

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 1, September 2013 – www.ijais.org

25

Preemptive Task Partitioning Strategy (PTPS) with Fast

Preemption in Heterogeneous Distributed Environment
 1Rafiqul Zaman Khan

(Associate Professor)
Department of Computer Science,
Aligarh Muslim University, Aligarh.

 2Javed Ali
 (Research Scholar)

 Department of Computer Science,
 Aligarh Muslim University, Aligarh.

Abstract
Efficient preemptions in the scheduling of real time systems

cause optimal overhead in parallel computing systems.

Periodic and sporadic tasks are exists in the real time systems.

The periodic tasks may be divided into the synchronous and

asynchronous categories. The management of the resource

sharing in the parallel computing can be powerfully achieved

by preemptive scheduling. Fast preemptions are necessary to

achieve the high degree parallelism. In this paper, Earliest

Starting Time parameter expended up to a large degree of

heterogeneity. We compare the proposed algorithm with the

existed well known algorithms: preemptive MCP and FPS

algorithms. The result shows better performance of the PTPS

in terms of average NSL and running time complexities.

Keywords
Preemptive Scheduling, Normalized Schedule Length,

Directed Acyclic Graph, Parallel Computing etc.

1. Introduction
Non-preemptive scheduling strategies [1, 7, 20, 6, 19, 16, 9]

are discussed in the literature. MCP (Modified Critical Path),

HEFT (Highest Level First) with estimated time algorithm

[10], the earliest time first algorithm EFT [6] and dynamic

level scheduling algorithm(DLS) are some well known non-

preemptive scheduling algorithms. PTS (Preemptive Task

Scheduling) algorithms shows low scheduling cost and better

load balance than the existing list scheduling algorithms.

Time complexities of PTS is better than time complexities of

MCP, HLEFT, ETF, DLS algorithms. In these scheduling

algorithms turnaround time and CPU utilization are the

metrics to evaluate the performance of the system. FCFS

scheduling shows worst average job slow down than SJF [17].

Starvation problem may be occurs in FCFS because some

long jobs having more priority than short jobs may take very

long execution time. This problem shows long delays and

very low throughput. Job fairness parameter shows better

results in non-preemptive scheduling. It is clear that non-

FCFS scheduling are less fair than FCFS due to the starvation

problems. Fairness of job may be calculated by the delay in

time due to delayed of a later arriving job. If actual start time

of a job is greater than its fair start time then the job is treated

as unfair. FCFS scheduling algorithms do not shows always

better results in terms of fairness than another scheduling

algorithm is that provide better response time [21].

The complexities of the scheduling algorithms play a

important role for the execution of the processes. Low time

complexities shows good performance in all performance

metrics [10, 15, 16]. Scheduling cost is proportional to the

number of processors used for the scheduling of large number

of tasks. This is a major problem for the futuristic due to the

increasing number of processors. A scheduling algorithm with

fast preemptions can speed up the compilation process. The

process must be started as soon as possible for minimization

of execution time. If waiting time is shorter then turnaround

time is also affected by the earliest short time of the process.

Hence throughput is increases if earliest starting time is

decreases. Preemptive scheduling may be categories in

following categories:

a) Priority based preemptive scheduling: In these

scheduling tasks are allocated to the processors

according to their priorities.

b) Resource sharing: In this approach, all tasks are

allocated to the processors simultaneously. Every

tasks get equal time quantum for the execution of

threads.

c) Implementation of the preemptive approaches by

the thread shares low context switching overhead.

2 Resource sharing
In preemptive scheduling utilization of the resources

increased due to the following considerations. These

considerations avoid deadlock due to regular preemptions of

the resources.

1. Designed algorithm must satisfy the requirement of

parallel processing.

2. The algorithm should have low NSL (Normalized

Schedule Length) and communication overhead.

3. The algorithm must achieve high performance

efficiency and low response time in multi-core

systems.

4. At every instant of time, a resource should be hold

at most one task.

5. In resource scheduling algorithms deadlock

condition must be avoided. To ensure the absence of

deadlock condition at least one condition from the

below must be satisfied.

a) Allocation of the resources should be in

non sharable mode. Every participating

resource in the multiprocessing

environment should not be shared by

multiple tasks.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 1, September 2013 – www.ijais.org

26

b) If any resource allocated to a particular

task then another task should wait until

it’s released by allocated tasks.

c) The resources should not be allocated in

the circular manner (Firs allocated

resource requested by last resource and

second allocated resource must be

requested first resource and so on.)

d) No-preemption condition must be

satisfied.

6. The proposed algorithm satisfies fixed priority

preemptions and it’s capable to schedule the large

number of tasks simultaneously.

In DAG based preemptive scheduling, a partial portion of the

task can be reallocated to the different processors [23,22

,24,25]. While in the case of no-preemptive scheduling, the

allocated processors can’t be re-allocated until it finishes the

assigned tasks. Flexibility and resource utilization of the

preemptive scheduling is more than non-preemptive

scheduling in theoretical manner. Practically, re-assigning the

partial part of the task causes extra overhead. Preemptive

scheduling shows polynomial time solutions while non-

preemptive proved NP-complete [26]. Scheduling with

duplication upon different processors is also NP-complete.

Communication delay amongst the preemptive tasks is more

du to preemptions of processors. Preemptive and non-

preemptive scheduling approaches investigated by [27] in

homogeneous computing architectures. They used

independent tasks without having precedence constraints. In

DAG, condition of precedence constraints is inserted by

Wang and [28] for preemptive and non-preemptive

scheduling. Earliest time factor inserted by them to construct

scheduling in list scheduling strategies.

3.1 Proposed Algorithm for Preemptive

Scheduling:
1. Assign each

2. for all processors

 generate priority queue()

 sort ascending EST()

end for

3. calculate AvgFT () for

4. while (ready-list not empty) do begin

5. Select task (highest priority) from priority queue;

6. Select the processor for task according to

EST;

7. Assigned

8. Delete task from the ready-queue;

9. Update ready -queue;

10. compute FT all unscheduled tasks;

11. Schedule smallest FT tasks;

12. Move task

13. end while

3.1.1 Description of the Scheduling

Algorithm:
There are two phase in the proposed scheduling algorithm. In

first phase priorities are assigned to the tasks according to

their communication time execution time. While in second

phase Earliest Start Time(EST) is calculated and tasks are

scheduled upon the processors according to their processing

capabilities. Each task of the example is assigned on the

fastest processor. Nodes are sorted according to their

ascending order Earliest Start Time. The first node having

highest priority is numbered as 0. Next priority nodes are

numbered in the ascending order of natural numbers. After

assigning the priorities there is no dependency exist amongst

the nodes. If dependency is found the new group of the tasks

are generated to remove the dependency of the nodes. In this

manner dependency from the tasks of DAG are removed and

these tasks are assigned independently.

After calculating Earliest Starting Time the tasks are assigned

to the selected processors. When the task is finished then it’s

removed from the ready queue. Ready queue is updated after

the deletion of the tasks. Finish time of the remaining tasks is

calculated as follows:

FT= +min (+)

(1)

Smallest finish time tasks are assigned prior to the next

smallest finish time. Due to the preemption nature of the tasks

they can move to each other computing processors. So idle

time of the processors decreases due to the optimal and fast

preemptions of the tasks upon the group of heterogeneous

processors.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 1, September 2013 – www.ijais.org

27

Symbol Definition

i
th

 Task

Fastest Processor

Selected Processor

All Processors

Earliest Staring Time of i

th
 task upon j

th
 processor

Finish Time of i

th
 task upon j

th
 processor

Table 1: Symbol and Their Description

Figure (1): Running Time vs Number of Processors Analyasis

Figure(2): CCR vs Average Normalized Schedule Length Analysis at 4 processors

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 1, September 2013 – www.ijais.org

28

Figure(3): CCR vs Average Normalized Schedule Length Analysis at 8 processors

Figure(4): CCR vs Average Normalized Schedule Length Analysis at 16 processors

Figure(5): CCR vs Average Normalized Schedule Length Analysis at 32 processors

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 1, September 2013 – www.ijais.org

29

Figure(6): CCR vs Average Normalized Schedule Length Analysis at 64 processors

Figure(7): DAG Example for Simulation

4 Experimental Phase
We conducted simulation based experimental evaluation of

the proposed algorithm against existed well known FPS (Fast

Preemptive Scheduling) and preemptive MCP (Minimum

Critical Path) algorithms. In Figure (1), running time (sec)

variation with the different number of processors is

demonstrated. It can be observed that MCP shows very large

running time for the range of processors {4, 16, 64, 256, 512,

1024} in the comparison of FPS and PTPS scheduling

algorithms.While the running time of PTPS is 11.91 % less

than running time of FPS.

Figure (2) shows the behavior of average NSL (Normalized

Schedule Length) against CCR range (0.2, 0.5, 1, 1.5, 2.5, 5,

10) values. When CCR values increases then average NSL

value is also increases. At highest value CCR=10 for p=4,

NSL value of PTPS decreases by FPS and MCP 11.41 % and

33.56 % respectively. This estimates that if communication

cost increases then overhead is also increases. We examine

the performance of the proposed algorithm for the range (p=4,

8, 16, 32, 64) of processors. Figure (3-6) shows that optimal

results are obtained by PTPS algorithm at the different

number of processors. It may be observed that if number of

processors increases then average NSL value is continuously

going to decreases. So PTPS shows better performance upon

the compared algorithms FPS and preemptive MCP

scheduling algorithms.

5 Conclusion
This paper contribute the best possible scheduling approach

PTPS for heterogeneous computing environments. PTPS is

based on the Earliest Start Time factor which provides the

optimum processing capability of the existing machines. This

approach gives the optimal schedule at very low complexity

of the existing scheduling algorithms. A large number of

experiments conducted with large number of task graphs.

PTPS shows better results over preemptive MCP and FPS in

terms of Normalized Schedule Length. Which is a very

important parameter for the communication and

computational costs of the task partitioning strategies.

6 Future Work
The proposed algorithm may be extended for the group of

heterogeneous computing environment. The scalability of the

proposed algorithm may be extended at very large scale.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 1, September 2013 – www.ijais.org

30

References:
[1] L. George, N. Rivierre, and M. Spuri, (1996). Preemptive

and Non-Preemptive Real-Time Uni- Processor Scheduling,

Institut National de Rechercheen Informatique et en

Automatique, Tech. Rep., 45-50.

[2] S. Baruah and S. Chakraborty,(2006). Schedulability

analysis of non-preemptive recurring real-time tasks.

Parallel and Distributed Processing Symposium, 2006.

IPDPS 2006. 20th International, 12-15.

[3] L. George, N. Rivierre, and M. Spuri. ,(1996).Preemptive

and non-preemptive real-time uniprocessor scheduling.

Research Report RR-2966, INRIA, 89-90.

[4] K. Jeffay, D. Stanat, and C. Martel., (1991).On non-

preemptive scheduling of period and sporadic tasks. Real-

Time Systems Symposium, 1991. Proceedings.,

Twelfth,129–139.

[5] Ramaprasad and F. Mueller., (2008).Bounding worst-case

response time for tasks with non-preemptive regions. Real-

Time and Embedded Technology and Applications

Symposium, 2008. RTAS ’08. IEEE, 58–67.

[6] R. Dobrin and G. Fohler., (2004).Reducing the number of

preemptions in fixed priority scheduling. Real-Time

Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro

Conference on, pages 144–152.

[7] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,

C. Y. Park, M. Lee, and C. S. Kim. (1998).Analysis of

cache-related preemption delay in fixed-priority preemptive

scheduling. IEEE Trans. Comput., 47(6):700–713.

[8] A. Burns. ,(1994).Preemptive priority based scheduling:

An appropriate engineering approach. In S. Son, editor,

Advances in Real-Time Systems, 225–248.

[9] N. Megow, M. Uetz, and T. Vredeveld, (2006).Models and

algorithms for stochastic online scheduling", Mathematics

of Operations Research, vol. 31, 513-525.

[10] R.H. Moring, A.S. Schulz, and M. Uetz,

(1999).Approximation in stochastic scheduling: the power

of LP-based priority policies, 1. ACM , vol. 46, 924-942.

[11] Sahni, S. K, (1976).Algorithms for scheduling independent

tasks. ACM, vol. 23, 116-127.

[12] R. I. Davis and A. Burns, (2009). Priority Assignment for

Global Fixed Priority Pre-Emptive Scheduling in

Multiprocessor Real-Time Systems,” in 2009 30th IEEE

Real-Time Systems Symposium, Technical report YCS-

2010-451, Department of Computer Science, University of

York. IEEE, 398–409.

[13] E. Bini and G. Buttazzo, (2005). Measuring the

performance of schedulability tests. Real-Time Systems,

vol. 30, no. 1, 129–154.

[14] C. Li, C. Ding, and K. Shen, (2007) .Quantifying The Cost

of Context Switch.In Proceedings of the 2007 workshop on

Experimental computer science, no. June. ACM, 67-69.

[15] A. Bastoni, (2010).Cache-Related Preemption and

Migration Delays : Empirical approximation and Impact on

Schedulability.In Sixth International Workshop on

Operating Systems Platforms for Embedded Real-Time

Applications, 33–34.

[16] C. L. Liu and J. W. Layland, (1973). Scheduling algorithms

for multiprogramming in a hard-real-time environment.

Journal of the ACM, vol. 20, no. 1,46–61.

[17] N. Guan, W. Yi, Q. Deng, Z. Gu, and G. Yu,

(2011).Schedulability analysis for non-preemptive fixed-

priority multiprocessor scheduling. Journal of Systems

Architecture, vol. 57, no. 5, 536 – 546.

[18] D. I. Katcher, H. Arakawa, J. K. Strosnider.,

(1993).Engineering and analysis of fixed priority

schedulers. IEEE Transactions on Software Engineering,

19(9),920-934.

[19] M. Bertogna and S. Baruah, (2010). Limited preemption of

scheduling of sporadic task systems. IEEE Transactions on

Industrial Informatics, 45-49.

[20] S. Altmeyer, R. Davis, and C.Maiza, (2011). Cache related

pre-emption delay aware response time analysis for fixed

priority pre-emptive systems. In Proc. 32nd IEEE Real-

Time Syst. Symp. (RTSS.11), Vienna,Austria, 23-28.

[21] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G.

Buttazzo, (2011).Optimal selection of preemption points to

minimize preemption overhead. In Proc. 23rd Euromicro

Conf. Real-Time Syst. (ECRTS’11), Porto, Portugal, Jul. 6–

8, , 217–227.

[22] Cheng, R., Gen, M., And Tsujimura, Y., (1996). A tutorial

survey of job-shop scheduling problems using genetic

algorithms—I: representation. Comput. Ind. Eng. 30, 4,

983–997.

[23] Gonzalez, M. J., Jr.,(1977). Deterministic processor

scheduling. ACM Comput. Surv. 9, 3 (Sept.), 173–204.

[24] Horvath, E. C., Lam, S., Sethi, R., (1977). A level

algorithm for preemptive scheduling. J. ACM 24, 1 (Jan.),

36–47.

[25] Rayward-Smith, V. J., (1987).The complexity of

preemptive scheduling given interprocessor communication

delays. Inf. Process. Lett. 25, 120–128.

[26] Coffman, E. G. and Graham, R. L. (1972). Optimal

scheduling for two-processor systems. Acta Inf. 1, 200–213.

[27] Blazewicz, J., Weglarz, J., and Drabowski, M. (1984).

Scheduling independent 2-processor tasks to minimize

schedule length. Inf. Process. Lett. 18, 267–273.

[28] Chung, Y.-C. and Ranka, S. (1992). Applications and

performance analysis of a compile-time optimization

approach for list scheduling algorithm on distributed

memory multiprocessors. In Proceedings of the 1992

Conference on Supercomputing (Supercomputing ’92,

Minneapolis, MN, Nov. 16–20), R. Werner, Ed. IEEE

Computer Society Press, Los Alamitos, CA, 515–525.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 6 – No. 1, September 2013 – www.ijais.org

31

BIOGRAPHY AUTHORS:

Dr. Rafiqul Zaman Khan:
Dr. Rafiqul Zaman Khan, is presently working as a Associate

Professor in the Department of Computer Science at Aligarh

Muslim University, Aligarh, India. He received his B.Sc

Degree from M.J.P Rohilkhand University, Bareilly, M.Sc

and M.C.A from A.M.U. and Ph.D (Computer Science) from

Jamia Hamdard University. He has 18 years of Teaching

Experience of various reputed International and National

Universities viz King Fahad University of Petroleum &

Minerals (KFUPM), K.S.A, Ittihad University, U.A.E, Pune

University, Jamia Hamdard University and AMU, Aligarh.

He worked as a Head of the Department of Computer Science

at Poona College, University of Pune. He also worked as a

Chairman of the Department of Computer Science, AMU,

Aligarh. His Research Interest includes Parallel & Distributed

Computing, Gesture Recognition, Expert Systems and

Artificial Intelligence. Presently 04 students are doing PhD

under his supervision. He has published about 35 research

papers in International Journals/ConferencesNames of some

Journals of repute in which recently his articles have been

published are International Journal of Computer Applications

(ISSN: 0975-8887), U.S.A, Journal of Computer and

Information Science (ISSN: 1913-8989), Canada,

International Journal of Human Computer Interaction (ISSN:

2180-1347), Malaysia, and Malaysian Journal of Computer

Science(ISSN: 0127-9084), Malaysia. He is the Member of

Advisory Board of International Journal of Emerging

Technology and Advanced Engineering (IJETAE), Editorial

Board of International Journal of Advances in Engineering &

Technology (IJAET), International Journal of Computer

Science Engineering and Technology (IJCSET), International

Journal in Foundations of Computer Science & technology

(IJFCST) and Journal of Information Technology, and

Organizations (JITO).

Javed Ali:
Javed Ali is a research scholar in the Department of Computer

Science, Aligarh Muslim University, Aligarh. His research

interest include parallel computing in distributed systems. He

did BSc.(Hons.) in mathematics and MCA from Aligrah

Muslim University ,Aligarh. He published seven international

research papers in reputed journals. He received state level

scientist award by the government of India.

