

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.7, May 2013 – www.ijais.org

42

Identifying the Behavioral Difference using
Differential Slicing

N. Suguna
Computer Science and Engineering,

Annamalai University

Chidambaram, Tamilnadu, India,

RM.Chandrasekaran

Computer Science and Engineering,

Annamalai University

Chidambaram, Tamilnadu, India,

ABSTRACT
The programmer has to understand the behavior of two

similar programs and then identify the execution difference

which produces difference in output. When two similar

programs are executed under two different environments

which shows different behavior in output. The main

difference exists in the program behavior is due to two

different types of input. This paper proposes differential

slicing based on trace alignment algorithm which produces the

execution differences and generates a casual difference graph.

We implement differential slicing for C# programs and

identify the execution difference. The results shows that

differential slicing identifies the input difference and casual

difference graph reduces the amount of time for the

programmers to understand the execution difference. Our

experimental results show the proposed differential slicing

performs better than existing approach.

Keywords
Casual Difference Graph (CDG), Program

Dependence Graph (PDG)

1.Introduction:

Differential program Analysis is the process of finding two

similar programs to determine the behavioral difference

between them.Programs are frequently maintained by the

programmers who are far removed from software

development process. The purpose of modifications in the

program development is not always clear. The actual effect

on the programs behavior is the presence of a particular part

of the program may be unknown,a particular line may be

crucial or it may have no effect at all. The previous research

shows that difference in behavior is caused by the presence or

absence of particular element would help the maintainers in

understanding the program. A set of automated techniques is

needed to analyze the effect of modifications. We use

differential slicing to focus on differences between two

similar programs [1].

We proposed a differential slicing for C# programs. It

identifies the aligned and disaligned region and generates a

casual difference graph. We compare the differential slicing

and existing approach and the results are tabulated.

Our results also show that differential slicing identifies the

input difference and CDG decreases the time and effort

needed for an analyst to understand the observed difference.

The paper is organized as follows. Section 2 describes the

existing differential slicing techniques. Section 3 explains

about Dynamic slicing. Section 4 explains about differential

slicing. Section 5 describes about slice alignment. Section 6

describes the performance result of differential slicing.

Section 7 describes conclusion.

2. Related Work

Differential program analysis is the task of analyzing two

related programs which identified the behavioral difference

between them. Joel Winsted et al presents a technique to find

an input for which the two programs will produce different

outputs ,Thus illustrating the behavioral difference between

the two programs [1]. A combination of static and dynamic

techniques are used to find the differential inputs. Sumner and

Zhang [4] finds the casual path of two executions by first

patching the failing execution dynamically. In order to find

this by modifying variables and predicates at runtime to

produce a passing execution.

Zhang et al proposed a technique to find the execution

omission errors[5].If a patch is found then both runs are

aligned and similar variables are identified through value

mutations. There are many existing techniques for finding

trigger based behavior in malware. Temporal search identifies

the time based behavior byperturbing thesystem time of a

virtual machine and observing for different behaviors[6].

Similarly [7][8] uses dynamic analysis to explore multiple

execution paths in order to find the hidden behavior in

malware.

The most widely used debugging technique proposed by

Weiser is program slicing [9] which produces a slice

containing parts of a program that are relevant to find the

value of a particular variable called slicing criterion. Korel

and Laski presents a technique called dynamic slicing which

works on single execution and outputs the executed

statements relevant to slicing criterion. There are four forms

of dynamic slicing based on the dependencies in the slice.

Thin slicing [10] contains a subset of data dependencies, data

slicing [11] consists of all data dependencies, full slicing [12]

include data and control dependencies and relevant slicing

[13], [14] includes data and control dependencies in addition

to that predicates and chains of potential dependencies rooted

at these predicates.

Delta debugging is a technique used to identifying the failure

inducing inputs automatically [15]. Zeller et al proposed a

failure analysis method that uses delta debugging to compare

the status of a faulty and correct execution at the fault is found

[15][16]. Xin et al [17] proposed a technique called execution

indexing to find the correspondence between points across

executions. Trace Alignment algorithm is based on execution

43

indexing. Liang et al [18] uses execution traces for fault

localization.

In this paper we study the execution difference of two similar

programs and generate a casual difference graph (CDG). First,

We generate CDG for identifying casual difference for

DotNet programs. Second we compare the dynamic slicing

and the proposed differential slicing and the results are

tabulated to analyze the performance.

3. Dynamic slicing

Program slicing is the task of finding all statements in a

program that directly or indirectly influence the value of a

variable occurrence. The set of statements that can affect the

value of a variable at some point in a program is called a

program backward slice. In several software engineering

applications, such as program debugging and measuring

program cohesion and parallelism, several slices are computed

at different program points[2]. Program slicing can be static or

dynamic. In the static program slicing it is required to find a

program slice that involves all statements that may affect the

value of a variable at a program point for any input set. In

dynamic program slicing the slice is found with respect to a

given input set. Many algorithms have been introduced to find

static and dynamic slices. These algorithms compute the slices

automatically by analyzing the program data flow and control

flow.

Definition (Dynamic slicing criterion):

A dynamicslicing criterion is a tuple (T, xn) where T is a test

case, xis a variable, and n is the index of the executed

statement of interest.

using System;

using System.Collections.Generic;

using System.Text;

namespace Step2

{

class Program

{

static void Main(string[] args)

{

1:int i = 0;

2:int prod=1, sum = 0,size;

 3:while (i<size) {

 4:sum = sum + a[i];

 5:i = i + 1; }

 6:prod = sum * (size + 1);

 7;if (size > 0) {

 8:all = sum + size;

 9:} else {

10:all = sum * size; }

}}}

Fig. 1. Sample dotnet program prod with an array a

of size as input, and prod, all as outputs.

Algorithm Dynamic Slice:

Inputs:An execution trace 𝐸𝑇= ⟨(1)1, . . . , 𝑠(𝑚)𝑚⟩of a

program Π and a test case 𝑇, and a slicing criterion

(𝑇,𝑥𝑛),𝑛≤ 𝑚.

Outputs: A dynamic slice.

1) Compute the execution trace graph 𝐸𝑇𝐺for 𝐸𝑇

using the definitions of →𝐶and →𝐷.

2) Mark the node (𝑘)in𝐸𝑇𝐺where 𝑥∈((𝑘)𝑘) and there is no

𝑠(𝑖)𝑖, 𝑘<𝑖≤ 𝑛,𝑥∈((𝑖)) in 𝐸𝑇𝐺.

3) Traverse the graph 𝐸𝑇𝐺from the marked node in the

reverse direction of the arcs in 𝐸𝑇𝐺until no new nodes can

be marked.

4) Let 𝑆be the set of all marked nodes.

5) Return the set {(𝑖)∣𝑠(𝑖)𝑖∈𝑆} as the result.

Fig. 2.Algorithm dynamic slice.

For example in fig 1. shows the sample DotNetprogram for

product of numbers. The dynamic slice for our example and

the slicing criterion (({a = [1, 1]; size = 2}, {prod = 6, all

=4}), prod8) is the following program fragment:

1. i = 0;

2. sum = 0;

3. while (i<size) {

4. sum = sum + a[i];

5. i = i + 1; }

6. prod = sum * size;

3.1 Program Dependency Graph (PDG)

The program dependence graph (pdg) consists of nodes and

direct edges. Each program's simple statement and control

predicate is represented by a node. Simple statements include

assignment, read, and write statements. Compound statements

include conditional and loop statements and they are

represented by more than one node. There are two types of

edges in a pdg: data dependence edges and control

dependence edges. A data dependence edge between two

nodes implies that the computation performed at the node

pointed by the edge directly depends on the value computed at

the other node. This means that the pointed node has the

definition of the variable used in the other node. A control

dependence edge between two nodes implies that the result of

the predicate expression at the node pointed by the edge

decides whether to execute the othernode or not. We generate

a program dependency graph for our sample program. Fig 3

shows the program dependenc graph.

44

 Data Dependency control dependency

 Fig.3 Program Dependency Graph

4: Proposed Approach

We take execution traces of two runs of the same program

difference to be analyzed. The two execution traces are

generated from two different program inputs or from the same

program running in two different system environments.

To understand the target difference which consist of

1. Finding the input difference that caused the target

difference.

2. Understanding the sequence of events that led from

input difference to target difference

To find the casual difference graph using differential slicing.

Fig 4 represents the architecture of our approach. It consists of

three phases [3].

1.Preparation

2.Trace Alignment

3.Slice Alignment

Fig. 4. Architecture of Differential Slicing

4.1. Preparation:

The preparation phase consists of two steps. In the first step

the program is executed twice on the given inputs inside the

execution monitor. The execution monitor tracks the

executions of each program and produces execution traces

Tf,Tp,Af and Ap.Tf consists of all executed instructions and Tp

is the contents of each instructions operands. Af and Ap

provides information about the heap allocation/deal location

operands performed by the program during each run.The

second step in post dominator extraction which takes input as

program and execution traces and computes the control flow

graph for each function and outputs the post dominator

information.

4.2. TraceAlignmentAlgorithm:

The third step is trace alignment which identifies the

execution differences that form the casual difference graph.

The TraceAlignment algorithm is based on execution

indexing[29]. It outputs the aligned and disaligned region in a

single pass over the traces. Given size of m and n instruction

the passing (p) and failing(f) traces respectively, a pass of

statement from these traces(px,fy).s.t that x[1,n] , y[1,m] are

aligned if they are correspond to each other. We say that a

statement in disaligned in one trace if it has no corresponding

statement in other trace are represented by a pair(px,┴) or

(┴,fy).Trace alignment marks aligned or disaligned for each

statement. We group them into regions based alignment.

An aligned region is a maximal continual sequence of aligned

statements:

(px,fy),(px+1 , fy+1).…(px+k , fy+k) sti[0,k] px+i , fy+i┴

A disaligned region is a maximal continual sequence of

disaligned statements.

(px,┴)…(px+k,┴) or (┴,fx)..(┴,fx+k)

A disaligned region is present after the aligned region. The

last statement in the aligned region is termed as divergence

point, because it creates a disaligned by changing the control

to different statements in both the traces. Fig.5 shows the

example DotNet program for alignment. The Fig.7 shows that

the two executions are aligned until #4 executes. Here

statements #2-#4 in each trace form an aligned region. Branch

statement #5 is divergence point.It checks the condition true

in passing trace and false infailingrun by creating a disaligned

region, because Stmt#5 executes in the passing run but not in

failing run (an execution omission). The two executions are

realigned at statement #6 and remain aligned until statement

#7 produces crash in failing trace. Thus statement #6, #7 form

another aligned region.

45

using System;

using System.Collections.Generic;

using System.Text;

namespace Step2

{

class Program

{

static void Main(string[] args)

{

long n,I,osum=0,esum=0;

Console.WriteLine(“enter the limit:”);

n = Convert.ToInt64(Console.ReadLine());

for(i=1;i<=n;i++)

{

if(i % 2 == 0)

esum = esum + i ;

else

osum = osum + i ;

Console.WriteLine(“ The odd numbers sum is:”+osum);

Console.WriteLine(:The even numbers sum is :”+esum);

}

}

Fig. 5. Example program to find sum of odd and

even numbers

Input:Ao,A1 //anchor points

Output:RL //list of regions

EI0,EI1 : execution index stacksStack empty();

ins0,ins1A0,A1; //current instruction

RL Ø;

while ins0,ins1 ≠ ┴ do

crregionBegin(ins0,ins1,aligned)

 // Aligned-Loop: Traces aligned. Walk until disaligned

while EI0= EI1 do

 foreachi 0,1 do

 EI IupdateIndex(EIi , insi);

 cr  regionExtend(insi,cr);

 insi++;

end

end

RL RL U cr;

crregionBegin(ins0,ins1,disaligned);

//Disaligned-Loop: Traces daligned, Walk until realigned

whileEI0 ≠ EI1do

while |EI0| ≠ |EI1| do

j (|EI0| >|EI1|) ? 0:1;

while |EIj| ≥|EIi-j| do

 EI IupdateIndex(EIi, insi);

 crregionExtend(insi,cr);

 insj++;

 end

end

end

RL RLU cr;

end

Fig. 6 Trace Alignment Algorithm

Fig.7. Traces and alignment example

A. Execution Differences:

Execution differences are values that differ across runs or

statements executed in only one run. However for finding that

a value differs or such a statement appears only in one trace

needs to establish a correspondence between statements in

both traces. It is quite difficult because the same statement

may appear multiple times occur in loops, recursive functions,

or calling of same function in different contexts. The process

of identifying such correspondence is called trace alignment

and for finding the execution differences. Given two aligned

executions there are two types of execution differences: flow

differences and value differences. A flow difference is simply

a disaligned statement value difference is used in aligned

statement that has a different value in both executions. For

example statement #5 in Fig.7 is a flow difference n variable

in statement #3 has value 2 in passing run and has value Ram

in failing run. We say that statement has differences in value

when it uses one or more variables that are value differences.

4.3. Slice Alignment:

The last step is slice Alignment which is used to create the

casual difference graph dynamically as the execution traces

are scanned backwards in lockstep, starting from the target

difference.

B. Casual difference graph

The Casual difference graph consists of the sequence of

execution differences to the target differences. The CDG stats

from the input difference because those are root cause of all

execution differences. It identifies the sequence of events that

cause the target difference and the casual path which contains

flow differences and value differences. The CDG is more

precisely than the full list of execution differences between

both runs, since not all execution differences may be relevant

to the target difference. Fig.9. Shows the CDG for sum of odd

and even numbers. As it processes from start to end with the

target difference .statement #5 crashes in the failing run.

46

Input: TD /* target difference */, RL /* alignment results */

Output: N, E // nodes and edges in causal difference graph

Worklist: stack of instruction-pairs  (TDp, TDf);

Processed: Boolean lookup table ;

while ! worklist.is Empty() do

 (insnp, insnf) worklist.pop();

 Np,fNp.finsnp,f;

 Processed (insnp, insnf)  true;

 if isAligned (insnp, insnf, RL) then

 slice_operandsvaldifferences (insnp, insnf);

 forall operand slice_operandsdo

 depimmDataDeps (operand);

 Ep,fEp,f new Edge (insnp,fdepp,f);

 if! Processed (depp, depf) then

 end Worklist.push (depp, depf);

end

 else

 dtypedivRegion Type (insnp, insnf, RL);

 switchdtypedo

 // See Table I for explanation for divergence types

 end

 caseExtraExec or ExecOmission or ExecDiff

div domDivPt (dtype, insnp, insnf,RL);

Ep,fEp,f new Edge (insnp,fdivp,f);

if! Processed (divp, divf) then

Worklist.push (divp, divf);

CaseinvalidPointer

ifwildwrite (insnp, insnf)then

alignedpalignedInsn (insnf, RL)

if! Processed (alignedp, alignedf) then

Worklist.push (alignedp, insnf);

 end

 end

 end

 end

end

Fig. 8 Algorithm for casual difference graph.

Fig. 9 Casual Difference Graph

Table1.Traces and time to generate slice align graph.

S.No. LOC
Pass

(KB)

Fail

(KB)

Tracing Trace

Align

(Sec)

Slice

Align

(Sec) (s) (s)

1. 15 0.7 0.4 10 8 7 6.1

2. 70 3 2.1 30 27 30 10.4

3. 40 2 1.6 22 20 26 15

4. 50 2 1.6 24 21 22 94

5. 72 3 1.9 30 27 31 20

6. 50 2 1.6 24 21 22 94

7. 25 1 0.6 18 19 17 14

8. 30 1.3 0.9 20 21 19 17

9. 25 1 0.6 18 19 17 14

10. 32 1.2 0.9 20 21 19.8 15

11. 28 1.1 0.7 18.7 19.3 17.5 14.2

12. 20 1 0.6 15 13.9 16.5 15.9

13. 15 0.7 0.4 10 8 10.1 12

14. 25 1 0.6 18 19 17 14

15. 20 1 0.6 15 13.9 16.5 15.9

16. 35 1.3 0.9 22.7 21.3 20 72

17. 27 1 0.6 18.7 19.3 16.9 13.1

18. 100 4 3.1 48.1 47.4 50 94

19. 32 1.2 0.9 20 21 19.8 12.2

20. 150 5 3.9 60.3 59.8 58 109

Performance:

 Table 1 show the performance evaluation of trace

alignment and slice alignment. It includes the size of passing

and failing traces the time needed to align the traces of C#

programs. It also includes the time taken to generate the slice

align graph for example the time taken to trace for interface

program is 26 (sec) but for slice align never takes 15 (sec). So

we conclude that it saves the time of the security analyst when

compared to analyst manual work.

47

Table 2: Performance evaluation

Name of Program

Number

of lines in

the

program

Average slicing

time

(microseconds)

Dynamic

slicing

Average slicing

time

(microseconds)

Differential

slicing

1. Sorting.cs 15 475.2 250.6

2. Inheritance 15 475.2 247.3

3. Interface 20 477.6 227.3

4. String

operations
25 490.5 231.3

5. Thread 25 483.3 203.2

6. Binarysearch 25 490.5 246.9

7. Operator

overloading
27 480.1 223.1

8. Dining

philosopher
28 481.3 225.3

9. Linked list 30 485.1 228.7

10. Animation 32 487.2 248.9

11.Radiobuttonlist 32 486.7 219.7

12. Tower of

hanoi
35 489.5 228.7

13. Database 35 489.5 224.2

14. Matrix

operations
40 550.6 225.2

15. Queue 50 563.4 210.7

16. Fileoperations 50 560.2 229.3

17. Tic-Tac-Toe 70 590.4 231.3

18. Binary tree 72 590.3 208.2

19. Stack 120 1250.8 951.2

20. calculator 154 1280.3 960.4

Fig. 10 Comparison Graph of the Slicing Algorithm

 Table 2 and 3 shows the average slicing time for

dynamic and differential slicing. For example database

program the average dynamic slicing time is 489.5 (micro

secs) but for differential slicing same program it tooks 224

(micro seconds). So we conclude that differential slicing takes

less amount of time for slicing when compared to dynamic

slicing. From the graph we can conclude that the size of the

program increases, the average slicing time also increases.

There may be sudden increase in the average slicing time as in

our case, because of complexity of the program.

CONCLUSION

In our proposed work we indentify the behavioral difference

between the two similar programs. We used trace alignment

algorithm for producing the aligned and disaligned region and

also to identify the flow difference & value difference of a

variable. We proposed a slice alignment algorithm for c#

programs to generate a casual difference graph. We compare

dynamic slicing & differential slicing and the time taken to

slice the c# programs. We conclude that slicing time for

differential slicing is less when compared to dynamic slicing

for DotNet programs.

REFERENCES

[1] J. Winstead and D. Evans. Towards differential program

analysis. In Workshop on Dynamic Analysis, Portland,

OR, May 2003.

[2] Franz Wotawa, “On the use of constraints in dynamic

slicing for program debugging”, Fourth International

Conference on Software Testing, Verification and

Validation Workshops, 2011.

[3] Noah M.Johnson and Juan caballero et al, “Differential

slicing: Identifying casual executions differences for

security applications”, IEEE symposium on security and

privacy, 2011.

[4] W. N. Sumner and X. Zhang. Algorithms for

automatically computing the causal paths of failures. In

FASE, York, United Kingdom, March 2009.

[5] X. Zhang, S. Tallam, N. Gupta, and R. Gupta. Towards

locating execution omission errors. In PLDI, San Diego,

CA, June 2007.

[6] J. R. Crandall, G. Wassermann, D. A. S. Oliveira, Z.

Su,S. Felix, W. Frederic, and T. Chong. Temporal

search: Detecting hidden malware timebombs with

virtual machines. In Operating Systems Review, pages

25–36. ACM Press, 2006.

[7] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, P.

Poosankam, D. Song, and H. Yin. Automatically

identifying trigger-based behavior in malware. In Book

chapter in “Botnet Analysis and Defense”, 2007.

[8] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple

execution paths for malware analysis. In Proceedings of

the 2007 IEEE Symposium on Security and Privacy, SP

’07, pages 231–245, Washington, DC, USA, 2007. IEEE

Computer Society.

[9] M. Weiser. Program slicing. In ICSE, San Diego, CA,

March 1981.H. Agrawal and J. R. Horgan. Dynamic

program slicing. ACM SIGPLAN Notices, 25(6), June

1990.

[10] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In

PLDI, San Diego, CA, June 2007.

[11] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic

slicing algorithms. In ICSE, Portland, OR, May 2003.

[12] B. Korel and J. Laski. Dynamic program slicing. Info.

Proc. Letters, 29(3), October 1988.

[13] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London

Incremental regression testing. In ICSM, Montreal,

Canada, September 1993.

48

[14] T. Gyim´othy, A. Besz´edes, and I. Forgacs. An efficient

relevant slicing method for debugging. In ESEC,

Toulouse, France, September 1999.

[15] A. Zeller and R. Hildebrandt. Simplifying and isolating

failure-inducing input. IEEE TSE, 28, February 2002.

[16] H. Cleve and A. Zeller. Locating causes of program

failures.InICSE, Saint Louis, MO, May 2005.

[17] W. N. Sumner and X. Zhang. Memory indexing:

Canonical zing addresses across executions. In FSE,

Santa Fe, NM, November 2010.

[18] G. Liang, A. Roychoudhury, and T. Wang. Accurately

choosing execution runs for software fault localization.

In CC, Vienna, Austria, March 2006.

[19] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address

obfuscation: An efficient approach to combat a broad

range of memory error exploits. In USENIX Security,

Washington, D.C., August 2003.

[20] J. Caballero. Grammar and Model Extraction for

Security Applications using Dynamic Program Binary

Analysis. PhD thesis, Department of Electrical and

Computer Engineering, Carnegie Mellon University,

Pittsburgh, PA, September 2010.

[21] P. M. Comparetti, G. Salvaneschi, E. Kirda, C.

Kolbitsch, C. Kruegel, and S. Zanero. Identifying

dormant functionality in malware programs. In

Proceedings of the 2010 IEEE Symposium on Security

and Privacy, SP ’10, pages 61–76, Washington, DC,

USA, 2010. IEEE Computer Society.

[22] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The

program dependence graph and its use in optimization.

ACM Trans. Program. Lang. Syst., 9:319–349, July

1987.

[23] M. J. Harrold, Y. G. Rothermel, Z. K. Sayre, Z. R. Wu,

and L. Y. Z. An empirical investigation of the

relationship between spectra differences and regression

faults. Software Testing, Verification and Reliability,

10:2000, 2000.

[24] S. Horwitz, T. Reps, and D. Binkley. Interprocedural

slicing using dependence graphs. ACM Trans. Program.

Lang. Syst., 12:26–60, January 1990.

[25] M. G. Kang, H. Yin, S. Hanna, S. McCamant, and D.

Song. Emulating emulation-resistant malware. In VMSec,

Chicago, IL, November 2009.

[26] S. S. Muchnick. Advanced compiler design and

implementation. Morgan Kaufmann, 1997.

[27] P. Porras, H. Saidi, and V. Yegneswaran. A foray into

Conficker’s logic and rendezvous points. In LEET,

Boston, MA, April 2009.

[28] Symantec Corporation. W32.Netsky.C.

http://www.symantec.com/security J. Winstead and D.

Evans. Towards differential program analysis. In

Workshop on Dynamic Analysis, Portland, OR, May

2003.

[29] response/writeup.jsp? docid=2004-022417-4628-99.

[30] TEMU: The Bit Blaze dynamic analysis component.

http:// bitblaze.cs.berkeley.edu/temu.html.

[31] N. Tracey, J. Clark, and K. Mander. The way forward for

unifying dynamic test case generation: The

optimizationbased approach. In In International

Workshop on Dependable Computing and Its

Applications, pages 169–180, 1998.

[32] D. Weeratunge, X. Zhang, and W. N. S. S. Jagannathan.

Analyzing concurrency bugs using dual slicing. In

ISSTA, Trento, Italy, July 2010.

[33] J. Winstead and D. Evans. Towards differential program

analysis. In Workshop on Dynamic Analysis, Portland,

OR, May 2003.

[34] T. Xie and D. Notkin. Checking inside the black box:

Regression fault exposure and localization based on

value spectra differences. Technical report, FSE Poster

Session, 2002.

[35] B. Xin, W. N. Sumner, and X. Zhang. Efficient program

execution indexing. In PLDI, Tucson, AZ, June 2008.

