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ABSTRACT 
The programmer has to understand the behavior of two 

similar programs and then identify the execution difference 

which produces difference in output. When two similar 

programs are executed under two different environments 

which shows different behavior in output. The main 

difference exists in the program behavior is due to two 

different types of input. This paper proposes differential 

slicing based on trace alignment algorithm which produces the 

execution differences and generates a casual difference graph. 

We implement differential slicing for C# programs and 

identify the execution difference. The results shows that 

differential slicing identifies the input difference and casual 

difference graph reduces the amount of time for the 

programmers to understand the execution difference. Our 

experimental results show the proposed differential slicing  

performs better than existing approach. 

Keywords  
Casual Difference Graph (CDG),                  Program 

Dependence Graph (PDG)  

1.Introduction: 

Differential program Analysis is the process of finding two 

similar programs to determine the behavioral difference 

between them.Programs are frequently maintained by the 

programmers who are far removed from software 

development process. The purpose of modifications in the 

program development  is not always clear. The actual effect 

on the programs behavior is the presence of a particular part 

of the program may be unknown,a particular line may be 

crucial or it may have no effect at all. The previous research 

shows that difference in behavior is caused by the presence or 

absence of particular element would help the maintainers in 

understanding the program. A set of automated techniques is 

needed to analyze the effect of modifications. We use 

differential slicing to focus on differences between two 

similar programs [1]. 

We proposed a differential slicing for C# programs. It 

identifies the aligned and disaligned region and generates a 

casual difference graph. We compare the differential slicing 

and existing approach and the results are tabulated.               

Our results also show that differential slicing identifies the 

input difference and CDG decreases the time and effort 

needed for an analyst to understand the observed difference. 

The paper is organized as follows. Section 2 describes the 

existing differential slicing techniques. Section 3 explains 

about Dynamic slicing. Section 4 explains about differential 

slicing. Section 5 describes about slice alignment. Section 6 

describes the performance result of differential slicing. 

Section 7 describes conclusion. 

2. Related Work 

Differential program analysis is the task of analyzing  two 

related programs which identified the behavioral difference 

between them. Joel Winsted et al presents a technique to find 

an input for which the two programs will produce different 

outputs ,Thus illustrating the behavioral difference between 

the two programs [1]. A combination of static and dynamic 

techniques are used to find the differential inputs. Sumner and 

Zhang [4] finds the casual path of two executions by first 

patching the failing execution dynamically. In order to find 

this by modifying variables and predicates at runtime to 

produce a passing execution. 

Zhang et al proposed a technique to find the execution 

omission errors[5].If a patch is found then both runs are 

aligned and similar variables are identified through value 

mutations. There are many existing techniques for finding 

trigger based behavior in malware. Temporal search identifies 

the time based behavior byperturbing  thesystem time of a 

virtual machine and observing for different behaviors[6]. 

Similarly [7][8] uses dynamic analysis to explore multiple 

execution paths in order to find the hidden behavior in 

malware.  

The most widely used debugging technique proposed by 

Weiser is program slicing [9] which produces a slice 

containing parts of a program that are relevant to find the 

value of a particular variable called slicing criterion. Korel 

and Laski presents a technique called dynamic slicing which 

works on single execution and outputs the executed 

statements relevant to slicing criterion. There are four forms 

of dynamic slicing based on the dependencies in the slice. 

Thin slicing [10] contains a subset of data dependencies, data 

slicing [11] consists of all data dependencies, full slicing [12] 

include data and control dependencies and relevant slicing 

[13], [14] includes data and control dependencies in addition 

to that predicates and chains of potential dependencies rooted 

at these predicates.  

Delta debugging is a technique used to identifying the failure 

inducing inputs automatically [15]. Zeller et al proposed a 

failure analysis method that uses delta debugging to compare 

the status of a faulty and correct execution at the fault is found 

[15][16]. Xin et al [17] proposed a technique called execution 

indexing to find the correspondence between points across 

executions. Trace Alignment algorithm is based on execution 
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indexing. Liang et al [18] uses execution traces for fault 

localization. 

In this paper we study the execution difference of two similar 

programs and generate a casual difference graph (CDG). First, 

We generate CDG for identifying casual difference for 

DotNet programs. Second we compare the dynamic slicing 

and the proposed differential slicing and the results are 

tabulated to analyze the performance. 

3. Dynamic slicing 

Program slicing is the task of finding all statements in a 

program that directly or indirectly influence the value of a 

variable occurrence. The set of statements that can affect the 

value of a variable at some point in a program is called a 

program backward slice. In several software engineering 

applications, such as program debugging and measuring 

program cohesion and parallelism, several slices are computed 

at different program points[2]. Program slicing can be static or 

dynamic. In the static program slicing  it is required to find a 

program slice that involves all statements that may affect the 

value of a variable at a program point for any input set. In 

dynamic program slicing the slice is found with respect to a 

given input set. Many algorithms have been introduced to find 

static and dynamic slices. These algorithms compute the slices 

automatically by analyzing the program data flow and control 

flow. 

Definition (Dynamic slicing criterion): 

A dynamicslicing criterion is a tuple (T, xn) where T is a test 

case, xis a variable, and n is the index of the executed 

statement of interest.  

using System; 

using System.Collections.Generic; 

using System.Text; 

namespace Step2 

{ 

class Program 

{ 

static void Main(string[] args) 

{ 

1:int  i = 0; 

2:int prod=1, sum = 0,size;  

 3:while (i<size) { 

 4:sum = sum + a[i]; 

 5:i = i + 1; } 

 6:prod = sum * (size + 1); 

 7;if (size > 0) { 

 8:all = sum + size; 

 9:} else {  

10:all = sum * size; } 

}}} 

 

Fig. 1. Sample dotnet program prod with an array a 

of size as input, and prod, all as outputs. 
 

 

Algorithm Dynamic Slice: 

Inputs:An execution trace 𝐸𝑇= ⟨(1)1, . . . , 𝑠(𝑚)𝑚⟩of a 

program Π and a test case 𝑇, and a slicing criterion 

(𝑇,𝑥𝑛),𝑛≤ 𝑚. 

Outputs: A dynamic slice. 

1) Compute the execution trace graph 𝐸𝑇𝐺for 𝐸𝑇 

using the definitions of →𝐶and →𝐷. 

2) Mark the node (𝑘)in𝐸𝑇𝐺where 𝑥∈((𝑘)𝑘) and there is no 

𝑠(𝑖)𝑖, 𝑘<𝑖≤ 𝑛,𝑥∈((𝑖)) in 𝐸𝑇𝐺. 

3) Traverse the graph 𝐸𝑇𝐺from the marked node in the 

reverse direction of the arcs in 𝐸𝑇𝐺until no new nodes can 

be marked. 

4) Let 𝑆be the set of all marked nodes. 

5) Return the set {(𝑖)∣𝑠(𝑖)𝑖∈𝑆} as the result. 

 

Fig. 2.Algorithm dynamic slice. 

 
For example in fig 1. shows the sample DotNetprogram for 

product of numbers. The dynamic slice for our  example and 

the slicing criterion (({a = [1, 1]; size = 2}, {prod = 6, all 

=4}), prod8) is the following program fragment: 

 

1. i = 0; 

2. sum = 0; 

3. while (i<size) { 

4. sum = sum + a[i]; 

5. i = i + 1; } 

6. prod = sum * size; 

3.1 Program Dependency Graph (PDG) 

The program dependence graph (pdg) consists of nodes and 

direct edges. Each program's simple statement and control 

predicate is represented by a node. Simple statements include 

assignment, read, and write statements. Compound statements 

include conditional and loop statements and they are 

represented by more than one node. There are two types of 

edges in a pdg: data dependence edges and control 

dependence edges. A data dependence edge between two 

nodes implies that the computation performed at the node 

pointed by the edge directly depends on the value computed at 

the other node. This means that the pointed node has the 

definition of the variable used in the other node. A control 

dependence edge between two nodes implies that the result of 

the predicate expression at the node pointed by the edge 

decides whether to execute the othernode or not. We generate 

a program dependency graph for our sample program. Fig 3 

shows the program dependenc graph. 
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            Data Dependency              control dependency 

 Fig.3 Program Dependency Graph 

4: Proposed Approach 

We take execution traces of two runs of the same program 

difference to be analyzed. The two execution traces are 

generated from two different program inputs or from the same 

program running in two different system environments. 

To understand the target difference which consist of 

1. Finding the input difference that caused the target 

difference. 

2. Understanding the sequence of events that led from 

input difference to target difference 

To find the casual difference graph using differential slicing. 

Fig 4 represents the architecture of our approach. It consists of 

three phases [3]. 

1.Preparation 

2.Trace Alignment 

3.Slice Alignment 

 

Fig. 4.  Architecture of Differential Slicing 

4.1. Preparation: 

The preparation phase consists of two steps. In the first step 

the program is executed twice on the given inputs inside the 

execution monitor. The execution monitor tracks the 

executions of each program and produces execution traces 

Tf,Tp,Af and Ap.Tf consists of all executed instructions and Tp 

is the contents of each instructions operands. Af and Ap 

provides information about the heap allocation/deal location 

operands performed by the program during each run.The 

second step in post dominator extraction which takes input as 

program and execution traces and computes the control flow 

graph  for each function and outputs the post dominator 

information. 

4.2. TraceAlignmentAlgorithm: 

The third step is trace alignment which identifies the 

execution differences that form the casual difference graph. 

The TraceAlignment algorithm is based on execution 

indexing[29]. It outputs the aligned and disaligned region in a 

single pass over the traces. Given size of m and n instruction 

the passing (p) and failing(f) traces respectively, a pass of 

statement from these traces(px,fy).s.t that x[1,n] , y[1,m] are 

aligned  if they are correspond to each other. We say that a 

statement in disaligned in one trace if it has no corresponding 

statement in other trace are represented by a pair(px,┴) or 

(┴,fy).Trace alignment marks aligned or disaligned for each 

statement. We group them into regions based alignment. 

An aligned region is a maximal continual sequence of aligned 

statements:  

(px,fy),(px+1 , fy+1).…(px+k , fy+k) sti[0,k] px+i , fy+i┴ 

A disaligned region is a maximal continual sequence of 

disaligned statements. 

(px,┴)…(px+k,┴) or (┴,fx)..( ┴,fx+k) 

A disaligned region is present after the aligned region. The 

last statement in the aligned region is termed as divergence 

point, because it creates a disaligned by changing the control 

to different statements in both the traces. Fig.5 shows the 

example DotNet program for alignment. The Fig.7 shows that 

the two executions are aligned until #4 executes. Here 

statements #2-#4 in each trace form an aligned region. Branch 

statement #5 is divergence point.It checks the condition true 

in passing trace and false infailingrun by creating a disaligned 

region, because Stmt#5 executes in the passing run but not in 

failing run (an execution omission). The two executions are 

realigned at statement #6 and remain aligned until statement 

#7 produces crash in failing trace. Thus statement #6, #7 form 

another aligned region. 
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using System; 

using System.Collections.Generic; 

using System.Text; 

namespace Step2 

{ 

class Program 

{ 

static void Main(string[] args) 

{ 

long n,I,osum=0,esum=0; 

Console.WriteLine(“enter the limit:”); 

n = Convert.ToInt64(Console.ReadLine()); 

for(i=1;i<=n;i++) 

{ 

if(i % 2 == 0)        

esum = esum + i ;  

else   

osum = osum + i ; 

Console.WriteLine(“ The odd numbers sum is:”+osum); 

Console.WriteLine(:The even numbers sum is :”+esum); 

} 

} 
 

Fig. 5. Example program to find sum of odd and  

even numbers 

Input:Ao,A1 //anchor points 

Output:RL //list of regions 

EI0,EI1 : execution index stacksStack empty(); 

ins0,ins1A0,A1; //current instruction 

RL     Ø; 

while ins0,ins1 ≠   ┴   do 

crregionBegin(ins0,ins1,aligned) 

         // Aligned-Loop: Traces aligned. Walk until disaligned 

while EI0= EI1 do 

 foreachi 0,1 do 

 EI IupdateIndex( EIi , insi ); 

 cr  regionExtend(insi,cr); 

 insi++; 

end 

end 

RL        RL  U cr; 

crregionBegin(ins0,ins1,disaligned); 

//Disaligned-Loop: Traces daligned, Walk until realigned  

whileEI0 ≠  EI1do 

while |EI0| ≠ |EI1| do 

j (|EI0| >|EI1|)  ? 0:1; 

while |EIj| ≥|EIi-j| do 

 EI IupdateIndex( EIi, insi); 

 crregionExtend(insi,cr); 

 insj++; 

 end 

end 

end 

RL    RLU cr; 

end   

  
Fig. 6 Trace Alignment Algorithm 

 

 

Fig.7. Traces and alignment example 

A. Execution Differences: 

Execution differences are values that differ across runs or 

statements executed in only one run. However for finding that 

a value  differs or such a statement appears only in one trace 

needs to establish a correspondence between statements in 

both traces. It is quite difficult because the same statement 

may appear multiple times occur in loops, recursive functions, 

or calling of same function in different contexts. The process 

of identifying such correspondence is called trace alignment 

and for finding the execution differences. Given two aligned 

executions there are two types of execution differences: flow 

differences and value differences. A flow difference is simply 

a disaligned statement value difference is used in aligned 

statement that has a different value in both executions. For 

example statement #5 in Fig.7 is a flow difference n variable 

in statement #3 has value 2 in passing run and has value Ram 

in failing run. We say that statement has differences in value 

when it uses one or more variables that are value differences.     

 

4.3. Slice Alignment:   

The last step is slice Alignment which is used to create  the  

casual difference graph dynamically as the execution traces 

are scanned backwards in lockstep, starting  from the target 

difference. 

B. Casual difference graph 

The Casual difference graph consists of the sequence of 

execution differences to the target differences. The CDG stats 

from the input difference because those are root cause of all 

execution differences. It identifies the sequence of events that 

cause the target difference and the casual path which contains 

flow differences and value differences. The CDG is more 

precisely than the full list of execution differences between 

both runs, since not all execution differences may be relevant 

to the target difference. Fig.9. Shows the CDG for sum of odd 

and even numbers. As it processes from start to end with the 

target difference .statement #5 crashes in the failing run.  
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Input: TD /* target difference */, RL /* alignment results */ 

Output: N, E // nodes and edges in causal difference graph  

Worklist: stack of instruction-pairs  (TDp, TDf); 

Processed: Boolean lookup table ; 

while ! worklist.is Empty() do 

 (insnp, insnf) worklist.pop(); 

 Np,fNp.finsnp,f; 

 Processed (insnp, insnf)  true; 

 if isAligned (insnp, insnf, RL) then 

 slice_operandsvaldifferences (insnp, insnf); 

 forall operand slice_operandsdo 

 depimmDataDeps (operand); 

  Ep,fEp,f new Edge (insnp,fdepp,f); 

  if! Processed (depp, depf ) then 

 end Worklist.push (depp, depf ); 

end 

               else  

 dtypedivRegion Type (insnp, insnf, RL); 

 switchdtypedo 

 // See Table I for explanation for divergence types 

 end 

 caseExtraExec or ExecOmission or ExecDiff 

div domDivPt (dtype, insnp, insnf,RL); 

Ep,fEp,f  new Edge (insnp,fdivp,f); 

if! Processed (divp, divf ) then  

Worklist.push (divp, divf ); 

CaseinvalidPointer 

ifwildwrite (insnp, insnf)then 

alignedpalignedInsn (insnf, RL) 

if! Processed (alignedp, alignedf ) then  

Worklist.push (alignedp, insnf ); 

         end  

 end 

          end 

      end  

end 
 

Fig. 8 Algorithm for casual difference graph. 

 
Fig. 9 Casual Difference Graph 

Table1.Traces and time to generate slice align graph. 

S.No. LOC  
Pass 

(KB) 

Fail 

(KB) 

Tracing  Trace 

Align 

(Sec)  

Slice 

Align 

(Sec)  (s) (s) 

1.  15 0.7 0.4 10 8 7 6.1 

2.  70 3 2.1 30 27 30 10.4 

3.  40 2 1.6 22 20 26 15 

4.  50 2 1.6 24 21 22 94 

5.  72 3 1.9 30 27 31 20 

6.  50 2 1.6 24 21 22 94 

7.  25 1 0.6 18 19 17 14 

8.  30 1.3 0.9 20 21 19 17 

9.  25 1 0.6 18 19 17 14 

10.  32 1.2 0.9 20 21 19.8 15 

11.  28 1.1 0.7 18.7 19.3 17.5 14.2 

12.  20 1 0.6 15 13.9 16.5 15.9 

13.  15 0.7 0.4 10 8 10.1 12 

14.  25 1 0.6 18 19 17 14 

15.  20 1 0.6 15 13.9 16.5 15.9 

16.  35 1.3 0.9 22.7 21.3 20 72 

17.  27 1 0.6 18.7 19.3 16.9 13.1 

18.  100 4 3.1 48.1 47.4 50 94 

19.  32 1.2 0.9 20 21 19.8 12.2 

20.  150 5 3.9 60.3 59.8 58 109 
 

Performance:  

 Table 1 show the performance evaluation of trace 

alignment and slice alignment. It includes the size of passing 

and failing traces the time needed to align the traces of C# 

programs. It also includes the time taken to generate the slice 

align graph for example the time taken to trace for interface 

program is 26 (sec) but for slice align never takes 15 (sec). So 

we conclude that it saves the time of the security analyst when 

compared to analyst manual work.  
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Table 2: Performance evaluation  

Name of Program  

Number 

of lines in 

the 

program 

Average slicing 

time 

(microseconds) 

Dynamic 

slicing 

Average slicing 

time 

(microseconds) 

Differential  

slicing 

1. Sorting.cs 15 475.2 250.6 

2. Inheritance 15 475.2 247.3 

3. Interface 20 477.6 227.3 

4. String 

operations 
25 490.5 231.3 

5. Thread 25 483.3 203.2 

6. Binarysearch 25 490.5 246.9 

7. Operator 

overloading 
27 480.1 223.1 

8. Dining 

philosopher 
28 481.3 225.3 

9. Linked list 30 485.1 228.7 

10. Animation 32 487.2 248.9 

11.Radiobuttonlist 32 486.7 219.7 

12. Tower of 

hanoi 
35 489.5 228.7 

13. Database 35 489.5 224.2 

14. Matrix 

operations 
40 550.6 225.2 

15. Queue 50 563.4 210.7 

16. Fileoperations 50 560.2 229.3 

17. Tic-Tac-Toe 70 590.4 231.3 

18. Binary tree 72 590.3 208.2 

19. Stack 120 1250.8 951.2 

20. calculator 154 1280.3 960.4 
 

 

 

Fig. 10 Comparison Graph of the Slicing Algorithm  

 Table 2 and 3 shows the average slicing time for 

dynamic and differential slicing. For example database 

program the average dynamic slicing time is 489.5 (micro 

secs) but for differential slicing same program it tooks 224 

(micro seconds). So we conclude that differential slicing takes 

less amount of time for slicing when compared to dynamic 

slicing.  From the graph we can conclude that the size of the 

program increases, the average slicing time also increases. 

There may be sudden increase in the average slicing time as in 

our case, because of complexity of the program.  

 

CONCLUSION 

In our proposed work we indentify the behavioral difference 

between the two similar programs. We used trace alignment 

algorithm for producing the aligned and disaligned region and 

also to identify the flow difference & value difference of a 

variable. We proposed a slice alignment algorithm for c# 

programs to generate a casual difference graph. We compare 

dynamic slicing & differential slicing and the time taken to 

slice the c# programs. We conclude that slicing time for 

differential slicing is less when compared to dynamic slicing 

for DotNet programs. 
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