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Abstract 
Efficient preemptions in the scheduling of real time systems 

cause optimal overhead in parallel computing systems. 

Periodic and sporadic tasks are exists in the real time systems. 

The periodic tasks may be divided into the synchronous and 

asynchronous categories. The management of the resource 

sharing in the parallel computing can be powerfully achieved 

by preemptive scheduling. Fast preemptions are necessary to 

achieve the high degree parallelism.   In this paper, Earliest 

Starting Time parameter expended up to a large degree of 

heterogeneity. We compare the proposed algorithm with the 

existed well known algorithms: preemptive MCP and FPS 

algorithms. The result shows better performance of the PTPS 

in terms of average NSL and running time complexities.   

Keywords  
Preemptive Scheduling, Normalized Schedule Length, 

Directed Acyclic Graph, Parallel Computing etc.  

1. Introduction 
Non-preemptive scheduling strategies [1, 7, 20, 6, 19, 16, 9] 

are discussed in the literature. MCP (Modified Critical Path), 

HEFT (Highest Level First) with estimated time algorithm 

[10], the earliest time first algorithm EFT [6] and dynamic 

level scheduling algorithm(DLS) are some well known non-

preemptive scheduling algorithms. PTS (Preemptive Task 

Scheduling) algorithms shows low scheduling cost and better 

load balance than the existing list scheduling algorithms. 

Time complexities of PTS is better than time complexities of 

MCP, HLEFT, ETF, DLS algorithms. In these scheduling 

algorithms turnaround time and CPU utilization are the 

metrics to evaluate the performance of the system. FCFS 

scheduling shows worst average job slow down than SJF [17]. 

Starvation problem may be occurs in FCFS because some 

long jobs having more priority than short jobs may take very 

long execution time. This problem shows long delays and 

very low throughput. Job fairness parameter shows better 

results in non-preemptive scheduling. It is clear that non-

FCFS scheduling are less fair than FCFS due to the starvation 

problems. Fairness of job may be calculated by the delay in 

time due to delayed of a later arriving job. If actual start time 

of a job is greater than its fair start time then the job is treated 

as unfair. FCFS scheduling algorithms do not shows always 

better results in terms of fairness than another scheduling 

algorithm is that provide better response time [21]. 

The complexities of the scheduling algorithms play a 

important role for the execution of the processes. Low time 

complexities shows good performance in all performance 

metrics [10, 15, 16]. Scheduling cost is proportional to the 

number of processors used for the scheduling of large number 

of tasks. This is a major problem for the futuristic due to the 

increasing number of processors. A scheduling algorithm with 

fast preemptions can speed up the compilation process. The 

process must be started as soon as possible for minimization 

of execution time. If waiting time is shorter then turnaround 

time is also affected by the earliest short time of the process. 

Hence throughput is increases if earliest starting time is 

decreases. Preemptive scheduling may be categories in 

following categories: 

a) Priority based preemptive scheduling: In these 

scheduling tasks are allocated to the processors 

according to their priorities.  

b) Resource sharing: In this approach, all tasks are 

allocated to the processors simultaneously. Every 

tasks get equal time quantum for the execution of 

threads. 

c) Implementation of the preemptive approaches by 

the thread shares low context switching overhead.  

2 Resource sharing 
In preemptive scheduling utilization of the resources 

increased due to the following considerations. These 

considerations avoid deadlock due to regular preemptions of 

the resources.      

1. Designed algorithm must satisfy the requirement of 

parallel processing. 

2. The algorithm should have low NSL (Normalized 

Schedule Length) and communication overhead. 

3. The algorithm must achieve high performance 

efficiency and low response time in multi-core 

systems. 

4. At every instant of time, a resource should be hold 

at most one task. 

5. In resource scheduling algorithms deadlock 

condition must be avoided. To ensure the absence of 

deadlock condition at least one condition from the 

below must be satisfied. 

a) Allocation of the resources should be in 

non sharable mode. Every participating 

resource in the multiprocessing 

environment should not be shared by 

multiple tasks. 
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b) If any resource allocated to a particular 

task then another task should wait until 

it’s released by allocated tasks. 

c) The resources should not be allocated in 

the circular manner (Firs allocated 

resource requested by last resource and 

second allocated resource must be 

requested first resource and so on.) 

d) No-preemption condition must be 

satisfied. 

6. The proposed algorithm satisfies fixed priority 

preemptions and it’s capable to schedule the large 

number of tasks simultaneously.  

In DAG based preemptive scheduling, a partial portion of the 

task can be reallocated to the different processors [23,22 

,24,25]. While in the case of no-preemptive scheduling, the 

allocated processors can’t be re-allocated until it finishes the 

assigned tasks. Flexibility and resource utilization of the 

preemptive scheduling is more than non-preemptive 

scheduling in theoretical manner. Practically, re-assigning the 

partial part of the task causes extra overhead. Preemptive 

scheduling shows polynomial time solutions while non-

preemptive proved NP-complete [26]. Scheduling with 

duplication upon different processors is also NP-complete. 

Communication delay amongst the preemptive tasks is more 

du to preemptions of processors. Preemptive and non-

preemptive scheduling approaches investigated by [27] in 

homogeneous computing architectures. They used 

independent tasks without having precedence constraints. In 

DAG, condition of precedence constraints is inserted by 

Wang and [28] for preemptive and non-preemptive 

scheduling. Earliest time factor inserted by them to construct 

scheduling in list scheduling strategies.  

3.1 Proposed Algorithm for Preemptive 

Scheduling: 
1. Assign each  

2. for all processors 

    generate priority queue( )  

    sort ascending EST( )  

end for 

3. calculate AvgFT ( ) for   

4. while (ready-list not empty) do begin 

5. Select task  (highest priority) from priority queue; 

6. Select the processor  for task  according to 

EST; 

7. Assigned    

8. Delete task  from the ready-queue; 

9. Update ready -queue; 

10.  compute FT all unscheduled tasks; 

11. Schedule smallest FT tasks; 

12. Move task    

13. end while 

3.1.1 Description of the Scheduling 

Algorithm:  
There are two phase in the proposed scheduling algorithm. In 

first phase priorities are assigned to the tasks according to 

their communication time execution time. While in second 

phase Earliest Start Time(EST) is calculated and tasks are 

scheduled upon the processors according to their processing 

capabilities. Each task of the example is assigned on the 

fastest processor. Nodes are sorted according to their 

ascending order Earliest Start Time. The first node having 

highest priority is numbered as 0. Next priority nodes are 

numbered in the ascending order of natural numbers. After 

assigning the priorities there is no dependency exist amongst 

the nodes. If dependency is found the new group of the tasks 

are generated to remove the dependency of the nodes. In this 

manner dependency from the tasks of DAG are removed and 

these tasks are assigned independently. 

After calculating Earliest Starting Time the tasks are assigned 

to the selected processors. When the task is finished then it’s 

removed from the ready queue. Ready queue is updated after 

the deletion of the tasks. Finish time of the remaining tasks is 

calculated as follows: 

FT=  +min ( + )                                 

(1) 

Smallest finish time tasks are assigned prior to the next 

smallest finish time. Due to the preemption nature of the tasks 

they can move to each other computing processors. So idle 

time of the processors decreases due to the optimal and fast 

preemptions of the tasks upon the group of heterogeneous 

processors. 
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Symbol Definition 

 
i
th

 Task 

 
Fastest Processor 

 
Selected Processor 

 
All Processors 

 
Earliest Staring Time of i

th
 task upon j

th
 processor 

 
Finish Time of i

th
 task upon j

th
 processor 

Table 1: Symbol and Their Description 

 

Figure (1): Running Time vs Number of Processors Analyasis 

 

Figure(2): CCR vs Average Normalized Schedule Length Analysis at 4 processors 
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Figure(3): CCR vs Average Normalized Schedule Length Analysis at 8 processors 

 

Figure(4): CCR vs Average Normalized Schedule Length Analysis at 16 processors 

 

Figure(5): CCR vs Average Normalized Schedule Length Analysis at 32 processors 
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Figure(6): CCR vs Average Normalized Schedule Length Analysis at 64 processors 

 

 

 

 

 

 

 

Figure(7): DAG Example for Simulation 

4 Experimental Phase  
We conducted simulation based experimental evaluation of 

the proposed algorithm against existed well known FPS (Fast 

Preemptive Scheduling) and preemptive MCP (Minimum 

Critical Path) algorithms. In Figure (1), running time (sec) 

variation with the different number of processors is 

demonstrated. It can be observed that MCP shows very large 

running time for the range of processors {4, 16, 64, 256, 512, 

1024} in the comparison of FPS and PTPS scheduling 

algorithms.While the running time of PTPS is 11.91 % less 

than running time of FPS.   

Figure (2) shows the behavior of average NSL (Normalized 

Schedule Length) against CCR range (0.2, 0.5, 1, 1.5, 2.5, 5, 

10) values. When CCR values increases then average NSL 

value is also increases. At highest value CCR=10 for p=4, 

NSL value of PTPS decreases by FPS and MCP 11.41 % and 

33.56 % respectively. This estimates that if communication 

cost increases then overhead is also increases. We examine 

the performance of the proposed algorithm for the range (p=4, 

8, 16, 32, 64) of processors. Figure (3-6) shows that optimal 

results are obtained by PTPS algorithm at the different 

number of processors. It may be observed that if number of 

processors increases then average NSL value is continuously 

going to decreases. So PTPS shows better performance upon 

the compared algorithms FPS and preemptive MCP 

scheduling algorithms. 

5 Conclusion 
This paper contribute the best possible scheduling approach 

PTPS for heterogeneous computing environments. PTPS is 

based on the Earliest Start Time factor which provides the 

optimum processing capability of the existing machines. This 

approach gives the optimal schedule at very low complexity 

of the existing scheduling algorithms. A large number of 

experiments conducted with large number of task graphs. 

PTPS shows better results over preemptive MCP and FPS in 

terms of Normalized Schedule Length. Which is a very 

important parameter for the communication and 

computational costs of the task partitioning strategies. 

6 Future Work 
The proposed algorithm may be extended for the group of 

heterogeneous computing environment. The scalability of the 

proposed algorithm may be extended at very large scale.  
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