of the new n shares.

Mathematically speaking:

 .

4. Each i’th shareholder erases his/her old share - f(i).

This protocol solves the share renewal problem against a

passive adversary who may learn the secret information

available to corrupted shareholders, but where all the

shareholders follow the predetermined protocol.

4.3 Detection of Corrupted Share
In a pro-active secret sharing system, participating

shareholders must be able to make sure whether shares of

other shareholders have not been corrupted or lost, and restore

the correct share if necessary. Otherwise, an adversary could

cause the loss of the secret (by destroying n-(t-1) shares). The

goal in this section is to present a mechanism for detection of

corrupted shares.

There are obvious situations in which there is a high

probability that the share is ruined, e.g. a disk crash, but how

would anyone find out that a hacker penetrated his/her

computer, revealed his/her share and changed it? The idea is

to save some fingerprint for each share that is common to all

the shareholders, so that periodically, shareholders can

compare shares (using secure broadcast).

In order to implement the distributed verifiability of shares, a

basic feature is added to the previous protocol. In each time

period, each shareholder stores the encryptions of all the

shares he/she received from the other shareholders. This is

achieved as follows:

 Perform the non-interactive VSS, so the

encryption of the initial shares will be stored at

each shareholder.

 Using the homomorphic property, each i’th

shareholder updates his/her set of encrypted shares

by computing for every j:

 . Actually, this product is

computed using only update shares corresponding

to well behaved shareholders.

4.4 Reconstruction of Lost/ Corrupted

Share
This is a fundamental phase in the proactive scheme, because

without it, this scheme would not be secure against

adversaries who disable some shareholders from performing

the required protocol.

The basic idea is to send a shareholder - r, who lost his share,

information that will help him recover it without the Dealer’s

involvement. A simple solution is to let each shareholder send

his/her own share to r; that would allow r to recover the

polynomial f(X), and then substitute r and recover his lost

share f(r). However, this would expose the secret s to r.

The algorithm for reconstructing the f(r) share is as follows:

1. Each i’th shareholder
 randomly chooses a polynomial Pi(X) of

degree t-1 where Pi(r) = 0 and Pi(0) 0 .

2. Each i’th shareholder (except for the r’th

shareholder) distributes shares of Pi(X):

 using VSS among the shareholders

(except for the r’th shareholder).

3. Each i’th shareholder (except for the r’th

shareholder) receives

 and calculates

his/her new share for r:

 and sends it encrypted to r.

4. The r’th shareholder decrypts these shares and

interpolates them to recover f(r). He/she receives a

new polynomial in which the r’th share has the

same value as the old lost share: h(r) = f(r).

Note that this protocol is secure only against an adversary that

eavesdrops on t-1 or less shareholders but cannot change their

behavior [8].

5. IMPLEMENTATION OF SHAMIR’S

SECRET SHARING
The Java implementation of Shamir’s scheme involves two

programs. The first create a Swing form with labeled

JTextFields that will accept a key, the threshold values of n

and t, and the prime number p that will define the modulus in

which the program will work. The program will then generate

a polynomial function s(x) of degree m-1 with random

coefficients where the constant term is the secret key. This

can be done using the simple random function for integers and

storing the coefficients into an array. For BigIntegers, Java

provides a constructor that will generate random values. Once

the polynomial is built, the m shares (x, y) will be constructed

by choosing x=1…N and y being s(x). The program will then

print out all m shares and the polynomial into a JTextArea.

Presumably the dealer can then take the shares and distribute

them electronically or in person. The second program will be

the complement to this one. It will begin by displaying

JTextFields that will accept the prime number p along with

the minimum number of shares, t, needed to rebuild the

message. It will then display m JTextFields where each

participant can enter their share. The program will then

perform the necessary calculations and return the value of the

key/secret.

Program Name: SecretEncoder.

Description: This program generates secret shares from an

entered number based on Shamir's algorithm. The program

begins by presenting the user with a GUI divided into left and

right halves. On the left side is a data entry panel where the

user can supply the secret key (a large number), a prime

number (q) for performing the necessary modulus arithmetic,

the number of shares desired, and the minimum number of

shares required to recreate the secret. The entry panel also

includes a button that allows the user to read the key and

prime number from a file. The file should have the key on the

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No.2, September 2013 – www.ijais.org

21

first line and the prime # on the second. The right half of the

GUI holds an output panel that displays the prime number and

the shares produced. Below the output area is a button that lets

the user write the shares to a directory with one share per file.

This simplifies share distribution because the user can encrypt

each file and send it to the appropriate party. The prime

number is also written to its own file so that it can be sent to

all participants. Update: The encoder has been altered so that

if a checkbox is enabled on the data entry panel, the program

will generate a file that enables shares to be evaluated using

Feldman's method. This file contains a large prime number p

such that p-1 is multiple of q, a value g, and g raised to the

power of each of the Shamir polynomial coefficients. This last

step is used to hide the coefficients using the know difficulty

of solving the discreet log problem. The program has also

been altered so that the user no longer needs to enter a prime

number. If one is not supplied, the program will generate one

larger than the key and write it to the output area and the file.

Pressing the submit button will cause the initial GUI to be

replaced by one where the shares can be entered into a set of

text fields. The number of fields is dynamic and is set

according to the number of shares required to rebuild the key.

For convenience, each of the shares can also be read from a

file by selecting the button next to each one. Once entered,

one can press the clear, restart, or find key buttons. The clear

button empties all the fields and the restart button restores the

initial screen so that the program can be used for a different

set of shares. Lastly, the find key button will compute the

secret key based on the shares provided. It will always

provide a key, but if any of the shares is not correct then the

key will be wrong. If one chose to validate the shares, the

program will check each one before computing they key and

warn users of any mistakes. It will clearly indicate what share

was erroneous so that the user(s) can take action.

Fig 4: Secret Share Encoder

Program Name: SecretDecoder

Description: This program reads in a set of shares generated

using Shamir's algorithm and uses them to compute the secret

key. The program is written in a general fashion and may be

used to recover the key as long as the prime number and a

sufficient number of shares are known. The program makes

no effort to gather the shares. They must be supplied as files

or entered by the user or users. The program begins by

displaying a GUI with fields to enter the prime number and

the number of shares. The prime number may be read from a

file by pressing the button located next to the field. The initial

GUI also displays a checkbox for indicating whether or not

the shares should be validated using Feldman's technique. If

checked, one can supply the location of the validation file by

pressing a button. Finally, one can clear the information using

the reset button or click the submit button to enter the shares.

Fig 5(a): Secret Share Decoder

Fig 5(b): Secret Share Decoder

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No.2, September 2013 – www.ijais.org

22

Fig 5(c) The Secret Key

6. IMPLEMENTATION OF ONLINE

SECRET SHARING
The online secret sharing includes two parts. The first one is

the Sever side program and the second one is the client side

program.

The secret server create a Swing form with labeled

JTextFields that will accept a key, the threshold value of t,

and the prime number p that will define the modulus in which

the program will work. The program will then generate a

polynomial function s(x) of degree m-1 with random

coefficients where the constant term is the secret key. This

can be done using the simple random function for integers and

storing the coefficients into an array. For BigIntegers, Java

provides a constructor that will generate random values. Once

the polynomial is built, the m shares (x, y) will be constructed

by choosing x=1…N and y being s(x). The program will then

send out all m shares to the clients requesting for a share. The

server is an ongoing running program. It continuously

monitors the server port for client request. Whenever it gets

request to generate the secret, it waits for the client to send all

required number of shares. After receiving the shares it

generates the secret and then sends it to the clients requested

for the secret. The program has a log file option to monitor

the ongoing processes.

The client side has two programs. The first one is for

requesting the server to send share and the second one is for

sending the share to the server. The first program takes the IP

address of the server and the port number required to connect

with the server. When the connection is complete then it

request for its share and after receiving the share it saves the

share to a text file. The second program sends share to server

to reveal the secret. Like the first one it takes the IP address

and the port to connect with the server. Then it sends the share

previously saved by the first program to the server and wait

for the server response. If the server got all the share then this

program receives the secret otherwise it gets a message that

“Server is waiting for other shares.” Whenever server got all

the share this program can receive the secret from the server.

For the implementation of this part we have used the java

socket programming.

6.1 Simulation of Proactive Secret Sharing
We have already mentioned the problem with the online

secret sharing. Proactive secret share can resolves the

problem. Here we have given the protocols needed for the

proactive secret sharing. To prove the protocols we have

simulate the proactive secret sharing using the Java

Cryptography Architecture. Cryptix is one of the JCA

providers which is open source and widely used by the Java

Community. We have used Cryptix to simulate the protocols

for the proactive secret sharing. The simulation shows us that

all the protocols are correct. And if the protocols are

implemented, it will provide the best security for any kind of

data including the cryptographic keys.

7. CONCLUSIONS
This thesis has focused on a very important cryptographic

primitive – secret sharing scheme. A secret sharing scheme

starts with a secret and then derives from it certain shares

which are distributed to some users. The secret may be

recovered only by certain predetermined groups which belong

to the access structure. Secret sharing schemes have appeared

as an elegant solution for the problem of safeguarding

cryptographic keys but their applications include now

threshold cryptographic protocols and some e-voting or e-

auction protocols. We have reviewed the most important

secret sharing schemes for different access structures (general,

threshold, online, proactive,). Some very interesting and

useful extended capabilities have been also surveyed so that

the applications can be easily comprehensible.

Our major contribution consists in the application of the

general variant of the Lagrange Polynomial theorem in

designing several classes of secret sharing. We consider that

the proposed secret sharing schemes provide the flexibility for

performing a required compromise between the size of the

shares and the level of security.

We have pointed out that the secret sharing schemes based on

the general variant of the Lagrange polynomial theorem have

some interesting and useful features as multiplicative and

homomorphic properties which make them suitable for

threshold cryptography.

Java Cryptography Architecture (JCA) is a successful object-

oriented framework for conventional public key cryptography

and has been widely used. In this thesis, we extend the JCA

framework to integrate the threshold cryptography, a branch

of group-oriented public key cryptography which has been

shown to be a very useful tool to improve system security.

Under such a framework extension, an application can easily

change its threshold cryptography providers at run time

without changing its source codes. Since our extension

follows the JCA design principle, use threshold cryptography.

An example provider is implemented to show the feasibility

of the framework extension. It is our belief that this practice

will help speed up the adoption of threshold cryptography.

8. REFERENCES
[1] Fredrik Olsson, “A Lab System for Secret Sharing”,

2004.

[2] N. Ferguson & B. Schneier. Practical Cryptography.

2003, pp. 358-360.

[3] R. Anderson, R. Needham & A. Shamir. “The

Steganographic File System." in D. Aucsmith (ed.)

Information Hiding. Second International Workshop.

1998, pp. 73-82.

[4] Lidong Zhou. Secret Sharing. Secret Sharing. Retrieved

August 01, 2013, from

http://www.cs.cornell.edu/courses/cs513/2000sp/SecretS

haring.html

[5] Secret Sharing Scheme. Retrived Auguest 02, 2013, from

http://www.jetico.com/web_help/bc8/html/08_1_new_ke

y_generator/03_SSS.htm

[6] A. Shamir, How to share a secret, Communications of

the ACM 22 (1979), 612-613.

[7] What is "Secret Sharing"? Retrived Auguest 02, 2013,

from http://point-at-infinity.org/ssss/

[8] V. Nikov, S. Nikova. On Proactive Secret Sharing

Schemes, SAC’04, LNCS 3357, 2004, pp. 314-331.

