

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 9, July 2013 – www.ijais.org

23

A New Approach to Increase Information Systems
Modularity using Event-Driven Software

Architecture

Mohammad Masdari

Department of Computer Engineering,
Science and research University, Urmia

Branch, Urmia, Iran,

Esmail Amini

Computer Engineering Department Science and
Research Branch,Islamic Azad University, West

Azerbaijan, Iran

ABSTRACT

Software production line is one of the most active trends in

software engineering. Most available methods are based on

tripod architecture. In this paper, it is provided new frame

with100% extensibility for data access layer. It is such a

frame which can be used for all information system in all

sizes. The difference of this method with the others is that the

others are used to produce data access layer codes based on

data model in the software production line. While it is

suggested a main module as well as a tool based on designed

patterns and innovations in this method which can be added to

the available project and managed all the data access layer

process and operation needless to produce any access layer to

data for each project. By using this frame of data access layer,

the projects are always ready and available and can be used in

different projects without change.

Keywords

Software Architecture, Information Systems, Module Based

System, Data Access Layer, Data Model

1. INTRODUCTION
Over time, the software systems are spreading and become

more complicated. Extensibility and variability are the

integral part of the software systems and the projects need

them in each stage of development and even configuration

and operation processes. Extensibility and variability in a

system is one of the most important discussed challenges in

software architecture. One of the main and important

activities in software engineering is software production line.

To do so, a lot of researches have been performing till now.

The main goal is to provide software production line system

which can produce a new software system based on

beneficiaries’ needs. There are a lot of methods and

methodologies which perform widely to provide software

production line system [6].

The software production line system issue is related to the

new software system directly. It is used various architectures

to provide it. Most available architectures are based on tripod

architecture which derived from MVC model [1]. It is formed

from Interface User (UI), Business Logic and data access

layers [7]. The method we suggest to provide software

production line for information systems is a Layer Based

method. In this method, it is provided variable and extensible

frames for the different layers of tripod architecture in which

all the operations can be done and managed. As you can see

in Fig (1), all Use Case of system are performed in Workflow

Engine Framework. All the parts of the project will be used

data accesslayer framework for connection and operation with

data.

Fig 1: The proposed framework of information

system in software production line

We discuss about BDAL data access layer to review and

analyze the provided framework in this article. The steps

propose to develop and expand framework of Data Layer will

be as follow:

1- To review the earlier methods and tools and

analyzing their extensibility and variability.

2- To review all operations and tasks of data access

layer

3- To provide a Meta Model (architecture) for data

accesslayer operation

4- To review the available classes in data access layer,

identity and their attitudes

5- To provide a Meta Model (architecture) for data

access layer class

6- To analyze the available Meta Models to Modules

7- To analyze and design the provided Modules

8- To test each modules (Unit Test)

9- To combine all modules to get the desired

framework

10- To test the general framework (Integration Test)

11- To provide documents by using framework

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 9, July 2013 – www.ijais.org

24

2. DATA ACCESS LEYER, OPERATION

AND TASK
In all kinds of available architectures for information systems

esp. in those based on tripod architecture, we need an access

layer to connect with system data [3]. All the operations

related to the connection and operation commands of data

base, insert and edit operation of all information of data base

are administrated in this layer. According to Fig (2),

regardless of any kind of methodology, Entity type classes

which are placed in data access layer must support their data

maintaining and validating, inserting, editing and deleting

operation [3,8].

Fig 2: Entity type class of data access layer related to

data

As a case study, an entity class which called Book can be

indicated as Fig (3) in library management system.

Fig 3: A sample of Entity class

In general, according to [3, 10], it can be provided all the data

access layer activities or requirements of this framework as

follow:

Req1: the ability to control the connection operation to

data base

Req2: controlling Transactions and related errors.

Req3: the ability to do deleting, inserting and editing

commands.

Req4: controlling cancelation review of all deleting,

inserting and editing errors.

Req5: the ability to control cancelation review of all

data of each entity.

Req6: the ability to review referential integrity errors

and main key.

Req7: the ability to control the access level to data of

each entity.

Each framework of data access layer must meet the noted

requirements.

3. THE EARLIER METHODES OF

DATA ACCESS LAYER MANAGEMENT
There are already many tools based on tripod layer

architecture which involved in producing related codes of

different layers. For data access layer, there are also various

extensible tools which produced its data access layer based on

data model of a system [11]. It can be noted to the tools such

as Mai Generator, Subsonic, Oxygen Code generator, LLBN

Gen Pro and so on. According to its usage, firstly, it must be

provided the system data model based on system development

stages and then by using this tool, the related codes of data

access layer will be produced. The issues which must be

reviewed are the input data validity, SQL orders production

and its operation [4].

Most tools which produce data access layer consider these

issues important. Then, they place parts in their tools to

validation setting and SQL orders production and provide data

access layer codes based on performed settings. The main

problem of these methods is extensibility and variability. As

after producing the first code, the data access layer codes are

compiled and used. This status has very low variability and

extensibility [2, 13]. For example, if we want to apply a new

validity for an entity, we must reproduce and recompile the

data access layer codes of that part. The other main problem is

that there are changes in entities and attitudes of each of them.

In this case, all the stages of data access layer codes

production must be repeated. Some tools of data access layer

production which apply capabilities in their tools provide

considerable support to this problem as data access layer

codes are changed in the direct relation with this tool.

However, these methods can’t solve the variability and

extensibility problem [9, 15].

The major available problem in these methods is the lack of

variability after system’s configuration. For example, after

full development of a system and its configuration, it we want

to apply a new validation in the system, we have to repeat the

production and compile stages of the code in which such a

capability isn’t exist at all in the available methods. Software

production line theory which means providing software which

can create different parts of codes of a project emphasize

mainly on code production. However, code production

doesn’t solve the problem of variability and extensibility [2,

15]. The other main problem in code production methods is

their security. For example, if we want to have the ability of

deleting for an entity, we won’t produce the related code and

if we want to add it later, we will have code reproduction

problem. It means that the capabilities can’t be adjusted

dynamically. The other problems include the production of

many classes, lack of management and using software

management principles. These methods will certainly meet the

market needs. But, the ability of development, maintaining

and variability will be their main problems [13].

4. BDAL FRAMEWORK
To produce an extensible, variable and dynamic framework,

all related information of data access layer must be saved

dynamically. It can be used the same data base to do so and

save the data access layer information of each project along

the data of that project. According the provided needs in

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 9, July 2013 – www.ijais.org

25

section 2 and 5, it can be divided data in 3 parts which must

be saved in data access layer.

1- Meta Data: this part involves data related to the

desired project’s Meta Data and include the information of all

tables, each one identity which recorded and maintained

separately.

2- Validation: this part is proposed to save data related

to all reviews which assigned to data access layer and each

data.

3- Security: this part is proposed to save the access

levels of each entity and their related data.

We indicate these 3 parts as MVS. To save these data, part of

the related DBMS is used. To manage and control the related

data of these 3 parts, it is used MVS Tools. According to Fig

(4), the first level of provided framework consists of two main

other modules namely Entity Manager and BD Manager.

Fig 4: BDAL framework first level

To approve that the framework is capable of being

implemented, we model the provided framework, design and

analyze each module and provide each data model.

5. DB MANAGER MODULE
All connection operation to database and performing SQL

commands are done in this module. As there are two different

groups of data in system, it can be considered different classes

for them to make easy the access control [6, 11]. For this

purpose, we consider DB Manager as Fig (5) classes as

follow:

Fig 5: DB Manager Classes and their interaction

MVS Accessor class and Project DB Accessor are developed

to interact and managed the related data of MVS and main

project data of layer, respectively. Each available class in DB

Manager can be connected to database and done data insertion

and edition. The only difference is in the type of their

accessible limitations. The identity and common behaviors of

these two classes can be classified to higher class and two

classes inherited from each other [14, 15]. If Base DB

Accessor is called as father class, it would be included

available behaviors and identity as Fig (6).

Fig 6: Designing Base BD Accessor class

The Execute SQL behavior will be to do Delete, Insert

and Update commands which receive and perform an order as

String. The possible errors are referred as Exception to

recalled classes. Get DBMS behavior makes an object

(element) from class and then turns it which is written based

on Pattern Bridge [2] and supported a type of Connection

Pooling for a user. Execute Select SQL behavior is to perform

Select commands which returns its output as Data Table.

6. ENTITY MANAGER MODULE
As indicated in Fig (7), based on the tasks which must be

done by this module, we broke down it to the other modules.

Fig 7: The internal architecture of Entity Manager

Module

In fact, we use one full Entity rather several Entity classes

which must be placed in data access layer for each entity. This

full entity reads the related data of entities from MVS and

performs the related operation. After that, we are going to

analyze the available modules in the main module. After

analyzing each module, Data Model of each of them will be

provided. It is necessary to note that the goal of this article is

to provide framework. Providing Class Model for each of

them need full explanation which doesn’t included in this

article.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 9, July 2013 – www.ijais.org

26

6.1 MVS Reader Module
As all related data of other modules in Entity Manager is

recorded in database, large amount of data must be read per

minute [6, 13].Accordingly, this module has been developed

after entering all data related to Meta Data, Validation and

Security in database which performed by data base manager

and using MVS Tools. All data is read and maintained by this

module in data base. The main goal of this module is to

decrease connections to database and increase system

performance. To maintain MVS data in this module it can be

used Net Dataset or XML files. Apart from data maintenance

method, this module must have classes which can reply other

modules requested data related to MVS by using behaviors of

each of them [2, 5]. The design stage of this module is

performed after the full design of other modules.

6.2 Meta Data Module Data Model
In this module, the related Meta Data of developing project is

recorded and maintained. According to Fig (8), all data of

identities and tables are managed in it. To support Schema in

database and as it is possible that the noted project consists of

several modules, it is placed a class called Module. Each

Module consists of several tables in which Tables’ data such

as the name and alias name of table in it. In Table class, all

project Views are also recordable which can be recognized by

Is View identity. Each Table consists of several Fields in

which all of their data are also recordable. As the fields in

different DBMS have different Data Type, it can also be

recorded and managed all Data Type of DBMS.

Fig 8: Meta Data of data model Module and its

internal structure

6.3 Validation Module Data Module
In this module, all checking related to data are maintained and

managed. The checking which performed in this module are

just related to data access layer and doesn't include Business

Rule. Accordingly, they are classified in two groups. The first

group is Syntax Errors checking which reviews the lexical

accuracy of input data and manages the related errors. It can

be noted to different kinds of reviews such as to be numerical

or chain and/or to be in a certain interval and so on. The

second group of errors is related to the integrity of main and

external keys which called Semantic errors. There aren't more

than two reviews in this part. The first review is related to the

main key. The repeated data isn’t allowed to enter it. The

other review is external key or referential integrity which

must be controlled by this module [10, 11].

According to Fig (9), all related operations to Validation are

managed in this module. Each field might have several Syntax

Errors. For example, a field might have 3 kinds of checking

which called "Is Not Empty"(review the field un-

emptiness);"Is int"(review the field numerical status) and "Is

In Range" (review the field valid interval). In all these three

cases, it can be recorded a certain error and displayed to the

user. In Method Name part, the name of the method in which

the related checking is going to be done will be written. Based

on this method, the checking operation can be managed. For

each checking on a certain field, it can also be recorded the

time of that error. Beside Syntax checking, it can be added

two kinds of Semantic checking. It can be controlled main

keys for the non-entry of repeated data and displayed a certain

error for the occurrence of each of them. Meanwhile, if the

key is external, we might record the table and identity of

similar main key and display a certain error if the time of data

insertion doesn't have a value in the main key. The

considerable point is that even after a system configuration

and its final delivery, it can be added different type of reviews

of new errors on different fields without the need to recompile

the code. In Validators part, all kinds of checking will be

recorded. Then, if we need a new kind of checking, we can

easily add it to the framework which indicates the

extensibility of this framework to review errors [7, 14]. To do

so, it is simply enough to write a new method for new

checking, and then record its related data in Validators.

Fig 9: Data model of Validation Module

6.4 Security Module Data Model
In each project, data base manager can determine the access

method to data. For example, based on certain circumstances,

Delete isn't allowed for a table. In this case, it isn't placed a

method called Delete or ability of Delete in Entity class in

usual projects. For other orders, it is the same. Database

manager of a project might determine allowed methods and

capabilities on different data. In this module, data related to

the access level of data of each table is managed. To complete

this module, it must be done four main functions in each table.

It means that different kinds of allowed Queries must be

delivered to other layers programmers in methods framework.

In this part, we just analyze Insert function. To Insert below

data model, we recommend Fig (10). Accordingly, all Insert

methods are manageable on table. For each table, it can be

defined several Insert Commands in which we can determine

data entry allowance to each identity and manage each one

available errors. Each identity in each Insert command has a

certain status which can be as allowed, record as Null and

record as default [8, 9 and 16].

 class Meta Data Model

Module

- ID: int

- Name: String

Table

- ID: int

- IsView: boolean

- Name: string

Field

- ID: int

- isFK: boolean

- isNullable: boolean

- isPK: boolean

- Name: string

Data Type

- ID: int

- Byte: int

- Name: string

1 *

1

*

1 *

 class Validation Module

Meta Data Model

Validators

- ID: int

- Name: string

- MethodName: string

Semanyic Errors

- ID: int

- ErrorMsg: string

- Desc: string

Syntax Errors

- ID: int

- MinValue: string

- MaxValue: string

- ErrorMsg: string

Table

Field

1

*

1

*

1

*

1

*

1

*

1 *

1 *

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 9, July 2013 – www.ijais.org

27

Fig 10: Security Module: Insert Data Model

For other SQL commands such as Update, Delete and etc, it

can be provided such models.

6.5 IUDS Module
The goal of this module is to build dynamic SQL orders. As

all data related to tables are available in MVS Reader, it can

be obtained all related identities and data by determining the

name of the table. It can be provided dynamic SQL

commands by these data. Then, this module is linked to the

project database by Project DB Accessor and performed SQL

commands. If it fails, it will provide the considered error of

desired order which is taken from MVS Reader. This error is

transported to the other layers by Core [10, 15].

7. MVS TOOLS
To enter data related to Meta Data, Validations and security

settings, it can be used tools which can receive desired data of

database manager and record in MVS DB to use in Entity

Manager. MVS tools are proposed to assign these tasks and

goals and can be designed and produce once by designers and

used in all software projects. Certainly, MVS Tools will

consist of 3 main parts. Based on the provided data model in

each part, data related to that part must be managed and

recorded. It can be used many initiatives to provide the

opportunity in which database manager can easily work with

tools. For example, in the part related to system Meta Data, it

can be used DBMS to get the project Meta Data. These data

are available in schema-information of each DBMS. It is clear

that MVS Tools might have facilities and features which can

be used to dynamically produce all required data of BDAL

and record in Meta Data framework and other settings. This

helps that our proposed method plays its rule in system with

maximum efficiency and without the need to recompile code

[2, 3 and 6].

8. CASE STUDY: REVIEW THE

PERFORMANCE OF THE PROPOSED

METHOD IN LIBRARY MANAGEMENT

SYSTEM
If such a framework has been fully developed, it can be find it

in other layers as below. Here, we provide the necessary codes

to record a sample book in library management system by

using C#.Net language and proposed data access layer as

below:

 1: Entity Manager Entity=new Entity Manager ();

 //Create New Object from Entity Manager Class

 2: Entity. Set Entity (“Book”);

 //Entity .Set Entity (Entity Name);

 3: Entity. Fields [“Book – No”] =”QA12”;

 //Entity .Fields [Field Name] = Value;

 4: Entity. Fields [“Title”]”C#”;

 5: Entity. Fields [“Pages”] =250;

 6: Entity. Insert ();

In the first line, as the first object is defined, all data related to

MVS is read by MVS Reader from database. It is done once

for the total project. We called this time Tf. It includes

connection to database (T Connection), reading Meta Data

(Tm), Validation (Tv) and security (Ts) which can be

generally indicated as Tf =TConnection +Tm+Tv+Ts. In line

2, it is reviewed the availability of the table called Book via

Meta Data module and if it isn’t available, it will represent the

considered error. It isn’t done by database and performed by

the read data from MVS Reader. Consequently, the time of

theses reviews is a simple search which takes time O(Ct) and

Ct is the number of project tables [11, 17].

In lines 3, 4and 5, the receiving operation and their checking

are done which will based on MVS data. Such a review would

be usually performed. Only in this case, the type of review is

searched via MVS Reader which is equal to time Ca * O(Ce)

in which Ca is the number of identities and Ce is the number

of Syntax Errors table records. In line 6, it is reviewed firstly

the access level of Insert Commands by security module and

via calling Insert method. It has the time equal to O(Ci) in

which Ci is the number of Insert Commands table records. It

is necessary to point out that all data are taken from MVS

Reader not from database. If it attains, data will delivered to

IUDS module to insert. In that part, the related SQL command

build is done and then followed by Insert operation. Building

SQL command and its insert operation is occurred in usual

status. Consequently, when this framework spent more than

usual time in each Insert, it will be as below:

 Tins = O(Ct) + Ca * O(Ce) + O(Ci) (1)

As Ca is a constant number and almost 20", the total time will

be O(n) for each Insert. Tf time is also calculated once for

total project. Due to the integrity of Update, Delete and Select

commands and same as Insert method, it can be approved that

for each of them, it would be spent the maximum time period

(equal to O(n)) which was more than usual time. Now, if we

want to calculate additional time for a certain Use Case as the

number of commands which figured in the Use Case are

limited_ (for example, for the main Use Case, it can be about

10), so , we have more than usual time period (equal to O(n))

for each Use Case [6,9 and 17].

9. CONCLUSION AND FUTURE

WORKS
The models which are provided in previous parts, is an

approval to extensibility and variability of provided

framework. It is as we can apply necessary changes in each

stage without any payment. The performance issue is

reviewed and the only time equal to O (n) for each command

takes more time than usual. The important fact is that due to

 class Security Module

Insert Commands

- ID: int

- MethodName: string

InsertFields

- ID: int

- Priority: int

Values

- ID: int

- Name: string

- Value: string

Table Field

1 *

*

1

1

*

1

*

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 9, July 2013 – www.ijais.org

28

the nature of the quality features and trade off availability

among them, this time period can be reduced but can’t be

removed. By developing and provided framework usage, the

statistical data access layer is prepared for all projects and

Time to Market projects are mostly decreased. It can also be

optimized the software quality features in the provided

framework by designing diagram class for each part and

modules based on object-oriented design patterns.

10. REFERENCES
[1] Gomma, H., “Designing Software Product Lines Whit

UML: From Use Cases to Pattern – Based Software

Architectures”, Addison Wesley, 2004.

[2] Greenfield, J., Short K., Software Factories:

“Assembling Applications with Patterns, Models,

Frameworks, and Tools”, John Wiley & Sons, 2004

[3] Nock C., “Data Access Patterns: Database Interactions in

Object – Oriented Applications”, Addison Wesley, 2003.

[4] Crawford W., Kaplan J., “J2EE Design Patterns”,

O’Reilly, 2003.

[5] Lhotka R., “Expert C# 2008 Business Objects”, Apress,

2009.

[6] Lhotka R., “Expert C# 2008 Business Objects”, Apress,

2009.

[7] Y. Bao, X. Sun, K. S. Trivedi, “A Workload-Based

Analysis of Software Aging, and Rejuvenation”, IEEE

Trans. Reliability,pp. 54-57, 2005.

[8] D. Chen, K. S. Trivedi, “Optimization for condition-

based maintenance with semi-Markov decision process”,

Reliability Engineering and System Safety 90, 2005

[9] H. V. Ramasamy and M. Schunter, “Architecting

Dependable Systems Using Virtualization”, In Workshop

on DSN,2007.

[10] Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O.,

Hunt, G., Larus, J.R. and Levi, S., “Language Support

for Fast and Reliable Message Based Communication in

Singularity OS”. In Proceedings of the EuroSys 2006

Conference, Leuven, Belgium,pp. 177-190, 2006.

[11] J. Gray, “Functionality, Availability, Agility,

Manageability, Scalability—the New Priorities of

Application Design”, Proc. Int’l Workshop High

Performance Trans. Systems, 2001.

[12] O. Etzion, P. Niblett, “Event Processing in Action,

Manning Publications”, USA, 2011.

[13] “Recommended Practice for Architectural Description of

Software Intensive Systems”. Technical Report IEEE

P1471-2000, IEEE Standards Department, The

Architecture Working Group of the Software

Engineering Committee, 2000.

[14] A. Paschke, A. Kozlenkov, and H. Boley, “A

homogenousreaction rules language for complex event

processing,” in InternationalWorkshop on Event Drive

Architecture for ComplexEvent Process. ACM, 2007.

[15] K. Pope, “Zend Framework 1.8 Web Application

Developmen”t, PACKT Publishing, 2009.

[16] G. Ahn, H. Hu, J. Jin. “Security-Enhanced OSGi Service

Environments”, IEEE Transactions on Systems, Man and

Cybernetics—Part C: Applications and Reviews, Vol.

39, No. 5, 2009

[17] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, R.

Stafford. “Patterns of Enterprise Application

Architecture”, Addison Wesley, 2002.

